# Reaction of Diphenylacetylene and Diphenyldiazomethane on the Carbene Bond of $[Fe_2(CO)_7 \{\mu, \eta^2 - C(Me)CN(C_2H_5)_2\}]$ Leading to $[Fe_2(CO)_6 \{C(Me)C(NEt_2)C(Ph)C(Ph)\}]$ and to $[Fe_2(CO)_6 \{C(Me)C(NEt_2)NN(CPh_2)\}]$

Elvire Cabrera, Jean-Claude Daran,\* and Yves Jeannin

Laboratoire de Chimie des Métaux de Transition, UA CNRS-419, Université Pierre et Marie Curie, 4 Place Jussieu, 75252 Paris cedex 05, France

Received January 25, 1988

Syntheses and single-crystal X-ray diffraction studies have been completed on two compounds prepared by reacting the dinuclear complex [Fe<sub>2</sub>(CO)<sub>7</sub>{ $\mu,\eta^2$ -C(Me)C(NEt<sub>2</sub>)}] (compound 1) with diphenylacetylene giving compound 2 and with diphenyldiazomethane giving compound 3. The reaction involves the aminocarbene of 1. Crystal data for compound 2 [Fe<sub>2</sub>(CO)<sub>6</sub>{C(Me)C(NEt<sub>2</sub>)C(Ph)C(Ph)}]: monoclinic, P2<sub>1</sub>/c, a = 8.687 (1), Å, b = 32.006 (4) Å, c = 9.728 (2) Å,  $\beta = 103.96$  (1)°,  $R_w = 0.0304$  for 2549 reflections. It is another example of ferracyclopentadiene complexes that may result from the cycloaddition of diphenylacetylene on the Fe=C carbene bond followed by a rearrangement. Crystal data for compound 3 [Fe<sub>2</sub>(CO)<sub>6</sub>( $\mu,\eta^3$ -C(Me)C(NEt<sub>2</sub>)NN(CPh<sub>2</sub>)]: orthorhombic, P2<sub>1</sub>2<sub>1</sub>2<sub>1</sub>, a = 10.065 (3) Å, b = 13.609 (3) Å, c = 19.332 (3) Å,  $R_w = 0.0419$  for 2143 reflections. It contains a five-membered heterocycle that is bonded to the first iron atom by a  $\mu,\eta^3$ -azaallyl group and by a dative bond from the other nitrogen to the second iron atom; this may result from the nucleophilic attack of the  $\alpha$ -nitrogen atom of the diazo group on the electrophilic aminocarbene carbon atom.

In a preceding paper we described the synthesis and the structure of an iron dinuclear complex 1  $[Fe_2(CO)_7\{\mu,\eta^2-C(Me)CNEt_2\}]^1$  containing one aminoalkyne molecule attached to the iron atoms by a bridging carbene and a terminal carbene.



Such a particular bonding mode of the triple bond onto two metal centers is attributed to an electron delocalization on the C-C bond, on the Fe(2)-C bond, and on the C-N bond with the participation of the nitrogen lone pair. Indeed the X-ray structure of 1 shows short bond lengths for Fe-C = 1.878 Å and C-N = 1.327 Å. It suggests an electron-deficient C(1) carbon atom which then should present some electrophilic behavior; as a matter of fact it can be considred as an aminocarbene which is known to behave this way.<sup>2</sup> We undertook the study of the reactions of 1 toward various reagents. First of all, we showed that this compound may add one more molecule of aminoalkyne to yield a mixture of cycloferrapentadiene and diferracycloheptadiene in the ratio 70/30.<sup>1</sup>

In a search for carbon-carbon bond-forming reactions starting from this diiron complex, we explored its reactivity toward unsaturated ligand molecules such as alkynes, diazoalkanes, isocyanates, and heterocumulenes. We describe herein some reactions in which diphenylacetylene and diphenyldiazomethane are added to complex 1. It is assumed that the first step of this addition reaction is a cycloaddition on the Fe=C bond in the case of diphenylacetylene leading to [Fe<sub>2</sub>(CO)<sub>6</sub>[CMeCNEtCPhCPh]] (2) or a nucleophilic attack of the  $\alpha$ -nitrogen of the diazoalkane molecule on the carbene carbon atom, then yielding a product of formula [Fe<sub>2</sub>(CO)<sub>6</sub>[CMeCNEt<sub>2</sub>NN-  $(CPh_2)$  (3). Their structures have been determined by X-ray diffraction.

## **Results and Discussion**

**Compound 2.** The reaction of diphenylacetylene in excess with 1 occurs under reflux in hexane within 3 h leading to complex 2 which is formed in 70% yield. The reaction mixture was separated by chromatography. A green unstable compound was observed but not isolated. Complex 2 can also be formed in quantitative yield under CO pressure in hexane at 50 °C. Compound 2 is not airsensitive as a pure solid and is soluble in nonpolar solvents. Yellow crystals are obtained from an hexane solution.

The reason why CO pressure enhances the formation of 2 is not clear. However, the following mechanism might be assumed: CO pressure prevents the loss of CO and the first step would be a cycloaddition of the incoming alkyne triple bond to the Fe=C bond to form a ferracyclobutene as suggested by Semmelhack and Park to explain the reaction of (aminocarbene)iron complexes  $[(CO)_4Fe=C-(Ph)(NMe_2)]$  with alkynes.<sup>3</sup> This intermediate could then rearrange to form the more stable cycloferrapentadiene ring (Scheme I, a). Under normal pressure the side-on coordination of the alkyne triple bond on a vacant site created by the loss of a CO group might compete with the attack onto the Fe=C bond, resulting in the formation of different products as, for example, the above-mentioned green product.

The molecular structure of 2 is shown in Figure 1 which specifies the atom-labeling scheme. Intramolecular distances and angles are indicated in Table I. The molecule can be described as another example of well-known metallacyclopentadiene complexes.<sup>4</sup> Two Fe(CO)<sub>3</sub> moieties are linked by a Fe–Fe bond, 2.4975 (8) Å; Fe(1) forms two  $\sigma$ -bonds with the terminal carbon atoms of a butadiene group that is  $\pi$ -bonded to Fe(2). However, in the present case, this alkyne addition leads to an asymmetrical ferracyclopentadiene fragment. Only a few examples are known

<sup>(1)</sup> Cabrera, E.; Daran, J. C.; Jeannin, Y.; Kristiansson, O. J. Organomet. Chem. 1986, 310, 367.

<sup>(2)</sup> Parlier, A.; Rudler, H.; Daran, J. C.; Alvarez, C. J. Organomet. Chem. 1987, 333, 245 and references therein.

<sup>(3)</sup> Semmelhack, M. F.; Park, J. Organometallics 1986, 5, 2550.
(4) Chappell, S. D.; Cole-Hamilton, D. J. Polyhedron 1982, 739.







(Ь)



Figure 1. ORTEP view of compound 2 with the atom-labeling scheme. Ellipsoids represent 30% probability.

that were prepared by different routes.<sup>5</sup> As observed in previous structures, the Fe(1)-C(1)-C(2)-C(3)-C(4) ring is folded around C(1)-C(4) with Fe(1) located 0.38 Å above the butadiene plane; the two Fe(1)-C(1) and Fe(1)-C(4)distances (2.071 (3) and 2.050 (4) Å) are much shorter than the two Fe(2)-C(2) and Fe(2)-C(3) bonds (2.230 (3) and 2.172 (4) Å). These last distances are significantly different because of the different electron-donating abilities of  $N(C_2H_5)_2$  and  $C_6H_5$ , respectively, fixed on C(2) and C(3). Indeed in  $[Fe_2(CO)_6[C_4(Me)_2(NEt_2)_2]$ , 2.24 Å was observed for Fe-CN(C<sub>2</sub>H<sub>5</sub>)<sub>2</sub><sup>6</sup> whereas 2.14 Å was observed for Fe- $C(C_6H_5)$  in  $[Fe_2(CO)_6(C_4Ph_4)]$ .<sup>7</sup>



Figure 2. ORTEP view of compound 3 with the atom-labeling scheme. Ellipsoids represent 30% probability.

**Compound 3.** Complex 1 rapidly adds nearly quantitatively one molecule of diphenyldiazomethane, (C<sub>6</sub>H<sub>5</sub>)<sub>2</sub>- $CN_2$ , at 40 °C in  $CH_2Cl_2$  solution. The structure was confirmed by X-ray diffraction (vide infra). Dark red crystals were obtained by cooling a  $CH_2Cl_2$  solution. The crystals are not air-sensitive and are also soluble in THF and sparingly soluble in hexane or cyclohexane. The formation of complex 3 can be explained as follows. Let us consider the canonical form  $Ph_2C=N^+=N^-$ . A nucleophilic attack of the  $\alpha$ -nitrogen at the terminal carbene centre is considered to be the first step resulting in an azaallyl group attached on Fe(2). Then the second nitrogen gives its lone pair to Fe(1) forming the five-membered ring (Scheme Ib).

Contrary to our expectation, the phenyldiazomethane did not behave as a one-carbon fragment precursor for carbon-carbon bond synthesis, but an intact diazoalkane molecule has been added to 1. Although in a few instances stable transition-metal complexes of diazoalkanes have been structurally characterized, they prefer mainly ter-

<sup>(5)</sup> Nuel, D.; Dahan, F.; Mathieu, R. J. Am. Chem. Soc. 1985, 107, 1658

 <sup>(6)</sup> Daran, J. C.; Jeannin, Y. Organometallics 1984, 3, 1158.
 (7) Riley, P. E.; Davis, R. E. Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem. 1975, B31, 2928.

Table I. Bond Distances (Å) and Bond Angles (deg) with Esd's in Parentheses for Compound 2 Bond Distances

| Fe(1)-Fe(2)       | 2.4975 (8) | N(2)-C(221)        | 1.456 (5)   |
|-------------------|------------|--------------------|-------------|
| Fe(1)-C(1)        | 1.972 (4)  | C(211)-C(212)      | 1.507 (7)   |
| Fe(1)-C(4)        | 1.979 (4)  | C(221)-C(222)      | 1.511 (6)   |
| Fe(1)-C(11)       | 1.749 (5)  | C(31)-C(32)        | 1.385 (6)   |
| Fe(1)-C(12)       | 1.807 (5)  | C(31)-C(36)        | 1.385 (5)   |
| Fe(1) - C(13)     | 1.818 (4)  | C(32) - C(33)      | 1.370 (7)   |
| Fe(1)-C(21)       | 2.398(4)   | C(33)-C(34)        | 1.364 (8)   |
| Fe(2) - C(1)      | 2.071 (3)  | C(34) - C(35)      | 1.359 (7)   |
| Fe(2) - C(2)      | 2.230 (3)  | C(35) - C(36)      | 1.370 (6)   |
| Fe(2) - C(3)      | 2.172(4)   | C(41) - C(42)      | 1.380 (6)   |
| Fe(2) - C(4)      | 2.050 (4)  | C(41) - C(46)      | 1.392 (5)   |
| Fe(2) - C(21)     | 1.780(4)   | C(42) - C(43)      | 1.392 (6)   |
| Fe(2) - C(22)     | 1.781(4)   | C(43) - C(44)      | 1.366 (8)   |
| Fe(2) - C(23)     | 1.784 (4)  | C(44) - C(45)      | 1.346 (8)   |
| C(1) - C(2)       | 1.431 (5)  | C(45) - C(46)      | 1.385 (6)   |
| C(1) - C(5)       | 1.506(5)   | C(11) = O(11)      | 1.151 (5)   |
| C(2) - C(3)       | 1.443 (5)  | C(12) - O(12)      | 1.137(5)    |
| C(2) - N(2)       | 1.385 (4)  | C(13) = O(13)      | 1.129 (5)   |
| C(3) - C(4)       | 1.422(5)   | C(21) = O(21)      | 1.163 (5)   |
| C(3) - C(31)      | 1.479 (5)  | C(22) - O(22)      | 1.140(4)    |
| C(4) - C(41)      | 1,498 (5)  | C(23) = O(23)      | 1 142 (5)   |
| N(2)-C(211)       | 1.472 (5)  | 0(20) 0(20)        |             |
|                   | (0)        |                    |             |
|                   | Bond       | Angles             |             |
| C(4)-Fe(1)-C(1)   | 80.3(1)    | C(31)-C(3)-C(2)    | 122.9 (3)   |
| C(11)-Fe(1)-C(1)  | 89.1 (2)   | C(31)-C(3)-C(4)    | 124.3(3)    |
| C(11)-Fe(1)-C(4)  | 90.1 (2)   | C(3)-C(4)-Fe(1)    | 115.9 (3)   |
| C(12)-Fe(1)-C(1)  | 92.3 (2)   | C(41)-C(4)-Fe(1)   | 122.1(3)    |
| C(12)-Fe(1)-C(4)  | 167.3(2)   | C(41)-C(4)-C(3)    | 119.6 (3)   |
| C(12)-Fe(1)-C(11) | 100.1(2)   | C(211)-N(2)-C(2)   | 118.4 (3)   |
| C(13)-Fe(1)-C(1)  | 169.4(2)   | C(221)-N(2)-C(2)   | 122.9(3)    |
| C(13)-Fe(1)-C(4)  | 94.7 (2)   | C(221)-N(2)-C(211) | ) 117.8 (3) |
| C(13)-Fe(1)-C(11) | 100.3 (2)  | C(212)-C(211)-N(2) | ) 113.1 (4) |
| C(13)-Fe(1)-C(12) | 90.9 (2)   | C(222)-C(221)-N(2) | ) 111.9 (4) |
| C(22)-Fe(2)-C(21) | 95.1 (2)   | C(32)-C(31)-C(3)   | 118.8 (4)   |
| C(23)-Fe(2)-C(21) | 96.8 (2)   | C(36)-C(31)-C(3)   | 123.9 (4)   |
| C(23)-Fe(2)-C(22) | 93.0 (2)   | C(36)-C(31)-C(32)  | 117.2 (4)   |
| O(11)-C(11)-Fe(1) | 175.1 (4)  | C(33)-C(32)-C(31)  | 120.5 (5)   |
| O(12)-C(12)-Fe(1) | 179.0 (5)  | C(34)-C(33)-C(32)  | 121.0 (5)   |
| O(13)-C(13)-Fe(1) | 177.3 (4)  | C(35)-C(34)-C(33)  | 119.7 (5)   |
| O(21)-C(21)-Fe(2) | 162.7 (4)  | C(36)-C(35)-C(34)  | 119.7 (5)   |
| O(22)-C(22)-Fe(2) | 178.2 (4)  | C(35)-C(36)-C(31)  | 121.9 (4)   |
| O(23)-C(23)-Fe(2) | 179.0 (4)  | C(42)-C(41)-C(4)   | 119.5 (4)   |
| Fe(2)-C(1)-Fe(1)  | 76.2 (1)   | C(46)-C(41)-C(4)   | 122.1(4)    |
| C(2)-C(1)-Fe(1)   | 114.8 (3)  | C(46)-C(41)-C(42)  | 118.3 (4)   |
| C(5)-C(1)-Fe(1)   | 123.6 (3)  | C(43)-C(42)-C(41)  | 120.5 (5)   |
| C(5)-C(1)-C(2)    | 120.7 (3)  | C(44)-C(43)-C(42)  | 119.9 (5)   |
| C(3)-C(2)-C(1)    | 113.0 (3)  | C(45)-C(44)-C(43)  | 120.3 (5)   |
| N(2)-C(2)-C(1)    | 122.5 (3)  | C(46)-C(45)-C(44)  | 120.9 (5)   |
| N(2)-C(2)-C(3)    | 124.2(3)   | C(45)-C(46)-C(41)  | 120.1 (5)   |
| C(4)-C(3)-C(2)    | 112.4(3)   |                    |             |

minal  $\eta$ - and  $\mu$ -bonding modes resulting from the attack of the  $\alpha$ -nitrogen on one or two metal atoms.<sup>8-12</sup> The structurally characterized title complex 3, resulting from this nucleophilic attack of the  $\alpha$ -nitrogen on a carbene carbon atom, seems to be unprecedented. The atomic numbering scheme is shown in Figure 2. Selected bond lengths and bond angles are shown in Table II. Two important features may be emphasized. The first one is the formation of the five-membered ring Fe(1)-C(1)-C-(2)-N(3)-N(4). The second one is its bonding. The C-

Table II. Bond Distances (Å) and Bond Angles (deg) with Esd's in Parentheses for Compou

| Esu's in Farentneses for Compound 3          |                      |                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |
|----------------------------------------------|----------------------|------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Bond Distances                               |                      |                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |
| Fe(1)-Fe(2)                                  | 2.551(1)             | C(2) - N(51)                                   | 1,380 (6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
| Fe(1) - C(11)                                | 1.778 (6)            | N(3) - N(4)                                    | 1.439 (5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
| Fe(1) - C(12)                                | 1.796 (6)            | N(4) - C(41)                                   | 1.295 (6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
| Fe(1) - C(13)                                | 1.819 (6)            | N(51) - C(511)                                 | 1.472(7)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |
| Fe(1) - C(1)                                 | 1.978 (5)            | N(51)-C(521)                                   | 1.458(7)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |
| Fe(1) - N(4)                                 | 1.970(4)             | C(511) - C(512)                                | 1 499 (8)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
| Fe(2) - C(21)                                | 1.801(5)             | C(521) - C(522)                                | 1.46(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |
| Fe(2) = C(22)                                | 1.001(0)<br>1.782(6) | C(41) - C(411)                                 | 1.40(1)<br>1.490(7)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |
| $F_{e}(2) - C(22)$                           | 1.768 (6)            | C(41) = C(421)                                 | 1.430(7)<br>1.485(7)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |
| $F_{0}(2) = C(1)$                            | 2.056 (5)            | C(41) = C(421)<br>C(411) = C(419)              | 1.400 (7)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
| $F_{0}(2) = C(2)$                            | 2.000(0)             | C(411) = C(412)<br>C(411) = C(412)             | 1.379 (9)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
| Fe(2) = O(2)<br>Fo(2) = N(2)                 | 2.105(3)             | C(411) = C(410)<br>C(410) = C(410)             | 1.349 (9)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
| Fe(2) = IN(3)<br>Fe(2) = IN(4)               | 2.065(4)             | C(412) = C(413)                                | 1.42(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |
| $\Gamma(2) = \Gamma(4)$                      | 2.034 (4)            | C(413) = C(414)<br>C(414) = C(415)             | 1.35(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |
| C(11) = O(11)                                | 1.137(7)             | C(414) = C(410)                                | 1.33 (1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |
| C(12) = O(12)                                | 1.134(7)             | C(415) - C(416)                                | 1.37(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |
| C(13) = O(13)                                | 1.139 (7)            | C(421) - C(422)                                | 1.387 (8)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
| C(21) = O(21)                                | 1.138 (6)            | C(421) - C(426)                                | 1.396 (8)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
| C(22) - O(22)                                | 1.140 (7)            | C(422) - C(423)                                | 1.379 (8)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
| C(23) - O(23)                                | 1.146 (7)            | C(423)-C(424)                                  | 1.37(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |
| C(1)-C(2)                                    | 1.429(7)             | C(424) - C(425)                                | 1.378 (9)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
| C(1) - C(31)                                 | 1.506 (7)            | C(425)–C(426)                                  | 1.373 (8)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
| C(2) - N(3)                                  | 1.390 (6)            |                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |
|                                              | Bon                  | Angles                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |
| $C(12) = F_0(1) = C(11)$                     | 929 (3)              | $N(3) = N(4) = F_0(1)$                         | 100 7 (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
| C(12) = Fe(1) = C(11)                        | 87 A (3)             | $C(41) = N(4) = F_0(1)$                        | 195 2 (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
| $C(13) = F_0(1) = C(13)$                     | 1022(9)              | C(41) = IN(4) = Fe(1)<br>C(41) = N(4) = N(2)   | 119 6 (4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
| C(13) = Fe(1) = C(12)                        | 103.3(3)             | C(41) = IN(4) = IN(3)<br>C(511) = N(51) = C(9) | 110.0 (4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
| C(1) = Fe(1) = C(11)<br>C(1) = Fo(1) $C(10)$ | 90.0(2)              | C(511) = N(51) = C(2)<br>C(501) = N(51) = C(2) | 120.0 (4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
| C(1) = Fe(1) = C(12)<br>C(1) = Fe(1) = C(12) | 90.0 (2)             | O(521) = N(51) = O(2)                          | 110.3 (4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
| V(1) = Fe(1) = U(13)<br>V(4) = Fe(1) = U(13) | 160.1(2)             | O(521) = IN(51) = O(51)                        | $\begin{array}{cccc} 1) & 110.4 & (4) \\ 1) & 110.0 & (5) \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |
| N(4) = Fe(1) = O(11)<br>N(4) = Fe(1) = O(10) | 100.9 (2)            | C(512) - C(511) - N(5)                         | $\begin{array}{cccc} 1) & 113.9 (5) \\ 1) & 110.0 (7) \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |
| N(4) = Fe(1) = C(12)<br>N(4) = Fe(1) = C(12) | 98.4 (2)             | C(522) = C(521) = IN(5)                        | $1) 118.8(7) \\ 109.9(1)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
| N(4) = Fe(1) = O(13)                         | 96.2 (2)             | C(411) - C(41) - N(4)                          | 123.2 (4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
| N(4) - Fe(1) - U(1)                          | 82.3 (2)             | C(421) - C(41) - N(4)                          | 119.4 (4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
| C(22) = Fe(2) = C(21)                        | 100.1(3)             | C(421) - C(41) - C(41)                         | $1) 117.2 (4) \\110.0 (2)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |
| C(23) = Fe(2) = C(21)                        | 100.0 (3)            | C(412)-C(411)-C(4                              | 1) 118.8 (6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |
| C(23) = Fe(2) = C(22)                        | 91.6 (3)             | C(416) - C(411) - C(4                          | $1) 121.8 (6) \\ 121.8 (6) \\ 121.8 (6) \\ 121.8 (6) \\ 121.8 (6) \\ 121.8 (6) \\ 121.8 (6) \\ 121.8 (6) \\ 121.8 (6) \\ 121.8 (6) \\ 121.8 (6) \\ 121.8 (6) \\ 121.8 (6) \\ 121.8 (6) \\ 121.8 (6) \\ 121.8 (6) \\ 121.8 (6) \\ 121.8 (6) \\ 121.8 (6) \\ 121.8 (6) \\ 121.8 (6) \\ 121.8 (6) \\ 121.8 (6) \\ 121.8 (6) \\ 121.8 (6) \\ 121.8 (6) \\ 121.8 (6) \\ 121.8 (6) \\ 121.8 (6) \\ 121.8 (6) \\ 121.8 (6) \\ 121.8 (6) \\ 121.8 (6) \\ 121.8 (6) \\ 121.8 (6) \\ 121.8 (6) \\ 121.8 (6) \\ 121.8 (6) \\ 121.8 (6) \\ 121.8 (6) \\ 121.8 (6) \\ 121.8 (6) \\ 121.8 (6) \\ 121.8 (6) \\ 121.8 (6) \\ 121.8 (6) \\ 121.8 (6) \\ 121.8 (6) \\ 121.8 (6) \\ 121.8 (6) \\ 121.8 (6) \\ 121.8 (6) \\ 121.8 (6) \\ 121.8 (6) \\ 121.8 (6) \\ 121.8 (6) \\ 121.8 (6) \\ 121.8 (6) \\ 121.8 (6) \\ 121.8 (6) \\ 121.8 (6) \\ 121.8 (6) \\ 121.8 (6) \\ 121.8 (6) \\ 121.8 (6) \\ 121.8 (6) \\ 121.8 (6) \\ 121.8 (6) \\ 121.8 (6) \\ 121.8 (6) \\ 121.8 (6) \\ 121.8 (6) \\ 121.8 (6) \\ 121.8 (6) \\ 121.8 (6) \\ 121.8 (6) \\ 121.8 (6) \\ 121.8 (6) \\ 121.8 (6) \\ 121.8 (6) \\ 121.8 (6) \\ 121.8 (6) \\ 121.8 (6) \\ 121.8 (6) \\ 121.8 (6) \\ 121.8 (6) \\ 121.8 (6) \\ 121.8 (6) \\ 121.8 (6) \\ 121.8 (6) \\ 121.8 (6) \\ 121.8 (6) \\ 121.8 (6) \\ 121.8 (6) \\ 121.8 (6) \\ 121.8 (6) \\ 121.8 (6) \\ 121.8 (6) \\ 121.8 (6) \\ 121.8 (6) \\ 121.8 (6) \\ 121.8 (6) \\ 121.8 (6) \\ 121.8 (6) \\ 121.8 (6) \\ 121.8 (6) \\ 121.8 (6) \\ 121.8 (6) \\ 121.8 (6) \\ 121.8 (6) \\ 121.8 (6) \\ 121.8 (6) \\ 121.8 (6) \\ 121.8 (6) \\ 121.8 (6) \\ 121.8 (6) \\ 121.8 (6) \\ 121.8 (6) \\ 121.8 (6) \\ 121.8 (6) \\ 121.8 (6) \\ 121.8 (6) \\ 121.8 (6) \\ 121.8 (6) \\ 121.8 (6) \\ 121.8 (6) \\ 121.8 (6) \\ 121.8 (6) \\ 121.8 (6) \\ 121.8 (6) \\ 121.8 (6) \\ 121.8 (6) \\ 121.8 (6) \\ 121.8 (6) \\ 121.8 (6) \\ 121.8 (6) \\ 121.8 (6) \\ 121.8 (6) \\ 121.8 (6) \\ 121.8 (6) \\ 121.8 (6) \\ 121.8 (6) \\ 121.8 (6) \\ 121.8 (6) \\ 121.8 (6) \\ 121.8 (6) \\ 121.8 (6) \\ 121.8 (6) \\ 121.8 (6) \\ 121.8 (6) \\ 121.8 (6) \\ 121.8 (6) \\ 121.8 (6) \\ 121.8 (6) \\ 121.8 (6) \\ 121.8 (6) \\ 121.8 (6) \\ 121.8 (6) \\ 121.8 (6) \\ 121.8 (6) \\ 121.8 (6) \\ 121.8 (6) \\ 121.8 (6) \\ 121.8 (6) \\ 121.8 (6) \\ 121.8 (6) \\ 121.8 (6) \\ 121.8 (6) \\ 121.8 (6) \\ 121.8 (6) \\ 1$ |  |  |  |
| O(11) - C(11) - Fe(1)                        | 178.9 (5)            | C(416)-C(411)-C(4                              | 12) 119.2 (6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |
| O(12) - C(12) - Fe(1)                        | 177.1 (6)            | C(413)-C(412)-C(4                              | 11) 118.1 (8)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |
| O(13)-C(13)-Fe(1)                            | 172.9 (5)            | C(414)-C(413)-C(4                              | 12) 120.6 (8)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |
| O(21) - C(21) - Fe(2)                        | 177.9 (6)            | C(415)-C(414)-C(4                              | 13) 119.8 (7)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |
| O(22)-C(22)-Fe(2)                            | 177.9 (6)            | C(416) - C(415) - C(4                          | 14) 121.1 (9)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |
| O(23)-C(23)-Fe(2)                            | 177.7 (6)            | C(415)-C(416)-C(4                              | 11) 121.2 (8)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |
| Fe(2)-C(1)-Fe(1)                             | 78.5 (2)             | C(422)-C(421)-C(4                              | 1) 119.3 (5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |
| C(2)-C(1)-Fe(1)                              | 110.5(3)             | C(426)-C(421)-C(4                              | 1) 121.4 (5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |
| C(31)-C(1)-Fe(1)                             | 124.8 (4)            | C(426)-C(421)-C(421)                           | 22) 119.3 (5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |
| C(31)-C(1)-C(2)                              | 121.3(5)             | C(423)-C(422)-C(4)                             | 21) 119.4 (6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |
| N(3)-C(2)-C(1)                               | 114.8 (4)            | C(424)-C(423)-C(423)                           | 22) 120.9 (6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |
| N(51)-C(2)-C(1)                              | 129.2 (4)            | C(425)-C(424)-C(424)                           | 23) 119.9 (5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |
| N(51)-C(2)-N(3)                              | 115.9 (4)            | C(426)-C(425)-C(425)                           | 24) 120.0 (6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |
| N(4)-N(3)-C(2)                               | 109.1 (4)            | C(425)-C(426)-C(426)                           | 21) 120.4 (6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |
|                                              |                      |                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |

(1)-C(2)-N(3) angle appears like an azaallyl group which is  $\sigma$ -bound to Fe(1) and  $\pi$ -bound to Fe(2). The Fe(1)–C(1) = 1.972 (4) bond is significantly shorter than the  $\pi$ -bonds, Fe(2)-C(1) = 2.055 (5), Fe(2)-C(2) = 2.109, and Fe(2)-N(3)= 2.085 Å. The C(1)-C(2) = 1.431 (5) and C(2)-N(3) =1.385 (4) Å lengths indicate a substantial double-bond character, and the angles around C(1) and C(2) fall within the expected range for an allyl system. The geometry of the Fe(1)-C(1)-Fe(2) triangle correlates closely with the framework of the  $[\mu$ -CRR']Fe<sub>2</sub> moiety of other reported bridged diiron complexes shown in Table III.

The 18-electron rule requires (N4) to donate a lone pair to Fe(1). The Fe(1)-N(4) distance of 1.970 (4) Å is consistent with a coordinative bond although it is somewhat shorter than values observed in other  $N \rightarrow Fe$  containing complexes; examples are  $[Fe_2(CO)_6[\mu-C(OEt)C_6H_4NMe_2]]^{13}$ with Fe-N = 2.087 (3) Å or  $[Fe_2(CO)_8]\mu$ - $CHCH_2CH_2CH_2CH_2NEt]^{14}$  with Fe-N = 2.100 (2) Å. The

<sup>(8)</sup> Nucciarone, D.; Taylor, N. J.; Carty, A. J. Organometallics 1986, 2565. 5,

<sup>(9)</sup> Herrmann, W. A.; Ziegler, M. L.; Weidenhammer, K.; Biersack, H.; Mayer, K. K.; Minard, R. D. Angew. Chem., Int. Ed. Engl. 1976, 15, 164, 368.

<sup>(10)</sup> Gamboretta, S.; Basso-Bert, M.; Floriani, C.; Guastini, G. J.

Chem. Soc., Chem. Commun. 1982, 374. (11) Ferguson, G.; Laws, W. J.; Parvez, M.; Puddephatt, R. J. Or-ganometallics 1983, 2, 276.

<sup>(12) (</sup>a) Curtis, M. D.; Messerle, L. Organometallics 1987, 6, 1713. (b) Curtis, M. D.; Messerle, L. D'Errico, J. J.; Solis, H. E.; Barcelo, I. D.; Butler, V. M. J. Am. Chem. Soc. 1987, 109, 3603.

<sup>(13)</sup> Lotz, S.; Van Rooyen, P. H.; van Dyk, M. M. Organometallics 1987. 6. 499.

Table III. Distances (Å) and Angles (deg) in the Triangular Framework Fe-C-Fe for Relevant Complexes

| complexes                                                                             | Fe(1)-Fe(2) | Fe(1)-C(1) | Fe(2)-C(1) | Fe(1)-C(1)-Fe(2) | ref |
|---------------------------------------------------------------------------------------|-------------|------------|------------|------------------|-----|
| $[Fe_2(CO)_6[CMeC(NEt_2)N_2CPh_2)]]$                                                  | 2.551 (2)   | 1.978 (5)  | 2.056 (5)  | 78.5 (2)         |     |
| $[Fe_2(CO)_6[C(OEt)C_6H_4NMe_2]]$                                                     | 2.552 (2)   | 1.965 (3)  | 2.120(3)   | 77.9 (1)         | 8   |
| [Fe <sub>2</sub> (CO) <sub>6</sub> [C(OMe)C(OOMe)CHC(OOMe)]]                          | 2.638(1)    | 1.957 (4)  | 2.140 (3)  | 80.0 (1)         | 23  |
| $[Fe_2(CO)_{e}(C(OEt)CHC(OEt)Me)]$                                                    | 2.550(4)    | 1.93(2)    | 2.15(2)    | 77.2 (7)         | 24  |
| $[Fe_2(Cp)_2(CO)_2(CHCMeCMeCO)](PF_6)$                                                | 2.597 (2)   | 1.945 (12) | 2.022(12)  | 81.8 (5)         | 25  |
| $[Fe_2(Cp)_2(CO)_2[C(COOMe)C(COOMe)CHMe]]$                                            | 2.540 (2)   | 1.968 (12) | 1.969 (12) | 80.4 (1)         | 26  |
| $[Fe_2(CO)_6]C(OMe)CHCHC(OMe)N(SO_2C_6H_4Me)]]$                                       | 2.636 (2)   | 1.909 (10) | 2.138 (8)  | 81.1 (3)         | 27  |
| $[Fe_2(CO)_6(CPhCPhCHPh)]$                                                            | 2.602(2)    | 1.997(3)   | 2.080(3)   | 79.3 (1)         | 28  |
| [Fe <sub>2</sub> (CO) <sub>6</sub> {CMeCHCHCH(COMe)}]                                 | 2.642(1)    | 2.002(2)   | 2.088(2)   | 80.5 (1)         | 29  |
| [Fe <sub>2</sub> (CO) <sub>6</sub> [CPhCPhC(CF <sub>3</sub> )CHC(OEt) <sub>2</sub> ]] | 2.599 (2)   | 2.017 (9)  | 2.098 (9)  | 78.3 (3)         | 30  |
| $[Fe_2(CO)_{a}(CPhCPhC(CF_3)C(CF_3)H)](PPh_4)$                                        | 2.589 (2)   | 1.99 (1)   | 2.07(1)    | 79.2 (4)         | 31  |
| $[Fe_2(CO)_6]C(CF_3)C(CF_3)CHCHCH(NEt_2)]$                                            | 2.617 (1)   | 2.02(1)    | 2.01(1)    | 81.0 (4)         | 32  |
| [Fe <sub>2</sub> (CO) <sub>6</sub> [C(OEt)CPhČPhH}]                                   | 2.635 (1)   | 1.970 (7)  | 2.129 (7)  | 79.9 (2)         | 33  |

N(3)-N(4) bond length, 1.439 (5) Å, indicates that a decrease of its bond order has occurred on coordination; this value is close to the N-N distance in N<sub>2</sub>H<sub>4</sub>.<sup>15</sup> The C-(41)—N(4) = 1.295 (6) Å distance is similar to C—N bond found in some other organometallic complexes such as  $[Ru_5(CO)_{12}(\mu-C=CPh)(\mu_4-N_2CPh_2)^8$  with C=N = 1.304 Å or  $[Cp_2Mo_2(CO)(NAr)(\mu N_3(Ar)CO)]^{16}$  with C=N = 1.303 Å. Another striking feature of the crystal structure of 3 is found in the position of the N(4) atom. It is displaced from the azaallyl plane by 0.49 Å. This displacement of the nitrogen atom results in a torsion angle for C(1)-C-(2)-N(3)-N(4) of 36.7°. A similar distortion was observed in the related compound  $[Fe_2(CO)_6[C(OEt)C_6H_4NMe_2]]^{13}$ with the nitrogen located 0.82 Å above the allyl plane.

### **Experimental Section**

All reactions were carried out under dry nitrogen by using standard Schlenk or high-vacuum line techniques. Chromatography was carried out on a  $50 \times 3$  cm deactivated silica gel column. Infrared absorption spectra were measured with a Perkin-Elmer 597 spectrometer. A Nermag R10.10 spectrometer was used for molecular mass determination. NMR spectra were obtained on either a Bruker WP 80 or WM 250 spectrometer. All spectra were recorded by using tetramethylsilane as reference.

Hexane and dichloromethane were purified by standard procedures and stored over molecular sieves. Trimethylamine Noxide was dehydrated by benzene azeotropic distillation.

Literature procedures were used to prepare  $CH_3C = CN(C_2H_5)_2^{17}$ and  $(C_6H_5)_2CN_2$ .<sup>18</sup>

Synthesis of Complex 1. The synthesis has been described in a preceding paper, but the yield was poor (10-20%). Improvement is obtained when trimethylamine N-oxide is added to the reaction mixture cooled to 0 °C. Excess of (diethylamino)propyne (0.8 g, 8.25 mmol) was added to a suspension of  $[Fe_2(CO)_9]$  (1 g, 2.75 mmol) in 100 mL of *n*-hexane, and then 0.5 g (6.67 mmol) of Me<sub>3</sub>NO was added dropwise. The color rapidly changed from yellow to dark orange. After 2 h the reaction mixture was evaporated. The residue was chromatographed, giving a red band with n-hexane as eluant. Red crystals were obtained from the *n*-hexane solution (yield 60-70%). Complex 1 was characterized by its infrared spectrum in the  $\nu_{\rm CO}$  region<sup>1</sup> and its <sup>1</sup>H NMR spectrum (80 MHz, CDCl<sub>3</sub>):  $\delta$  3.9-3.6 (m, 4 H, NCH<sub>2</sub>), 2.4 (s, 3 H, CH<sub>3</sub> bridge), 1.5-1.2 (m, 6 H, CH<sub>2</sub>CH<sub>3</sub>).

Synthesis of Complex 2. [(Fe<sub>2</sub>(CO)<sub>6</sub>{C(CH<sub>3</sub>)C(NEt<sub>2</sub>)C-(Ph)C(Ph)]]. Complex 1 (20 mg, 0.048 mmol) was dissolved in dry hexane (10 mL), and 8 mg (0.048 mmol) of diphenylacetylene was added. This mixture was heated at 50 °C under CO pressure (40 atm) for 2 h. Thin-layer chromatography showed only one

Table IV. Crystal Data for Compounds 2 and 3

|                                                           | 2                                                               | ð                                                                             |
|-----------------------------------------------------------|-----------------------------------------------------------------|-------------------------------------------------------------------------------|
| empirical formula                                         | C <sub>27</sub> H <sub>23</sub> NO <sub>6</sub> Fe <sub>2</sub> | C <sub>26</sub> H <sub>23</sub> N <sub>3</sub> O <sub>6</sub> Fe <sub>2</sub> |
| fw                                                        | 569.18                                                          | 585.18                                                                        |
| cryst system                                              | monoclinic                                                      | orthorhombic                                                                  |
| space group                                               | $P2_1/c$                                                        | $P2_{1}2_{1}2_{1}$                                                            |
| a, Å                                                      | 8.687 (1)                                                       | 10.065 (3)                                                                    |
| b, Å                                                      | 32.006(4)                                                       | 13.609 (3)                                                                    |
| c, Å                                                      | 9.728 (2)                                                       | 19.332 (3)                                                                    |
| $\beta$ , deg                                             | 103.96 (1)                                                      | 90.0                                                                          |
| V, Å <sup>3</sup>                                         | 2624                                                            | 2648                                                                          |
| Z                                                         | 4                                                               | 4                                                                             |
| cryst size, mm                                            | $0.3 \times 0.4 \times 0.3$                                     | $0.4 \times 0.4 \times 0.28$                                                  |
| $\mu$ (Mo K $\alpha$ ), cm <sup>-1</sup>                  | 11.43                                                           | 11.38                                                                         |
| $\rho$ (calcd), g·cm <sup>-3</sup>                        | 1.439                                                           | 1.468                                                                         |
| temp, °C                                                  | 20                                                              | 20                                                                            |
| radiatn                                                   | Mo K $\alpha$ (graphite                                         | monochromator)                                                                |
| scan range, $\theta$ , deg                                | $1.35 + 0.345 \tan \theta$                                      | $1.5 + 0.34 \tan \theta$                                                      |
| $2\theta$ range, deg                                      | 3-46                                                            | 3-50                                                                          |
| scan type                                                 | $\omega/2\theta$                                                | $\omega/1.33	heta$                                                            |
| std reflctns                                              | 071;032                                                         | 509;390                                                                       |
| refletns collected                                        | 4115                                                            | 2964                                                                          |
| reflctns merged                                           | $3642 \ (R_{\rm m} = 1.18)$                                     | 2633 ( $R_{\rm m} = 2.72$ )                                                   |
| reflctns used                                             | 2549                                                            | 2143                                                                          |
| criteria                                                  | $I > 3\sigma(I)$                                                | $I > 3\sigma(I)$                                                              |
| $R = \sum   F_{\rm o}  -  F_{\rm c}   / \sum  F_{\rm o} $ | 0.0286                                                          | 0.0354                                                                        |
| $R_{\rm w} = \{\sum w( F_{\rm o}  -$                      | 0.0304                                                          | 0.0419                                                                        |
| $ F_{\rm c} ^2 / \sum w F_{\rm o}^2  ^{1/2}$              |                                                                 |                                                                               |
| rms (shift/esd)                                           | 0.204                                                           | 0.054                                                                         |
| weighting scheme                                          | 1                                                               | $w = w' [1 - (\Delta F) / 6\sigma(F_0))^2]^{2\alpha}$                         |

 $^{a}w' = 1/\sum_{r=1}^{n} \operatorname{ArTr}(x)$  with three coefficients Ar (3.833, -1.180, 2.533) for the Chebyshev polynomial  $\operatorname{ArTr}(x)$  where x was  $F_c/F_c$ -(max).<sup>22</sup>

product. Evaporation of the solution gave a yellow crystalline powder of complex 2 (25 mg, 92%).

An excess of diphenylacetylene (50 mg, 0.28 mmol) was added to a solution of complex 1 (50 mg, 0.14 mmol) in dry *n*-hexane. After being refluxed under nitrogen for 3 h, the reaction mixture was evaporated. The residue was separated by chromatography giving two main bands with *n*-hexane as eluant: a yellow one which was collected and a green one which slowly disappeared on the column due to decomposition. Complex 2 was obtained as yellow crystals from the yellow solution (49 mg, 60%): MS,  $m/e\ 569\ (M^+),\ 541\ (M^+ - CO),\ 513\ (M^+ - 2CO),\ 485\ (M^+ - 3CO),$ 457 (M<sup>+</sup> – 4CO), 429 (M<sup>+</sup> – 5CO), 401 (M<sup>+</sup> – 6CO); IR  $\nu_{CO}$  2075 (s), 2035 (s), 2010 (s), 1985 (s), 1970 (s), 1935 (s) cm<sup>-1</sup>; <sup>1</sup>H NMR (250 MHz, CDCl<sub>3</sub>) δ 7.5-7.28 (m, 10 H, H aromatic), 3.12-3.0 (q, 2 H, NCH<sub>2</sub>), 2.9–2.8 (q, 2 H, NCH<sub>2</sub>), 2.5 (s, 3 H, CH<sub>3</sub> bridge), 1.2-1.05 (t, 3 H, CH<sub>2</sub>CH<sub>3</sub>). Anal. Calcd for C<sub>27</sub>H<sub>23</sub>Fe<sub>2</sub>O<sub>6</sub>N: C, 56.98; N, 2.46; H, 4.05. Found: C, 56.92; N, 2.51; H, 4.65.

Synthesis of Complex 3. [(Fe<sub>2</sub>(CO)<sub>6</sub>{C(CH<sub>3</sub>)C(NEt<sub>2</sub>)N<sub>2</sub>C- $(Ph_2)$ ].  $(C_6H_5)_2CN_2$  (13.8 mg, 0.071 mmol), complex 1 (30 mg, 0.0715 mmol), and hexane (20 mL) were mixed in a round-bottom flask. The reaction mixture was refluxed under nitrogen for 3 h. Thin-layer chromatography showed only one reaction product. The solution was then concentrated to ca. 10 mL and left at –20 °C; purple-red crystals were obtained (31 mg, 74%): MS, m/e585 (M<sup>+</sup>), 557 (M<sup>+</sup> - CO), 529 (M<sup>+</sup> - 2CO), 501 (M<sup>+</sup> - 3CO), 473

<sup>(14)</sup> Aumann, R.; Henkel, G.; Kribs, B. Angew. Chem., Int. Ed. Engl. 1982, 21, 204.

<sup>(15)</sup> Yamaguchi, A.; Achishima, I.; Shimamouchi, T.; Mizushima, S.
I. J. Chem. Phys. 1959, 31, 843.
(16) Curtis, M. D.; d'Errico, J. T.; Butler, W. M. Organometallics 1987,

<sup>6. 2151.</sup> 

<sup>(17)</sup> Ficini, J.; Barbara, C. Bull. Soc. Chim. Fr. 1965, 2787.

<sup>(18)</sup> Fieser, L. F.; Fieser, M. Reagents for Organic Synthesis; Wiley: New York, 338.

Table V. Fractional Atomic Coordinates with Esd's in Parentheses and Equivalent Isotropic Thermal Parameter [U(eq)] for Compound  $2^a$ 

|        | L = (-      | 3/]F        |             |              |
|--------|-------------|-------------|-------------|--------------|
| atom   | x/a         | y/b         | z/c         | $U(eq), Å^2$ |
| Fe(1)  | 0.17619 (6) | 0.09251 (2) | 0.17097 (6) | 0.0460       |
| Fe(2)  | 0.43951 (6) | 0.06822 (2) | 0.14163(5)  | 0.0393       |
| C(1)   | 0.3648 (4)  | 0.0802(1)   | 0.3244(4)   | 0.0416       |
| C(2)   | 0.4942 (4)  | 0.1086(1)   | 0.3340 (4)  | 0.0391       |
| C(3)   | 0.4817(4)   | 0.1329 (1)  | 0.2069 (3)  | 0.0386       |
| C(4)   | 0.3361(4)   | 0.1260(1)   | 0.1055 (4)  | 0.0399       |
| C(5)   | 0.3664(5)   | 0.0487(1)   | 0.4398 (4)  | 0.0540       |
| N(2)   | 0.6234 (4)  | 0.1096 (1)  | 0.4496 (3)  | 0.0454       |
| C(211) | 0.5946 (5)  | 0.1164(2)   | 0.5909(4)   | 0.0567       |
| C(212) | 0.6455 (7)  | 0.1591 (2)  | 0.6503 (5)  | 0.0874       |
| C(221) | 0.7865 (5)  | 0.1118(1)   | 0.4360(4)   | 0.0527       |
| C(222) | 0.8929 (5)  | 0.0813(2)   | 0.5334(5)   | 0.0692       |
| C(31)  | 0.5995 (5)  | 0.1650(1)   | 0.1928 (4)  | 0.0440       |
| C(32)  | 0.6131 (6)  | 0.2007(1)   | 0.2755(5)   | 0.0668       |
| C(33)  | 0.7161 (8)  | 0.2318(2)   | 0.2613 (6)  | 0.0795       |
| C(34)  | 0.8062(7)   | 0.2287(2)   | 0.1647 (6)  | 0.0778       |
| C(35)  | 0.7951 (6)  | 0.1941 (2)  | 0.0821 (5)  | 0.0685       |
| C(36)  | 0.6920 (5)  | 0.1628 (1)  | 0.0953(4)   | 0.0529       |
| C(41)  | 0.2933 (5)  | 0.1528(1)   | -0.0244 (4) | 0.0471       |
| C(42)  | 0.2781 (6)  | 0.1954(2)   | -0.0103 (5) | 0.0687       |
| C(43)  | 0.2305 (8)  | 0.2207(2)   | -0.1294 (6) | 0.0911       |
| C(44)  | 0.2004 (7)  | 0.2033(2)   | -0.2616 (6) | 0.0829       |
| C(45)  | 0.2131(6)   | 0.1618(2)   | -0.2771 (5) | 0.0722       |
| C(46)  | 0.2575 (5)  | 0.1359 (2)  | -0.1602 (4) | 0.0575       |
| C(11)  | 0.1354 (5)  | 0.1351(2)   | 0.2688(4)   | 0.0545       |
| O(11)  | 0.1201 (4)  | 0.1634 (1)  | 0.3375(3)   | 0.0772       |
| C(12)  | 0.0607 (5)  | 0.0525 (2)  | 0.2309 (4)  | 0.0608       |
| O(12)  | -0.0128 (4) | 0.0278 (1)  | 0.2696(4)   | 0.0887       |
| C(13)  | 0.0226(5)   | 0.0992(2)   | 0.0086(4)   | 0.0604       |
| O(13)  | -0.0769 (4) | 0.1033(1)   | -0.0893 (3) | 0.0812       |
| C(21)  | 0.2789 (5)  | 0.0345(1)   | 0.0649 (4)  | 0.0565       |
| O(21)  | 0.2048 (4)  | 0.0066(1)   | 0.0075 (4)  | 0.0780       |
| C(22)  | 0.5212 (5)  | 0.0688(1)   | -0.0095 (4) | 0.0503       |
| O(22)  | 0.5728(4)   | 0.0681(1)   | -0.1066 (3) | 0.0694       |
| C(23)  | 0.5725(5)   | 0.0285(1)   | 0.2274(4)   | 0.0499       |
| O(23)  | 0.6560(4)   | 0.0029(1)   | 0.2835(3)   | 0.0690       |

 ${}^{a}U(eq) = [U(11)U(22)U(33)]^{1/3}.$ 

 $(M^+ - 4CO)$ , 445  $(M^+ - 5CO)$ , 417  $(M^+ - 6CO)$ ; IR  $\nu_{CO}$  2065 (s), 2025 (s), 2000 (s), 1975 (vs), 1960 (s), 1945 (s), 1920 (sh), 1915 (sh) cm<sup>-1</sup>; <sup>1</sup>H NMR (250 MHz, CDCl<sub>3</sub>) δ 7.8-7.4 (m, 10 H, H aromatic), 3.68-3.58 (q, 2 H, NCH<sub>2</sub>), 3.28-3.12 (q, 2 H, NCH<sub>2</sub>), 3.2 (s, 3 H,  $CH_3$  bridge), 1.2-1.1 (t, 3 H,  $CH_2CH_3$ ). Anal. Calcd for  $C_{26}H_{23}Fe_2O_6N_3$ : C, 53.36; N, 7.18; H, 3.93. Found: C, 53.27; N, 7.3; H, 4.33.

Crystal Data for Complexes 2 and 3. For both compounds, preliminary unit-cell dimensions and symmetry informations were derived from precession photographs; the selected crystals were set up on a Nonius CAD4 automatic diffractometer. Cell dimensions and orientation matrices were obtained from leastsquares refinements of the setting angles of 25 reflections (28 < $2\theta < 30^{\circ}$ ).

Crystal data and data collection parameters are listed in Table IV. Intensities of two standard reflections were monitored every hour; they showed no change during data collections. Corrections were made for Lorentz and polarization effects. Absorption corrections were applied via an empirical absorption correction technique.19

Computations were performed by using CRYSTALS<sup>20</sup> adaped on a VAX 11/725. Atomic form factors for neutral Fe, C, N, O, and H were taken from ref 21; anomalous dispersion was taken

 Sect. A: Cryst. Phys. Diffr., Theor. Gen. Crystallogr. 1968, A24, 351.
 (20) Carruthers, J. R.; Watkin, D. J. CRYSTALS, An Advanced Crystallographic program system; Chemical Crystallography Laboratory; University of Oxford, England, 1986. (21) International Tables for X-ray Crystallography; Kynoch: Bir-

(21) International Tubles for X-ray Crystatlography, Rynoch: Birmingham, 1974, Vol. IV.
 (22) Prince, E. Mathematical Techniques in Crystallography;
 Springer-Verlag: Berlin, 1982.
 (23) Mitsudo, T.; Watanabe, H.; Watanabe, K.; Watanabe, Y.; Kafuku,

K.; Nakatsu, K. Organometallics 1982, 1, 612.

Table VI. Fractional Atomic Coordinates with Esd's in **Parentheses and Equivalent Isotropic Thermal Parameter** [U(eq)] for Compound  $3^{a}$ 

| atom   | x/a          | y/b         | z/c         | $U(eq), Å^2$ |
|--------|--------------|-------------|-------------|--------------|
| Fe(1)  | -0.08934 (7) | 0.07394 (5) | 0.12460 (3) | 0.0301       |
| Fe(2)  | 0.09257 (8)  | 0.12414 (5) | 0.03969 (3) | 0.0305       |
| C(11)  | -0.2270 (6)  | 0.1025 (4)  | 0.0706 (3)  | 0.0404       |
| O(11)  | -0.3158 (5)  | 0.1196 (4)  | 0.0363 (3)  | 0.0626       |
| C(12)  | -0.1758 (6)  | -0.0252 (5) | 0.1663 (3)  | 0.0399       |
| O(12)  | -0.2304 (5)  | -0.0898 (3) | 0.1901 (3)  | 0.0620       |
| C(13)  | -0.1345 (6)  | 0.1803 (5)  | 0.1764(3)   | 0.0448       |
| O(13)  | -0.1718 (5)  | 0.2493 (4)  | 0.2036 (3)  | 0.0612       |
| C(21)  | 0.1031(6)    | 0.2361(4)   | 0.0889(3)   | 0.0392       |
| O(21)  | 0.1131(5)    | 0.3059 (3)  | 0.1211(2)   | 0.0563       |
| C(22)  | 0.2372 (6)   | 0.1362(4)   | -0.0128 (3) | 0.0426       |
| O(22)  | 0.3279 (5)   | 0.1462(4)   | -0.0474 (3) | 0.0663       |
| C(23)  | -0.0109 (6)  | 0.1636(4)   | -0.0287 (3) | 0.0475       |
| O(23)  | -0.0777 (6)  | 0.1863(4)   | -0.0740 (2) | 0.0692       |
| C(1)   | -0.0107 (5)  | -0.0055 (3) | 0.0494 (3)  | 0.0305       |
| C(2)   | 0.1261(5)    | -0.0252 (3) | 0.0632(2)   | 0.0273       |
| N(3)   | 0.1834(4)    | 0.0346 (3)  | 0.1134 (2)  | 0.0314       |
| N(4)   | 0.0869(4)    | 0.0538 (3)  | 0.1666(2)   | 0.0280       |
| C(31)  | -0.0889 (6)  | -0.0672 (4) | -0.0008 (3) | 0.0443       |
| N(51)  | 0.2109(4)    | -0.0904 (3) | 0.0310(2)   | 0.0340       |
| C(511) | 0.2088 (6)   | -0.1025 (4) | -0.0446 (3) | 0.0409       |
| C(512) | 0.1789 (8)   | -0.2051 (5) | -0.0680 (3) | 0.0540       |
| C(521) | 0.3342 (6)   | -0.1167 (5) | 0.0659(3)   | 0.0499       |
| C(522) | 0.4461 (8)   | -0.0493 (8) | 0.0622(5)   | 0.0853       |
| C(41)  | 0.1391 (5)   | 0.0701(4)   | 0.2267(2)   | 0.0312       |
| C(411) | 0.2851(5)    | 0.0718 (4)  | 0.2391(2)   | 0.0353       |
| C(412) | 0.3415(7)    | -0.0010 (6) | 0.2790(4)   | 0.0639       |
| C(413) | 0.4792 (9)   | 0.0052 (8)  | 0.2943(4)   | 0.0724       |
| C(414) | 0.5523(7)    | 0.0814(9)   | 0.2704(4)   | 0.0737       |
| C(415) | 0.4950 (8)   | 0.1512 (8)  | 0.2331(5)   | 0.0767       |
| C(416) | 0.3625(7)    | 0.1460 (6)  | 0.2165(4)   | 0.0604       |
| C(421) | 0.0516(5)    | 0.0955(4)   | 0.2859(3)   | 0.0362       |
| C(422) | 0.0520 (6)   | 0.1907(4)   | 0.3114(3)   | 0.0433       |
| C(423) | -0.0311 (7)  | 0.2149 (5)  | 0.3655(3)   | 0.0516       |
| C(424) | -0.1110 (7)  | 0.1454(5)   | 0.3957 (3)  | 0.0517       |
| C(425) | -0.1095(7)   | 0.0502(5)   | 0.3719(3)   | 0.0536       |
| C(426) | -0.0285 (6)  | 0.0249 (5)  | 0.3176(3)   | 0.0432       |

 $^{a}U(eq) = [U(11)U(22)U(33)]^{1/3}.$ 

into account in both cases. In the two compounds Fe atom positions were determined by Harker vector analysis of threedimensional Patterson maps. All remaining non-hydrogen atoms were found by successive electron density map calculations. All non-hydrogen atoms were refined anisotropically. For both compounds, hydrogen atoms were located on difference electron density maps; in complex 2, hydrogen atomic coordinates were refined with an overall isotropic thermal parameter. In complex 3, hydrogen atoms were given calculated positions (C-H = 0.96Å) with a fixed overall isotropic thermal parameter (U = 0.08); coordinates of these atoms were not refined but were recalculated after each cycle. The two structures were refined by least squares with approximation (in four blocks) to the normal matrix. The criteria for a satisfactory complete analysis were the ratios of the

(24) Alvarez-Toledano, C.; Parlier, A.; Rose-Munch, F.; Rudler, H.; Daran, J. C.; Knobler, C.; Jeannin, Y. J. Organomet. Chem. 1987, 323, 371.

(25) Casey, C. P.; Woo, L. K.; Fagan, P. J.; Palermo, R. E.; Adams, B. R. Organometallics 1987, 6, 447.

(26) Dyke, A. F.; Timox, S. A. R.; Naish, P. J.; Taylor, G. E. J. Chem. Soc., Chem. Commun. 1980, 804.

(27) Rodrigue, L.; Van Meerssche, M.; Piret, P. Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem. 1969, B25, 519.

(28) Dettlaf, G.; Behrens, U.; Weiss, E. Chem. Ber. 1978, 111, 3019. (29) Aumann, R.; Averbeck, H.; Krüger, C. Chem. Ber. 1975, 108, 3336. (30) Ros, J.; Solans, X.; Miravitles, C.; Mathieu, R. J. Chem. Soc., Dalton Trans. 1985, 1981.

(31) Ros, J.; Solans, X.; Font-Alba, M.; Mathieu, R. Organometallics 1984, 3, 1014.

(32) Ros, J.; Commenges, G.; Mathieu, R.; Solans, X.; Font-Alba, M. J. Chem. Soc., Dalton Trans. 1985, 1087.

(33) Ros, J.; Mathieu, R.; Solans, X.; Font-Alba, M. J. Organomet. Chem. 1984, 260, C40.

<sup>(19)</sup> North, A. C. T.; Phillips, D. C.; Mathews, F. S. Acta Crystallogr.,

parameter shifts to standard deviations being all less than 0.1 and no significant features in the final difference maps. Main features of the refinements appear in Table IV. Atomic coordinates are given in Table V and VI.

Registry No. 1, 115590-65-3; 2, 115590-66-4; 3, 115590-67-5;  $Fe_2(CO)_9$ , 15321-51-4;  $CH_3 (\equiv CN(C_2H_5)_2$ , 4231-35-0;  $Me_3NO$ , 1184-78-7; (C<sub>6</sub>H<sub>5</sub>)<sub>2</sub>CN<sub>2</sub>, 883-40-9; diphenylacetylene, 501-65-5.

Supplementary Material Available: Tables of anisotropic temperature factors, important least-squares planes, and hydrogen coordinates (6 pages); listings of observed and calculated structure factors (37 pages). Ordering information is given on any current masthead page.

# Photolysis of Cyclotrigermane. Synthesis and Chemistry of **Digermiranes and Digermetanes Containing Sulfur and Selenium**

Takeshi Tsumuraya, <sup>1a</sup> Sadao Sato, <sup>1b</sup> and Wataru Ando\*, <sup>1a</sup>

Department of Chemistry, The University of Tsukuba, Tsukuba, Ibaraki 305, Japan, and Analytical and Metabolic Research Laboratories, Sankyo Co., Ltd., Shinagawa, Tokyo 140, Japan

Received January 26, 1988

Photolysis of hexamesitylcyclotrigermane (1) produces tetramesityldigermene (4) and dimesitylgermylene (5) which react with elemental sulfur to give 2,2,3,3-tetramesitylthiadigermirane (2) and 2,2,4,4-tetramesityl-1,3,2,4-dithiadigermetane (3). Selenium also reacts with digermene 4 to afford 2,2,3,3-tetramesitylselenadigermirane (7). Photolysis of 2 with 2,3-dimethyl-1,3-butadiene produces only products from dimesitylgermylene (5) and dimesitylgermanethione (6). The reactions of 2 with pyridine  $\hat{N}$ -oxide, sulfur, and selenium yield digermetanes containing O, S, and Se.

#### Introduction

In recent years interest in the chemistry of small-ring compounds has remarkably increased because of their unique properties resulting from strain energy. In contrast to rather extensive studies of the chemistry of small-ring silanes,<sup>2</sup> very little is known about germanium analogues.<sup>3-8</sup> Few small-ring compounds containing Ge-Ge bonds<sup>3c,d,4-8</sup> have been studied, and direct reaction of a digermene with sulfur and selenium appears to be the most suitable method for the synthesis of thia- and selenadigermiranes. We report here a convenient synthesis and some chemistry of thia- and selenadigermiranes, which cleanly reacted with

(3) (a) Baudler, M. Pure Appl. Chem. 1980, 52, 755. (b) Krebs, A.; Berndt, J. Tetrahedron Lett. 1983, 24, 4083. (c) Ando, W.; Tsumuraya, T.; Sekiguchi, A. Tetrahedron Lett. 1985, 26, 4523. (d) Ando, W.; Tsumuraya, T. Tetrahedron Lett. 1986, 27, 5105.

(4) Preparation of thiadigermirane and selenadigermirane was partly reported previously; Ando, W.; Tsumuraya, T. Tetrahedron Lett. 1986, 27, 3251.

(5) Masamune, S.; Hanzawa, Y.; Williams, D. J. J. Am. Chem. Soc.

1982, 104, 6136.
(6) Snow, J. T.; Murakami, S.; Masamune, S.; Williams, D. J. Tetra-hedron Lett. 1984, 25, 4191.

(7) Ando, W.; Tsumuraya, T. J. Chem. Soc., Chem. Commun. 1987, 1514.

(8) (a) Espenbetov, A. A.; Struchkov, Yu. Y.; Kolesnikov, S. P.; Nefedov, O. M. J. Organomet. Chem. 1984, 275; 33. (b) Nefedov, O. M.; Egorov, M. P.; Gal'minas, A. M.; Kolesnikov, S. P.; Krebs, A.; Berndt, J. J. Organomet. Chem. 1986, 301, C21.

(9) Germylene was reported to react with elemental sulfur to yield germathione intermediate: Lange, L.; Meyer, B.; du Mont, W.-W. J. Organomet. Chem. 1987, 329, C17.



pyridine N-oxide, sulfur, and selenium to afford heteroatom-containing digermetanes.

### **Results and Discussion**

Synthesis of Thiadigermirane and Selenadigermirane.<sup>4</sup> Irradiation of a cyclohexane solution of hexamesitylcyclotrigermane (1, 0.1 mmol) and elemental sulfur (0.8 mmol) in a quartz tube at room temperature with a lowpressure mercury lamp produced a colorless crystalline product, 2,2,3,3-tetramesitylthiadigermirane (2), in 26% yield. Also formed was 2,2,4,4-tetramesityl-1,3,2,4-dithiadigermetane (3) in 24% yield (eq 1). Thiadigermirane



2 was readily separated from 3 by flash column chromatography, and its structure was confirmed by <sup>1</sup>H NMR and mass spectroscopic analyses and also by an X-ray diffraction study. Thiadigermirane 2 thus obtained is stable

<sup>(1) (</sup>a) The University of Tsukuba. (b) Sankyo Co., Ltd.
(2) (a) Lambert, R. L.; Seyferth, D. J. Am. Chem. Soc. 1972, 94, 9246.
(b) Conlin, R. T.; Gaspar, P. P. J. Am. Chem. Soc. 1976, 98, 3715. (c) Baudler, M.; Jongebloed, H. Z. Anorg. Allg. Chem. 1979, 458, 9. (d) Hluchy, J.; Klingebiel, U. Angew. Chem., Int. Ed. Engl. 1982, 21, 301. (e) Masamune, S.; Hanzawa, Y.; Murakami, S.; Bally, T.; Blount, J. F. J. Am. Chem. Soc. 1982, 104, 1150. (f) Ishikawa, M.; Sugisawa, H.; Kumada, M.; Hinuchi, T.; Miratani, S.; Dally, T.; Blount, J. F. J. Am. Chem. Soc. 1982, 104, 1150. (f) Ishikawa, M.; Sugisawa, H.; Kumada, M.; Chem. Soc. 1962, 104, 1150. (1) Binkawa, M.; Sugisawa, H.; Kunada, M.;
 Higuchi, T.; Matsui, K.; Hirotsu, K.; Iyoda, J. Organometallics 1983, 2,
 174. (g) Masamune, S.; Murakami, S.; Tobita, H.; Williams, D. J. J. Am.
 Chem. Soc. 1983, 105, 7776. (h) Ando, W.; Hamada, Y.; Sekiguchi, A.;
 Ueno, K. Tetrahedron Lett. 1982, 23, 5323. (i) Ando, W.; Hamada, Y.; Sekiguchi, A.; Ueno, K. Tetrahedron Lett. 1983, 24, 4033. (j) Michalczyk, M. J.; West, R.; Michi, J. J. Chem. Soc., Chem. Commun. 1984, 1525. (k) West, R.; De Young, D. J.; Haller, K. J. J. Am. Chem. Soc. 1985, 107, 4942. (l) Yokelson, H. B.; Millevolte, A. J.; Gillette, G. R.; West, R. J. Am. Chem. Soc. 1987, 109, 6865.