polynuclear metal centers has been thwarted by the difficulty in kinetically observing individual steps in transformations. Typical thermolysis reactions of polynuclear ruthenium- and osmium-based clusters,14 for example, are not amenable to detailed study since side reactions can ensue; moreover, analysis of reaction pathways is sometimes based entirely on product identification. The binuclear rhodium hydride systems discussed here on the other hand are very reactive, and many transformations^{5} can be followed by spectroscopic means. We are convinced that this system along with a few other selected binuclear¹⁵ and trinuclear¹⁶ complexes are providing fundamental information on the primary processes of polynuclear metal complexes.

Acknowledgment. We thank NSERC of Canada for financial support in the form of an operating grant to M.D.F. and a postgraduate fellowship to W.E.P. Johnson-Matthey is gratefully acknowledged for a generous loan of $RhCl₃·xH₂O$.

Supplementary Material Available: Tables of raw kinetic data with corresponding graphs **(4** pages). Ordering information is given on any current masthead page.

(16) (a) Douglas, G.; Manojlovic-Muir, L.; Muir, K. W.; Rashidi, M.;
Anderson, C. M.; Puddephatt, R. J. *J. Am. Chem. Soc.* 1987, *109*, 6527.
(b) Rashidi, M.; Puddephatt, R. J. *J. Am. Chem. Soc.* 1986, *108*, 7111. (c) Lloyd, B. R.; Puddephatt, R. J. *J. Am. Chem. SOC.* **1985,107,7785.**

Synthesis of Binuclear Metal Complexes Incorporating Hydrido and Phosphido Ligands and Structural Characterization of $\left[\mathsf{Et}_4\mathsf{N}\right](\mu-\mathsf{PPh}_2)(\mu-\eta^2-(\mathsf{Ph}_3\mathsf{PAU})_2)\mathsf{W}_2(\mathsf{CO})_8$

Jiann T. Lin," Yui-May Hsiao, Ling-Kang Liu, and Show K. Yeh

Institute of Chemistry, Academia Sinica Nankang, Taipei, Taiwan, Republic of China

Received April 79, 1988

Summary: The coordinatively unsaturated species $H_2M_2(CO)_8^{2-}$ (M = Mo, W) react with diphenylphosphine to form products incorporating bridging hydrido and phosphido ligands, $(\mu$ -H)(μ -PPh₂)M₂(CO)₈²⁻. A mixed-metal cluster, $(\mu$ -PPh₂)(μ - η ²-(Ph₃PAu)₂)W₂(CO)₈⁻, derived from $(\mu$ -H)(μ -PPh₂)W₂(CO)⁸²⁻, was structurally characterized by X-ray diffraction.

Addition of $Ph₂PH$ to the coordinatively unsaturated species $\left[\text{Et}_4\text{N}\right]_2\left[\text{H}_2\text{M}_2(\text{CO})_8\right]$ (1, M = Mo; 2, M = W) yields

Figure 1. ORTEP drawing of $(\mu$ -PPh₂) $(\mu$ - η^2 -(Ph₃PAu)₂) $W_2(CO)_{8}^-$. Phenyl groups except ipso carbon atoms are omitted for clarity. The ellipsoids are drawn with 30% probability boundaries.

 $[Et_4N]_2[(\mu-H)(\mu-PPh_2)[M_2(CO)_8]$ (3, $M = Mo$, 51%; 4, M = W, 80%).¹ The infrared spectral pattern of these new complexes in the CO stretching region is very similar to the isoelectronic manganese analogue $(\mu$ -H) $(\mu$ -PPh₂)-Mnz(CO)8.2 The lH and **31P** NMR spectra are also consistent with their formulation: (a) the chemical shifts of the bridging hydrides for **3** and **4** are comparable with those reported in literature, $3-5$ (b) the presence of 1:6:1 triplet due to "W-H coupling in **4** suggests the existence of a symmetrically bridged $M-H-M$ linkage;^{6,7} (c) the ³¹P NMR spectra for **3** and **4** are in agreement with a phosphido group symmetrically bridging a metal-metal bond.8 While two-bond P-H coupling between the hydrido and the phosphido ligands could be clearly seen in the ¹H and 31P NMR spectra of **3,** no such coupling was observed for **4.** The chemical behavior of **4** (vide infra) provided further

- **1962, 3653.**
- **(7)** Hayter, **R. G.** *J. Am. Chem. SOC.* **1966,88, 4376.**

^{(14) (}a) Deeming, A. J. Adv. Organomet. Chem. 1986, 26, 1. (b) Lavigne, G.; Kaesz, H. D. In Metal Clusters in Catalysis; Gates, B. C., Guczi, L., Knozinger, H., Eds.; Elsevier: New York, 1986; Chapter 4. (c) Adams, **R.** D.; Babin, J. E.; Kim, H.-S. *J. Am. Chem. SOC.* **1987, 109, 1414.** (d) Adams, R. D.; Babin, J. E. *J. Am. Chem.* SOC. **1987, 109, 6872.** (e) Nucciarone, D.; MacLaughlin, S. A.; Taylor, N. J.; Carty, A. J. Organometallics 1988, 7, 106. (f) Nucciarone, D.; Taylor, N. J.; Carty, A. J.; Tripicchio, A.; Camellini, M. J.; Sappa, E. Organometallics 1988, 7, 118. (g) N

^{127.&}lt;br>- (15) (a) Schore, N. E.; Ilenda, C. S.; White, M. A.; Bryndza, H. E.;
Matturo, M. G.; Bergman, R. G. *J. Am. Chem. Soc.* 1984, *106,* 7451 and
references therein. (b) Sivak, A. J.; Muetterties, E. L. *J. Am. Chem. So* **1979, 101, 4878.**

⁽¹⁾ **A** solution of **0.20** g **(0.30** mmol) **of 1** in acetonitrile **(30** mL) was reacted with an excess of PhzPH **(0.15** mL) at **-20** OC for **30** min. The solution was slowly warmed to room temperature **(1.5** h) and the solvent removed by evacuation. The resulting orange-yellow precipitate was washed, first with THF until the washings were colorless and then with $MeOH$ (25 $mL \times 2$). The product was then dried in vacuo to provide 0.13 g **(51%)** of orange-yellow powdery **3.** The same procedure was followed for the preparation of **4.** Complex **4** was obtained as orange-yellow powders **(0.98** g, **80%)** from **1.00** g **(1.17** mmol) of complex **2. 3:** IR (CH₃CN) ν (CO) **1998 mw, 1975 m, 1887 s, 1842 m, 1796 s cm⁻¹; ¹H NMR (CD₃CN)** δ **7.7-7.0 (m, 10 H, Ph), 3.14 (q, J_{H-H} = 7.1 Hz, 16 H₂ CH₂), 1.19** NMR (CD₃CN) δ 92.2 (d). Anal. Calcd for $C_{36}H_{51}N_2O_8PMo_2$: C, 50.12; **1996 mw, 1969 m, 1883 s, 1836 m, 1795 s cm⁻¹; ¹H NMR (CD₃CN) δ** 7.8–7.0 (m, 10 H, Ph), 3.14 (q, J_{H-H} = 7.1 Hz, 16 H, CH₂), 1.19 (tt, J_{H-N}
= 1.7 Hz, 24 H, CH₃), -12.0 (1:6:1 triplets, J_{H-W} = 42.5 Hz, 1 H, µ-H); ³¹P NMR (CD₃CN) δ 61.0 (1:6:1 triplets, J_{P-W} = 169 Hz). Anal. Calcd for $C_{36}H_{51}N_2O_8PW_2$: C, 41.64; H, 4.95; N, 2.70. Found: C, 41.55; H, 5.01; N, **2.74.** $(\text{tt}, J_{H-N} = 1.7 \text{ Hz}, 24 \text{ H}, \text{CH}_3), -10.2 \text{ (d, } J_{H-P} = 9.8 \text{ Hz}, 1 \text{ H}, \mu\text{-H}; ^{31}\text{P}$ H, 5.96; N, 3.25. Found: C, 49.92; H, 5.81; N, 3.15. 4: IR (CH₃CN) ν (CO)

⁽²⁾ Iggo, **J.** Q.; Mays, M. J.; Raithby, P. R. *J. Chem. SOC., Dalton Trans.* **1983, 205.**

⁽³⁾ Lin, **J.** T.; Shiao, **Y.** M. *J. Organomet. Chen.* **1987,** *334,* **C31. (4)** Legzdins, **P.;** Martin, J. T.; Einstein, F. W. B.; Willis, A. C. *J. Am.*

Chem. Soc. 1986, 108, 7971.
(5) Darensbourg, M. Y.; Mehdawi, R. El; Delord, T. J.; Fronczek, F.
R.; Watkins, S. F. J. Am. Chem. Soc. 1984, 106, 2583.
(6) Davison, A.; McFarland, W.; Pratt, L.; Wilkinson, G. J. Chem. Soc.

⁽⁸⁾ (a) Carty, A. J. *Adu. Chem. Ser.* **1982,** *No.* **196, 163.** (b) Garrou, *P.* **E.** *Chem. Reu.* **1981,81,229.** (c) Harley, **A.** D.; Guskey, G. J.; Geoffroy, G. L. *Organometallics* **1983,** 2, **53.**

evidence of its correct formulation.

The mechanism of the formation of **3** and **4** is presently unknown. We did observe gas evolution (presumably H_2) during the reactions. It was not possible to resolve whether (a) $\text{M}_2(\text{CO})_8(\text{Ph}_2\text{PH})_2^2$ formed as in the case of the synthesis of $W_2(CO)_8(PMe_3)_2^{2-9}$ or (b) $HM_2(CO)_8(Ph_2PH)^$ formed instead. Oxidative addition of a coordinated secondary phosphine to a metal center with concurrent P-H bond cleavage has ample precedent.¹⁰ Another coordinatively unsaturated complex, $H_2Os_3(CO)_{10}$, was reported to react similarly with Ph₂PH to form $(\mu$ -H)(μ -PPh₂)- $\mathrm{Os}_{3}(\mathrm{CO})_{10}$ ¹¹

Complexes **3** and **4** are air-sensitive and are very reactive toward electrophiles. Protonation of **4** with trichloroacetic acid in the presence of Ph_2PH led to the formation of $[Et_4N]$ $[(\mu$ -H) $W_2(CO)_8(Ph_2PH)_2]$ (5). Complex 5 could be more conveniently prepared¹² by using the strategy developed for the synthesis of (μ) - $(\mu$ - $Ph_2PCH_2PPh_2)W_2$ - $(CO)_{8}^{-3}$ A noble mixed-metal cluster, $[Et_4N][(\mu-PPh_2)]$ - $(\mu - \eta^2(Ph_3PAu)_2)W_2(CO)_8$ (6), was obtained in about 70% yield from the reaction of 4 with 2 equiv of Ph₃PAuCl.¹³

The X-ray crystal structure analysis of **6** was under $taken,$ ¹⁴ and the core structure of the anion is shown in

(11) Ebsworth, E. A. V.; McIntosh, A. P.; Schroder, M. *J. Organomet. Chem.* **1986,** *312,* **C41.**

(12) One equivalent of trichloroacetic acid dissolved in 1 mL of $CH₃CN$ was added dropwise to a vigorously stirred $CH₃CN$ solution of **2** (0.10 g, 0.12 mmol) prechilled to -30 °C, and the color of the solution changed from red to yellow within 30 min. An excess of Ph_2PH (0.30 mL) was then added. After another 30 min at -30 °C, the solution was warmed slowly to room temperature. The solvent was removed and the residue washed with water. Recrystallization from THF/Et_2O provided yellow powdery 5 (0.075 g, 54%): IR (CH₃CN) ν (CO) 2014 m, 1992 mw,
1905 s, 1827 m cm⁻¹; ¹H NMR (CD₃CN) δ 7.6–7.4 (m, 20 H, Ph), 6.78 (dd, $H_1 H_2 = 333.2 \text{ Hz}, \ \mathcal{V}_{H-H} = 7.1 \text{ Hz}, \ \mathcal{V}_{H-N} = 1.7 \text{ Hz}, \ 12 \text{ H}, \ \text{CH}_3$, -11.1 (tt with tungsten satellites, $J_{H-P} = 17.4$ Hz, $\sqrt[3]{H_{H-1}} = 4.2$ Hz, $J_{H-W} = 44.0$ Hz, μ -H);
³¹P NMR (CD₃CN) δ -2.72 (br d, $^1J_{P-H} = 335.2$ Hz). Anal. Calcd for $C_{40}H_{43}NO_8P_2W_2$: C, 43.86; H, 3.96; N, 1.28. Found: C, 44.13; H, 4.10; N, 1.18. $J_{\text{H-P}}$ = 335.2 Hz, ${}^3J_{\text{H-H}}$ = 4.26 Hz, 2 H, P-H), 3.14 (q, $J_{\text{H-H}}$ = 7.1 Hz, 8

(13) A CH₃CN solution of Ph₃PAuCl (0.095 g, 0.19 mmol) prechilled to -30 °C was added dropwise to 50 mL of CH₃CN solution of compound 4 (0.10 g, 0.096 mmol) at -30 °C. The solution was gradually warmed to 0 °C and the color of the solution changed from yellow to red. After 1.5
h, the solvent was removed to give orange powders. Recrystallization
from THF/MeOH gave 0.12 g (68%) of 6: IR (THF) ν (CO) 1984 w, 1954
ms, 1882 s

(14) Suitable single crystals were grown by allowing slow diffusion of Et₂O through a concentrated CH₃CN solution of 6. Crystal data for $C_{64}H_{80}NO_8P_3AugW_2$: space group $P2_1/n$, $a = 14.119$ (7) Å, $b = 27.642$ (4) ture. Absorption corrections according to psi scans of three reflections were made. All the data processing were performed on a PDP 11 and VAX 11 using the NRCC SDP program. The W and Au atoms were
determined by Patterson techniques; all other atoms were located by
subsequent difference Fourier maps and cycles of least-square refinement.
 $R_F = 0.037$ and $R_{\$

SOC. **1987,** *109,* 3617.

Figure 1. Two tungsten and two gold atoms can be regarded as forming a distorted tetrahedron with tungsten atoms bridged by a phosphido ligand and each gold atom containing a coordinated triphenylphosphine. The W-W bond distance of 3.332 (1) **A** is longer than the single bond value of 3.0256 (4) Å in $(\mu$ -PPh₂)₂W₂(CO)₈¹⁵ and substantially shorter than the nonbonding value of 4.1018 (4) A in $[Li(THF)_3^+]_2[(\mu-\mathrm{PPh}_2)_2\mathrm{W}_2(\mathrm{CO})_8]$.¹⁵ In comparison, the unsupported W-W single bond in $\text{Cp}_2\text{W}_2(\text{CO})_6$ is 3.222 (1) Å.¹⁶ The W-P-W bond angle of $83.9(2)$ ° in 6 also lies within those reported for $(\mu$ -PPh₂)₂W₂(CO)₈ (75.14°) and $(\mu\text{-}PPh_2)_2W_2(CO)_8^{2-}$ (104.20°).¹⁵ The ³¹P NMR spectra of **6** is consistent with its structure in the solid state. A triplet at 139.2 ppm and a doublet at 73.4 ppm $(^3J_{\rm P-P} = 9.7 \text{ Hz})$ were assigned to the bridging phosphido and terminal phosphine ligands, respectively. The small W-P-W bond angle and the downfield shift⁸ of the bridging phosphorus atom suggest that there could be some interaction between two tungsten atoms. Alternatively, $(\mu$ -PPh₂)(μ - η ²- $(Ph_3PAu)_2/W_2(CO)_8$ can be regarded as consisting of two $W(CO)₄$ units bridged by both PPh₂ and $(Ph₃P)Au-Au-$ (PPh3) units. The **(tripheny1phosphine)gold** dimer can be considered to be isolobal with hydrogen molecule according
to Mingo's principle.¹⁷ Being a bridge between two Being a bridge between two tungsten atoms, the Au-Au distance of 2.749 (2) **A** is well within the range for a Au-Au single bond.¹⁸ Though the mean W-Au distance of 2.915 **A** is longer than those in $\rm{AuW_2}(\mu\text{-CC}_6H_4Me\text{-}4)_2(CO)_4Cp_2^+$ (2.752 Å),¹⁹ $(Ph_2PMe)_2Au_2WS_4$ (2.84 Å),²⁰ and $CpW(CO)_3AuPPh_3$ $(2.698 \text{ Å})^{21}$, similar long metal-gold bond lengths were also found in complexes containing bridging gold units such as $\text{Au}_3\text{Ru}_3(\mu_3\text{-}\text{COMe})(\text{CO})_9(\text{PPH}_3)_3^{22}$ and $\text{Os}_4\text{H}_2(\text{CO})_{12}$ - $(AuPPh_3)_2^{23}$

The unusual reactivity of 4 toward Ph₃PAuCl bears a close resemblance to the reaction between AuPPh_3^+ and PtHCl(PEt₃)₂²⁴ or Nb(η ⁵-C₅H₄SiMe₃)₂H₃.²⁵ The chemical properties of **3** and **4** are currently under investigation.

Acknowledgment. We thank Prof. John E. Ellis for helpful discussions. Financial support from the National Science Council is gratefully acknowledged.

Supplementary Material Available: Tables of selected bond distances and angles (Table Sl), all bond distances and angles (Table S2), atomic coordinates (Table **S3),** anisotropic thermal parameters and hydrogen parameters (Table **S4) (12** pages); a listing of structure factors **(71** pages). Ordering information is given on any current masthead page.

- (16) Wilson, F. C.; Shoemaker, D. P. *Naturwissenschaften* 1956, 43, *>I.*
-
- (17) Mingos, D. M. P. J. Chem. Soc., Dalton Trans 1974, 133.
(18) Hall, K. P.; Mingos, D. M. P. *Prog. Inorg. Chem.* 1984, 32, 237.
(19) Awang, M. R.; Carriedo, G. A.; Howard, J. A. K.; Mead, K. A.; Moore, **I.;** Nunn, C. M.; Stone, F. G. A. *J. Chem. SOC., Chem. Commun.*
- **1983,** 964.
- (20) Huffman, J. C.; Roth, R. S.; **Siedle,** A. R. *J. Am. Chem.* **SOC. 1976,** 98, 4340.
-
- (21) Wilford, J. B.; Powell, H. M. J. Chem. Soc. A 1969, 8.
(22) Bateman, L. W.; Green, M.; Howard, J. A. K.; Mead, K. A.; Mills, K. M.; Salter, I. D.; Stone, F. G. A.; Woodward, P. J. Chem. Soc., Chem.
- *Commun.* **1982,** 773. (23) Handy, L. B.; Ruff, J. K.; Dahl, L. E. *J. Am. Chem. Soc.* **1970,92,**
- 7312.
- (24) Braunstein, P.; Lehner, H.; Tiripicchio, D. M. A.; Tiripicchio-Camellini, M. Angew. Chem., Int. Ed. Engl. 1984, 23, 304.
(25) Fajardo, M.; Gomez-Sal, M. P.; Royo, P.; Carrera, S. M.; Blanco,
- S. C. *J. Organomet. Chem.* **1986, 312,** C44.

⁽⁹⁾ Lin, J. T.; Hagen, G. P.; Ellis, J. E. *J. Am. Chem. SOC.* **1983,105,** 2296.

^{(10) (}a) Arif, A. M.; Jones, R. A.; Schwab, S. T. J. Organomet. Chem.
1986, 307, 219. (b) Rosenberg, S.; Mahoney, W. S.; Hayes, J. M.; Geoffroy, G. L. Organometallics 1986, 5, 1065. (c) Mercer, W. C.; Geoffroy, G. L. *Organometallics* **1985, 4,** 1418. (d) Rosenberg, S.; Geoffroy, G. L.; Rheingold, A. L. *Organometallics* **1985,4,** 1184. (e) Breen, M. J.; Shulman, P. M.; Geoffroy, G. L.; Rheingold, A. L.; Fultz, W. C. *Organometallics* **1984, 3,** 782.