Acknowledgment. We are grateful to the National Science Foundation for support of this work to G.H.R. (RII-8520554).

Supplementary Material Available: Tables of crystal data, bond distances and angles, final fractional coordinates, and thermal parameters (6 pages); a listing of observed and calculated structure factors (7 pages). Ordering information is given on any current masthead page.

Unsaturated, PCy_2 -Bridged Re–M Heterobimetallics (M = Rh, Ir, Pd; Cy = Cyclohexyi): Metal-Metal Bond Isomerism, Reversible P–H Bond Activation, and Cooperative Reactivity[†]

R. Thomas Baker,* Joseph C. Calabrese, and Timothy E. Glassman

Central Research and Development Department E. I. du Pont de Nemours and Co. Experimental Station, E328 Wilmington, Delaware 19898

Received May 20, 1988

Summary: The new d^4-d^8 heterobimetallics (PCy₂)₂Re(μ - $PCy_{2}M(1,5-COD)$ (M = Rh, Ir; COD = cyclooctadiene) are proposed, on the basis of ³¹P DNMR, to exist in two isomeric forms: one with pseudotetrahedral (PT) coordination about M and an M-Re double bond and the other with square-planar (SP) coordination about M and an M→Re donor-acceptor bond. Structural models for this metal-metal bond isomerism are provided by $(PCy_2)_2 Re(\mu - PCy_2)_2 Ir(PMe_3)_2$ (PT, Re-Ir = 2.6573 (5) Å) and $[(PCy_2)_2ReH(\mu - PCy_2)_2Rh(1, 5-COD)]BF_4$ (SP, Re-Rh = 2.9361 (8) Å). Reversible P-H bond activation is observed for $(PCy_2)(PCy_2H)(N_2)Re(\mu - PCy_2)_2Pd(PPh_3)(Pd == Re)$ and $(PCy_2)_2 ReH(\mu - PCy_2)_2 Pd(PPh_3)(Pd \rightarrow Re)$ and carbonylation of the Ir-COD complex occurs at both metal centers to give $(PCy_2)(CO)_2Re(\mu-PCy_2)_2Ir(CO)_2(PCy_2)$ in which a PCy₂ ligand has been transferred to Ir.

One approach to the development of new selective transition-metal catalysts involves the use of heterobimetallic complexes in which each metal center performs a different function.¹ In most soluble heterobimetallic complexes one or both metal centers are electronically saturated,² and reactivity at both metal centers without fragmentation is rarely observed.³ We have recently shown that reactions of groups 8-10 transition-metal complexes with early transition-metal-containing phos-

Figure 1. ³¹P[¹H] DNMR spectra of $(PCy_2)_2Re(\mu - PCy_2)_2Ir(1,5-COD)$ (**2b**) in THF- d_8 -pentane (1:2).

phines that contain M=P double bonds lead directly to heterobimetallics in which the early metal center is electronically unsaturated.⁴ In this report we describe the synthesis and metal-metal bond isomerism of $(PCy_2)_2Re(\mu-PCy_2)_2M(1,5-COD)$ (M = Rh, Ir; COD = cyclooctadiene), the synthesis of $(PCy_2)(PCy_2H)(N_2)Re(\mu-PCy_2)_2Pd(PPh_3)$ and reversible P-H bond activation to give $(PCy_2)_2ReH(\mu-PCy_2)_2Pd(PPh_3)$, and the cooperative addition of CO to the M = Ir complex to give $(PCy_2)_ (CO)_2Re(\mu-PCy_2)_2Ir(CO)_2(PCy_2)$.

Displacement of chloride ion from $[M(1,5-COD)Cl]_2^5$ by the homoleptic $[Re(PCy_2)_4]^-$ anion⁶ (1) gives the unsaturated heterobimetallics $(PCy_2)_2Re(\mu-PCy_2)_2M(1,5-COD)$ (M = Rh, 2a; M = Ir, 2b) as dark purple and black mi-

$$[Li(DME)][Re(PCy_{2})_{4}] + \frac{1}{2}[M(1,5-COD)Cl]_{2} \rightarrow 1$$

$$(PCy_{2})_{2}Re(\mu - PCy_{2})_{2}M(1,5-COD) (1)$$

$$2a, M = Rh$$

$$2b, M = Ir$$

crocrystalline solids in high yield.⁷ Complexes **2a**,**b** have been characterized by IR and ¹H and ³¹P NMR spectroscopy and by complete elemental analysis (Tables I–IV, supplementary material). The ³¹P DNMR spectra of **2b** (Figure 1) indicate the presence of two isomers, each with four inequivalent PCy₂ ligands. Both isomers undergo two different dynamic processes, proposed to be inversion of the bent ReP₂Ir bridge ($\Delta G^*_{T_c} = 9.7 \pm 0.2$ [9.1 ± 0.2] kcal/mol for the major [minor] isomer)^{8,9} and rotation

[†]Contribution no. 4670.

⁽¹⁾ For applications to heterogeneous catalysis see: Sinfelt, J. H. Bimetallic Catalysts: Discoveries, Concepts, and Applications; Wiley: New York, 1983. Sinfelt, J. H. Acc. Chem. Res. 1987, 20, 134-139.

^{(2) (}a) Roberts, D. A.; Geoffroy, G. L. In Comprehensive Organometallic Chemistry; Wilkinson, G., Stone, F. G. A., Abel, E. W., Eds.;
Pergamon: Oxford, 1982; Chapter 40. (b) Bullock, R. M.; Casey, C. P. Acc. Chem. Res. 1987, 20, 167-173. (c) Bruce, M. I. J. Organomet. Chem.
1983, 242, 147-204; 1985, 283, 339-414.
(d) For DB beilderd every log set (c) Longenback. H. L. Weber

⁽³⁾ For PR₂-bridged examples see: (a) Langenbach, H.-J.; Vahrenkamp, H. Chem. Ber. 1979, 112, 3390-3412. (b) Roberts, D. A.; Steinmetz, G. R.; Breen, M. J.; Shulman, P. M.; Morrison, E. D.; Duttera, M. R.; DeBrosse, C. W.; Whittle, R. R.; Geoffroy, G. L. Organometallics 1983, 2, 846-855. (c) Finke, R. G.; Gaughan, G.; Pierpont, C.; Noordik, J. H. Organometallics 1983, 2, 1481-1483. (d) Horton, A. D.; Mays, M. J.; Raithby, P. R. J. Chem. Soc., Chem. Commun. 1985, 247-250. (e) Guesmi, S.; Taylor, N. J.; Dixneuf, P. H.; Carty, A. J. Organometallics 1989.

^{(4) (}a) Baker, R. T.; Tulip, T. H.; Wreford, S. S. Inorg. Chem. 1985, 24, 1379–1383. (b) Baker, R. T.; Tulip, T. H. Organometallics 1986, 5, 839–845. (c) Baker, R. T.; Fultz, W. C.; Marder, T. B.; Williams, I. D. Organometallics, to be submitted for publication.

^{(5) (}a) M = Rh: Giordano, G.; Crabtree, R. H. Inorg. Synth. 1979, 19, 218. (b) M = Ir: Herde, J. L.; Lambert, J. C.; Senoff, C. V. Inorg. Synth. 1974, 15, 18.

 ⁽⁶⁾ Baker, R. T.; Krusic, P. J.; Tulip, T. H.; Calabrese, J. C.; Wreford,
 S. S. J. Am. Chem. Soc. 1983, 105, 6763–6765.

⁽⁷⁾ In a typical preparation, a solution of 366 mg (0.5 mmol) of [Ir-(1,5-COD)Cl]₂ in 10 mL of THF was added dropwise to a solution of 1.07 g (1.0 mmol) of 1 in 25 mL of THF, giving a red-brown solution. After 3 h the solvent was removed in vacuo and the residue extracted with 25 mL of hexane and filtered. Removal of the hexane in vacuo yielded 1.05 g of dark solid **2b** (82%). Microcrystalline product was obtained by dissolution in a minimum volume of DME, followed after 1 h by filtration and drying in vacuo.

⁽⁸⁾ $\Delta G^*_{T_c}$ was estimated by using the Eyring equation for two-site exchange. Cf. Sandstrom, J. Dynamic NMR Spectroscopy; Academic: New York, 1982.

Figure 2. (A) Molecular structure of $(PCy_2)_2Re(\mu-PCy_2)_2Ir(PMe_3)_2$ (2d). Hydrogen and carbon atoms (except C_{α} of PCy_2) are omitted for clarity. (B) Molecular structure of 2d viewed down the Re-Ir bond. (C) Molecular structure of $[(PCy_2)_2Re(\mu-PCy_2)_2Rh(1,5-COD)]BF_4$ (3). Hydrogen and cyclohexyl carbon atoms (except C_a) are omitted for clarity. (D) Molecular structure of 3 viewed down the Re-Rh bond. (E) Molecular structure of $(PCy_2)(PMe_3)_2Re(\mu-PCy_2)_2Pd(PMe_3)$ (7). Hydrogen and cyclohexyl carbon atoms (except C_a) are omitted for clarity. (F) Molecular structure of $(PCy_2)(CO)_2Re(\mu-PCy_2)_2Ir(PCy_2)(CO)_2$ (9). Hydrogen and cyclohexyl carbon atoms (except C_{α}) are omitted for clarity.

about the Re-P double bond $(\Delta G^*_{T_c} = 8.4 \pm 0.2 \ [6.7 \pm 0.3] \ \text{kcal/mol})^{10}$ Since the Re(PCy₂)₂ fragment is isoelectronic with IrL_2 , the isomerism presumably stems from both square-planar and tetrahedral coordination about Ir¹¹ with a donor-acceptor $Ir \rightarrow Re$ and a covalent Ir = Re double bond, respectively, as shown by EHMO calculations for $[Rh(CO)_2(PH_2)]_2$.¹² A third dynamic process, namely, rotation of the IrL_2 plane with respect to the IrP_2 bridge plane, then interconverts the two isomers.¹³ The Rh analogue 2a shows similar behavior.

Reaction of 2a,b with excess PMe₃ affords black crystals of $(PCy_2)_2Re(\mu - PCy_2)_2M(PMe_3)_2$ (2c,d). The ³¹P DNMR

(11) Conversion of the tetrahedral-planar isomer to the tetrahedraltetrahedral isomer occurs rapidly (>600 s⁻¹) upon 1e reduction of [Rh- $(CO)_2[\mu-P(t-Bu)_2]]_2$. Cf. Gaudiello, J. G.; Wright, T. C.; Jones, R. A.; Bard, J. J. Am. Chem. Soc. 1985, 107, 888–897. (12) Kang, S.-K.; Albright, T. A.; Wright, T. C.; Jones, R. A. Organo-A. J.

metallics 1985, 4, 666-675.

(13) Broadening of the terminal PCy2 ligand resonances below -100 °C is attributed to hindered rotation about the P-C bonds, giving an ensemble of chemical shifts for each resonance.

spectra of 2c,d show only one isomer down to -120 °C and no evidence for the bridge inversion process. The molecular structure¹⁴ of 2d (Figure 2A) confirms the presence of a planar ReP₂Ir bridge, pseudotetrahedral coordination about Re and Ir, and a Re—Ir double bond (2.6573 (5) Å). Figure 2B shows that the conformations of the PC_2 planes of the terminal PCy₂ ligands render all four PCy₂ ligands inequivalent. Protonation of 2a with HBF₄·Et₂O in THF occurs at Re, yielding dark green crystals of $[(PCy_2)_2ReH(\mu - PCy_2)_2Rh(1, 5-COD)]BF_4$ (3). The molecular structure¹⁵ of this d²-d⁸ heterobimetallic (Figure 2C,D) consists of a bent¹⁶ ReP₂Rh bridge, with square-planar coordination about Rh, square-pyramidal coordination about Re,¹⁷ and a donor-acceptor Rh \rightarrow Re bond (2.9361 (8) Å).

The reaction of pseudotetrahedral $Re(PCy_2)_3(PCy_2H)$ (4) (obtained by protonation of 1 with 1 equiv of H_2O in THF) with $(\mu - \eta - C_5 H_5)(\mu - \eta - 2$ -Me-allyl)Pd₂(PPh₃)₂¹⁸ in THF under a nitrogen atmosphere gives orange crystals of $(PCy_2)(PCy_2H)(N_2)Re(\mu - PCy_2)_2Pd(PPh_3)$ (5).¹⁹ When

Chem., Int. Ed. Engl. 1975, 14, 185-186.

⁽⁹⁾ Similar barriers to MP_2M ring inversion have been observed for $[Cp_2M(\mu_PEt_2)]_2$ (M = Ti, Zr, Hf). Baker, R. T.; Geiger, W. E.; Van

 $[[]Cp_2M(\mu-PE_2)]_2$ (M = 11, 27, 11). Baker, R. 1.; Geiger, W. E.; Van Order, N., manuscript in preparation. (10) M=PR₂ rotational barriers range from 5.8 kcal/mol in (η -C₅Me₅)Ti(PCy₂)₂(PMe₃) (estimated from DESR spectra; Baker, R. T.; Calabrese, J. C., K^{*}rusic, P. J.; Ortiz, J. V. Organometallics, manuscript in preparation) to 10.3 kcal/mol in (η -C₅H₆)W(CO)₂[P(t-Bu)₂]; Jorg, K.; Malisch, W.; Reich, W.; Meyer, A.; Schubert, U. Angew. Chem., Int. Ed. Engl. 1962 25 02-02 Engl. 1986, 25, 92-93.

⁽¹⁴⁾ Bond distances and angles: Re-P(1) = Re-P(2) = 2.359 (2) Å, Re-P(3) = 2.234 (2) Å, Re-P(4) = 2.209 (2) Å, Ir-P(1) = 2.269 (2) Å, Ir-P(2) = 2.263 Å, Ir-P(5) = 2.242 (2) Å, Ir-P(6) = 2.252 (2) Å; Ir-P.Re_{av} = 70.11 (5)°, P(1)-Ir-P(2) = 113.05 (7)° P(5)-Ir-P(6) = 95.8 (1)°, P-(1)-Re-P(2) = 106.46 (7)°, P(3)-Re-P(4) = 102.55 (7)°. (15) Bond distances and angles: Re-P(1) = 2.281 (2) Å, Re-P(2) = 2.323 (2) Å, Re-P(3) = 2.217 (2) Å, Re-P(4) = 2.244 (2) Å, Re-H = 1.53 (6) Å, Rh-P(1) = 2.355 (2) Å, Rh-P(2) = 2.370 (2) Å; Rh-P-Re_{av} = 78.01 (7)°, P(1)-Rh-P(2) = 97.82 (8)°, P(1)-Re-P(2) = 101.32 (8)°, P(1)-Re-P(3) = 111.27 (8)° P(1)-Re-P(4) = 106.65 (8)° P(1)-Re-H = 92 (2)°

 $P(3) = 111.27 (8)^{\circ}, P(1)-Re-P(4) = 106.65 (8)^{\circ}, P(1)-Re-H = 92 (2)^{\circ},$ P(3)-Re-P(4) = 97.78 (8)°

⁽¹⁶⁾ The dihedral angle between the P(1)-Rh-P(2) and P(1)-Re-P(2)

planes is 25.8°. (17) The square base is defined by P(2), P(3), P(4), and H(0), with P(1) (18) Werner, H.; Tune, D.; Parker, G.; Kruger, C.; Brauer, D. J. Angew.

crystals of 5 are heated in vacuo at 60 °C, N_2 is evolved and green microcrystalline $(PCy_2)_2ReH(\mu - PCy_2)_2Pd(PPh_3)$ (6) is obtained.²⁰ Cooling a pentane solution of 6 at -30

$$\begin{array}{c} \operatorname{Re}(\operatorname{PCy}_{2})_{3}(\operatorname{PCy}_{2}H) + \\ 4 \\ {}^{1}/{}_{2}(\mu - \eta - C_{5}H_{5})(\mu - \eta - 2 - \operatorname{Me-allyl})\operatorname{Pd}_{2}(\operatorname{PPh}_{3})_{2} \rightarrow \\ {}^{1}/{}_{2}C_{5}H_{5} - C_{4}H_{7} + \\ (\operatorname{PCy}_{2})(\operatorname{PCy}_{2}H)(\operatorname{N}_{2})\operatorname{Re}(\mu - \operatorname{PCy}_{2})_{2}\operatorname{Pd}(\operatorname{PPh}_{3}) (2) \\ 5 \end{array}$$

°C under N₂ for several hours gives orange crystals of 5, thus demonstrating reversible, N_2 -promoted P-H bond activation. The ³¹P DNMR spectra of 5/6 (Figures 3 and 4, supplementary material) show only 6 above 40 °C and exchange averaging of the inequivalent terminal PCy2 ligands in 6 with $\Delta G^*_{T_c} = 10.2 \pm 0.2 \text{ kcal/mol}$ (cf. 13.7 ± 0.3 kcal/mol for 3). Excess PMe₃ reacts with 5 at both metal centers to afford poorly soluble red-orange crystals of $(PCy_2)(PMe_3)_2Re(\mu - PCy_2)_2Pd(PMe_3)$ (7). The molecular structure²¹ of 7 (Figure 2E) consists of a planar ReP_2Pd bridge with trigonal-bipyramidal coordination about Re and a Re=Pd double bond (2.7575 (9) Å). Complex 5 is presumably isostructural with 7, with N_2 trans to PCy_2H on Re, while 6 is proposed to have a donor-acceptor $Pd \rightarrow Re$ bond and a bent ReP_2Pd bridge, similar to 3.²²

While carbonylation (1 atm, 25 °C) of 5 occurs at Re to give orange crystals of (PCy₂)(CO)₂Re(µ-PCy₂)₂Pd(PPh₃) (8), reaction of 2b with CO occurs at both metals to give red-orange crystals of $(PCy_2)(CO)_2 Re(\mu - PCy_2)_2 Ir(CO)_2$ - (PCy_2) (9) in which a PCy_2 ligand has been transferred to the Ir center. The molecular structure²³ of 9 (Figure 2F) consists of trigonal-bipyramidal Re and Ir centers with a planar ReP₂Ir bridge and a covalent Re-Ir single bond (2.9117 (7) Å). Three different bonding modes for the PCy₂ ligand are observed, with planar and pyramidal terminal PCv_2 ligands on Re (Re-P3 = 2.232 (2) Å) and Ir (Ir-P4 = 2.467(2) Å), respectively. This carbonylation reaction clearly illustrates how PR₂ bridges can promote cooperative reactivity between different metal centers; the Re center

1.17 g (69%). (20) The $5 \rightarrow 6$ conversion is conveniently monitored by infrared spectroscopy as the absorptions due to v_{PH} (2261 cm⁻¹) and v_{NN} (2046 cm⁻¹) are replaced by that due to v_{ReH} (1918 cm⁻¹). (21) Bond distances and angles; Re-P(1) = 2.384 (2) Å, Re-P(2) = 2.387 (2) Å, Re-P(3) = 2.262 (2) Å, Re-P(4) = 2.378 (2) Å, Re-P(5) = 2.399 (2) Å, Pd-P(1) = 2.328 (2) Å, Pd-P(2) = 2.321 (2) Å, Pd-P(5) = 2.394 (2) Å, Pd-P(2) = 7.165 (5) P (1), Pd-P(2) = 110 22 (5) P P 2.264 (2) Å; Pd-P-Re_{av} = 71.65 (5)°, P(1)-Pd-P(2) = 110.23 (6)°, P-(1)-Re-P(2) = 106.12 (6)°, P(4)-Re-P(5) = 178.3 (2)°.

(22) These proposals are based on ³¹P NMR data which show three-

(22) These proposals are based on ³¹P NMR data which show three-bond P-P coupling of the terminal Re-PCy₂ ligand to the Pd-PPh₃ ligand in 5 (26 Hz) and 8 (15 Hz), while 6 shows no such coupling. (23) Bond distances and angles: Ir-C_{av} = 1.894 (7) Å, Re-C_{av} = 1.959 (6) Å, Ir-P(1) = 2.369 (2) Å, Ir-P(2) = 2.361 (1) Å, Re-P(1) = 2.370 (1) Å, Re-P(2) = 2.361 (2) Å; Ir-P-Re_{av} = 75.98 (5)°, C(4)-Ir-C(3) = 161.9 (3)°, C(1)-Re-C(2) = 179.4 (3)°, C(81)-P(4)-C(71) = 101.2 (3)°, C(61)-P(3)-C(51) = 105 ° (3)° $P(3)-C(51) = 105.2 (3)^{\circ}$.

adopts a lower oxidation state and favorable trigonal-bipyramidal geometry while the Ir center is forced to bear a marginally stable, pyramidal terminal PCy₂ ligand.²⁴ Further examples of cooperative reactivity are observed with H_2 in work to be reported elsewhere.²⁵

Acknowledgment. We wish to thank S. A. Hill, T. J. Onley, E. A. Conaway, and W. J. Marshall for skilled technical assistance.

Registry No. 1, 87462-44-0; 2a, 115207-03-9; 2b, 115207-04-0; 2c, 115207-05-1; 2d, 115207-06-2; 3, 115207-08-4; 4, 115207-09-5; 5, 115207-10-8; 6, 115207-11-9; 7, 115207-12-0; 8, 115207-13-1; 9, 115207-14-2; [Ir(1,5-COD)Cl]₂, 12112-67-3; [Rh(1,5-COD)Cl]₂, 12092-47-6; $(\mu - \eta - C_5 H_5)(\mu - \eta - 2 - Me - allyl)Pd_2(PPh_3)_2$, 54497-76-6; (n-C₅H₅)Pd(n-2-Me-allyl), 33593-95-2; PMe₃, 594-09-2; PPh₃, 603-35-0.

Supplementary Material Available: Two figures of ³¹P NMR spectra of 5 and 6, four tables of infrared and ¹H and ³¹P NMR spectral data and complete elemental analyses, summary of data collection and refinement, and tables of atom coordinates, thermal parameters, and bond distances and angles for 2d, 3, 7, and 9 (21 pages); listings of structure factors for 2d, 3, 7, and 9 (61 pages). Ordering information is given on any current masthead page.

Carbon–Carbon Bond Formation Reactions of the Iodomethane Complex [Cp(dppe)Ru(ICH₃)]PF₆

Robert J. Kulawiec and Robert H. Crabtree*

Sterling Chemistry Laboratory, Yale University 225 Prospect Street New Haven, Connecticut 06511

Received April 26, 1988

Summary: The new iodomethane complex [Cp(dppe)-Ru(IMe) (CF₃SO₃) (1a) is formed by a new synthetic route, the reaction between methyl trifluoromethanesulfonate and Cp(dppe)RuI (dppe = 1,2-bis(diphenylphosphino)ethane). The hexafluorophosphate salt 1b reacts with a wide range of nucleophiles, including enamines and lithium enolates, affording C-methylation products. In the first reported case of carbon-carbon bond formation via a halocarbon complex, complex 1 regioselectively methylates 1-(N-pyrrolidino)cyclohexene producing 2-methylcyclohexanone in good yield, after hydrolysis. We also report the synthesis of a new haloarene complex and its equilibration with free iodomethane.

Since our initial crystallographic demonstration of transition-metal-halocarbon coordination in 1982,¹ several further examples have been reported. Simple haloalkanes, haloarenes,^{2a-k} and even chelated fluoroarenes^{3a,b} have been

⁽¹⁹⁾ A solution of 326 mg (1.24 mmol) of PPh₃ in 20 mL of THF was added to 283 mg (1.25 mmol) of $(\eta$ -C₅H₅)Pd(η -2-Me-allyl) in 20 mL of THF, giving an orange solution to which a solution of 1.20 g (1.23 mmol) of Re(PCy₂)₃(PCy₂H) in 45 mL of THF was added dropwise. After 20 h, the solvent was removed in vacuo, the residue was extracted with 10 mL of pentane, 1 mL of DME was added, and the mixture was cooled at -20 °C for 20 h. The resulting orange crystals were filtered off and dried in vacuo, yielding 610 mg of 5. Further crops brought the total yield to 1.17 g (69%).

⁽²⁴⁾ Ir-P(4) is the longest such distance reported; Ir-P distances for u-PCy₂ range from 2.24 to 2.37 Å; Baker, R. T.; Calabrese, J. C., unpublished results.

⁽²⁵⁾ Baker, R. T.; Calabrese, J. C.; Glassman, T. E.; Ovenall, D. E. Organometallics, manuscript in preparation.

⁽¹⁾ Crabtree, R. H.; Faller, J. W.; Mellea, M. F.; Quirk, J. M. Organometallics 1982, 1, 1361.