polynuclear metal centers has been thwarted by the difficulty in kinetically observing individual steps in transformations. Typical thermolysis reactions of polynuclear ruthenium- and osmium-based clusters,14 for example, are not amenable to detailed study since side reactions can ensue: moreover, analysis of reaction pathways is sometimes based entirely on product identification. The binuclear rhodium hydride systems discussed here on the other hand are very reactive, and many transformations⁵ can be followed by spectroscopic means. We are convinced that this system along with a few other selected binuclear¹⁵ and trinuclear¹⁶ complexes are providing fundamental information on the primary processes of polynuclear metal complexes.

Acknowledgment. We thank NSERC of Canada for financial support in the form of an operating grant to M.D.F. and a postgraduate fellowship to W.E.P. Johnson-Matthey is gratefully acknowledged for a generous loan of RhCl₃·xH₂O.

Supplementary Material Available: Tables of raw kinetic data with corresponding graphs (4 pages). Ordering information is given on any current masthead page.

(16) (a) Douglas, G.; Manojlovic-Muir, L.; Muir, K. W.; Rashidi, M.;
Anderson, C. M.; Puddephatt, R. J. J. Am. Chem. Soc. 1987, 109, 6527.
(b) Rashidi, M.; Puddephatt, R. J. J. Am. Chem. Soc. 1986, 108, 7111. (c) Lloyd, B. R.; Puddephatt, R. J. J. Am. Chem. Soc. 1985, 107, 7785.

Synthesis of Binuclear Metal Complexes **Incorporating Hydrido and Phosphido Ligands and** Structural Characterization of $[Et_4N][(\mu-PPh_2)(\mu-\eta^2-(Ph_3PAu)_2)W_2(CO)_8]$

Jiann T. Lin,* Yui-May Hsiao, Ling-Kang Liu, and Show K. Yeh

Institute of Chemistry, Academia Sinica Nankang, Taipei, Taiwan, Republic of China

Summary: The coordinatively unsaturated species $H_2M_2(CO)_8^{2-}$ (M = Mo, W) react with diphenylphosphine to form products incorporating bridging hydrido and phosphido ligands, $(\mu-H)(\mu-PPh_2)M_2(CO)_8^{2-}$. A mixed-metal cluster, $(\mu$ -PPh₂) $(\mu$ - η^2 -(Ph₃PAu)₂)W₂(CO)₈, derived from $(\mu-H)(\mu-PPh_2)W_2(CO)^{82-}$, was structurally characterized by X-ray diffraction.

Addition of Ph₂PH to the coordinatively unsaturated species $[Et_4N]_2[H_2M_2(CO)_8]$ (1, M = Mo; 2, M = W) yields

Figure 1. ORTEP drawing of $(\mu$ -PPh₂) $(\mu$ - η^2 -(Ph₃PAu)₂)W₂(CO)₈⁻. Phenyl groups except ipso carbon atoms are omitted for clarity. The ellipsoids are drawn with 30% probability boundaries.

 $[Et_4N]_2[(\mu-H)(\mu-PPh_2)[M_2(CO)_8] (3, M = Mo, 51\%; 4, M)$ = W, 80%).¹ The infrared spectral pattern of these new complexes in the CO stretching region is very similar to the isoelectronic manganese analogue $(\mu-H)(\mu-PPh_2)$ -Mn₂(CO)₈.² The ¹H and ³¹P NMR spectra are also consistent with their formulation: (a) the chemical shifts of the bridging hydrides for 3 and 4 are comparable with those reported in literature, $^{3-5}$ (b) the presence of 1:6:1 triplet due to ¹⁸³W-H coupling in 4 suggests the existence of a symmetrically bridged M-H-M linkage;^{6,7} (c) the ³¹P NMR spectra for 3 and 4 are in agreement with a phosphido group symmetrically bridging a metal-metal bond.⁸ While two-bond P-H coupling between the hydrido and the phosphido ligands could be clearly seen in the ¹H and ³¹P NMR spectra of 3, no such coupling was observed for 4. The chemical behavior of 4 (vide infra) provided further

^{(14) (}a) Deeming, A. J. Adv. Organomet. Chem. 1986, 26, 1. (b) Lavigne, G.; Kaesz, H. D. In Metal Clusters in Catalysis; Gates, B. C., Guczi, L., Knozinger, H., Eds.; Elsevier: New York, 1986; Chapter 4. (c) Adams, R. D.; Babin, J. E.; Kim, H.-S. J. Am. Chem. Soc. 1987, 109, 1414. (d)
 Adams, R. D.; Babin, J. E. J. Am. Chem. Soc. 1987, 109, 6872. (e) Adams, R. D.; Babin, J. E. J. Am. Chem. Soc. 1987, 109, 6872. (e)
 Nucciarone, D.; MacLaughlin, S. A.; Taylor, N. J.; Carty, A. J. Organo-metallics 1988, 7, 106. (f) Nucciarone, D.; Taylor, N. J.; Carty, A. J.;
 Tiripicchio, A.; Camellini, M. J.; Sappa, E. Organometallics 1988, 7, 118.
 (g) Nucciarone, D.; Taylor, N. J.; Carty, A. J. Organometallics 1988, 7,

^{(15) (}a) Schore, N. E.; Ilenda, C. S.; White, M. A.; Bryndza, H. E.; Matturo, M. G.; Bergman, R. G. J. Am. Chem. Soc. 1984, 106, 7451 and references therein. (b) Sivak, A. J.; Muetterties, E. L. J. Am. Chem. Soc. 1979. 101. 4878.

Received April 19, 1988

⁽¹⁾ A solution of 0.20 g (0.30 mmol) of 1 in acetonitrile (30 mL) was reacted with an excess of Ph₂PH (0.15 mL) at -20 °C for 30 min. The solution was slowly warmed to room temperature (1.5 h) and the solvent removed by evacuation. The resulting orange-yellow precipitate was washed, first with THF until the washings were colorless and then with MeOH (25 mL × 2). The product was then dried in vacuo to provide 0.13 g (51%) of orange-yellow powdery 3. The same procedure was followed for the preparation of 4. Complex 4 was obtained as orange-yellow powders (0.98 g, 80%) from 1.00 g (1.17 mmol) of complex 2. 3: IR (CH₃CN) ν (CO) 1998 mw, 1975 m, 1887 s, 1842 m, 1796 s cm⁻¹; ¹H NMR (CD₃CN) δ 7.7-7.0 (m, 10 H, Ph), 3.14 (q, $J_{H-H} = 7.1$ Hz, 16 H, CH₂), 1.19 (tt, $J_{H-N} = 1.7$ Hz, 24 H, CH₃), -10.2 (d, $J_{H-P} = 9.8$ Hz, 1 H, μ -H); ³¹P NMR (CD₃CN) δ 92.2 (d). Anal. Calcd for C₃₆H₅₁n₂O₃PMo₂: C, 50.12; H, 5.96; N, 3.25. Found: C, 49.92; H, 5.81; N, 3.15. 4: IR (CH₃CN) ν (CO) 1996 mw, 1969 m, 1883 s, 1836 m, 1795 s cm⁻¹; ¹H NMR (CD₃CN) δ 7.8-7.0 (m, 10 H, Ph), 3.14 (q, $J_{H-H} = 7.1$ Hz, 16 H, CH₂), 1.19 (tt, $J_{H-N} = 1.7$ Hz, 24 H, CH₃), -12.0 (1:6:1 triplets, $J_{H-W} = 42.5$ Hz, 1 H, μ -H); ³¹P NMR (CD₃CN) δ 61.0 (1:6:1 triplets, $J_{H-W} = 169$ Hz). Anal. Calcd for C₃₆H₅₁N₂O₈PW₂: C, 41.64; H, 4.95; N, 2.70. Found: C, 41.55; H, 5.01; N, 2.74. washed, first with THF until the washings were colorless and then with N. 2.74.

⁽²⁾ Iggo, J. Q.; Mays, M. J.; Raithby, P. R. J. Chem. Soc., Dalton Trans. 1983, 205.

Lin, J. D.; Shiao, Y. M. J. Organomet. Chem. 1987, 334, C31.
 Legzdins, P.; Martin, J. T.; Einstein, F. W. B.; Willis, A. C. J. Am.

Chem. Soc. 1986, 108, 7971.
 (5) Darensbourg, M. Y.; Mehdawi, R. El; Delord, T. J.; Fronczek, F.
 R.; Watkins, S. F. J. Am. Chem. Soc. 1984, 106, 2583.
 (6) Davison, A.; McFarland, W.; Pratt, L.; Wilkinson, G. J. Chem. Soc.

^{1962, 3653.}

⁽⁷⁾ Hayter, R. G. J. Am. Chem. Soc. 1966, 88, 4376.

 ⁽a) (a) Carty, A. J. Adv. Chem. Ser. 1982, No. 196, 163.
 (b) Garrou,
 P. E. Chem. Rev. 1981, 81, 229.
 (c) Harley, A. D.; Guskey, G. J.; Geoffroy, G. L. Organometallics 1983, 2, 53.

evidence of its correct formulation.

The mechanism of the formation of 3 and 4 is presently unknown. We did observe gas evolution (presumably H_2) during the reactions. It was not possible to resolve whether (a) $M_2(CO)_8(Ph_2PH)_2^{2-}$ formed as in the case of the synthesis of $W_2(CO)_8(PMe_3)_2^{2-9}$ or (b) $HM_2(CO)_8(Ph_2PH)^-$ formed instead. Oxidative addition of a coordinated secondary phosphine to a metal center with concurrent P-H bond cleavage has ample precedent.¹⁰ Another coordinatively unsaturated complex, H₂Os₃(CO)₁₀, was reported to react similarly with Ph_2PH to form $(\mu-H)(\mu-PPh_2)$ - $Os_3(CO)_{10}$.¹¹

Complexes 3 and 4 are air-sensitive and are very reactive toward electrophiles. Protonation of 4 with trichloroacetic acid in the presence of Ph₂PH led to the formation of $[Et_4N][(\mu-H)W_2(CO)_8(Ph_2PH)_2]$ (5). Complex 5 could be more conveniently prepared¹² by using the strategy developed for the synthesis of $(\mu)(\mu-Ph_2PCH_2PPh_2)W_2$ - $(CO)_8^{-.3}$ A noble mixed-metal cluster, $[Et_4N][(\mu-PPh_2) (\mu - \eta^2 (Ph_3PAu)_2)W_2(CO)_8$ (6), was obtained in about 70% yield from the reaction of 4 with 2 equiv of Ph₃PAuCl.¹³

The X-ray crystal structure analysis of 6 was undertaken,¹⁴ and the core structure of the anion is shown in

(11) Ebsworth, E. A. V.; McIntosh, A. P.; Schroder, M. J. Organomet. Chem. 1986, 312, C41.

(12) One equivalent of trichloroacetic acid dissolved in 1 mL of CH_3CN was added dropwise to a vigorously stirred CH_3CN solution of 2 (0.10 g, 0.12 mmol) prechilled to -30 °C, and the color of the solution changed from red to yellow within 30 min. An excess of Ph₂PH (0.30 mL) was then added. After another 30 min at -30 °C, the solution was warmed slowly to room temperature. The solvent was removed and the residue washed with water. Recrystallization from THF/Et₂O provided yellow powdery 5 (0.075 g, 54%): IR (CH₃CN) ν (CO) 2014 m, 1992 mw, 1905 s, 1827 m cm⁻¹; ¹H NMR (CD₃CN) δ 7.6–7.4 (m, 20 H, Ph), 6.78 (dd, ¹³⁰⁰ s, ¹³²⁷ m cm ⁻; ¹ m NMR (CD₃CN) δ ⁷.6^{-7.4} (m, ²⁰ H, Ph), 6.78 (dd, $J_{\rm H-P}$ = 335.2 Hz, $^3J_{\rm H-H}$ = 4.26 Hz, 2 H, P–H), 3.14 (q, $J_{\rm H-H}$ = 7.1 Hz, 8 H, CH₂), 1.19 (tt, $J_{\rm H-H}$ = 7.1 Hz, $J_{\rm H-N}$ = 1.7 Hz, 12 H, CH₃), –11.1 (tt with tungsten satellites, $J_{\rm H-P}$ = 17.4 Hz, $^3J_{\rm H-H}$ = 4.2 Hz, $J_{\rm H-W}$ = 44.0 Hz, μ -H); $^{31}{\rm P}$ NMR (CD₃CN) δ –2.72 (br d, $^{1}J_{\rm P-H}$ = 335.2 Hz). Anal. Calcd for C₄₀H₄₃NO₈P₂W₂: C, 43.86; H, 3.96; N, 1.28. Found: C, 44.13; H, 4.10; N 118 N, 1.18.

(13) A CH₃CN solution of Ph₃PAuCl (0.095 g, 0.19 mmol) prechilled to -30 °C was added dropwise to 50 mL of CH₃CN solution of compound 4 (0.10 g, 0.096 mmol) at -30 °C. The solution was gradually warmed to 0 °C and the color of the solution changed from yellow to red. After 1.5 υ −υ and the color of the solution changed from yellow to red. After 1.5 h, the solvent was removed to give orange powders. Recrystallization from THF/MeOH gave 0.12 g (68%) of 6: IR (THF) ν(CO) 1984 w, 1954 ms, 1882 s, 1861 s, 1829 s cm⁻¹; ¹H NMR (CD₃CN) δ 7.8-7.0 (m, 40 H, Ph), 3.14 (q, J_{H-H} = 7.1 Hz, 8 H, CH₂), 1.19 (tt, J_{H-H} = 7.1 Hz, J_{H-N} = 1.7 Hz, 12 H, CH₃); ³¹P NMR (CD₃CN) δ 140 (t with satellites, ³J_{P-P} = 9.7 Hz, J_{P-W} = 172 Hz, 1 P, PPh₂), 73.4 (d, ³J_{P-P} = 9.7 Hz, 2 P, PPh₃). Anal. Calcd for C₆₄H₆₀NO₈P₃Au₂W₂: C, 42.10; H, 3.31; N, 0.77. Found: C, 41.59; H, 3.30; N, 0.82.

(14) Suitable single crystals were grown by allowing slow diffusion of Et₂O through a concentrated CH₃CN solution of 6. Crystal data for C₆₄H₆₀NO₈P₃Au₂W₂: space group P2₁/n, a = 14.119 (7) Å, b = 27.642 (4) Å, c = 15.892 (2) Å, $\beta = 91.19$ (3)°, V = 6200.76 Å³, d_{caled} = 1.943 g cm⁻³ for M = 1764.64, Z = 4, $\mu = 85.8$ cm⁻¹ for Mo K_a. Diffraction data were collected with an Enraf-Nonius CAD4 diffractometer at room temperature. Absorption corrections according to psi scans of three reflections were made. All the data processing were performed on a PDP 11 and VAX 11 using the NRCC SDP program. The W and Au atoms were determined by Patterson techniques; all other atoms were located by subsequent difference Fourier maps and cycles of least-square refinement, $R_F = 0.037$ and $R_{wF} = 0.037$ (722 parameters refined, including the ex-tinction coefficient) for 4437 reflections $[I > 2.5 \sigma(I)]$ of 10879 unique reflections collected in the range of $0^{\circ} \le 2\theta \le 50^{\circ}$. (15) Shyu, S. G.; Calligaris, M.; Nardin, G.; Wojcicki, A. J. Am. Chem.

Soc. 1987, 109, 3617.

Figure 1. Two tungsten and two gold atoms can be regarded as forming a distorted tetrahedron with tungsten atoms bridged by a phosphido ligand and each gold atom containing a coordinated triphenylphosphine. The W-W bond distance of 3.332 (1) Å is longer than the single bond value of 3.0256 (4) Å in $(\mu$ -PPh₂)₂W₂(CO)₈¹⁵ and substantially shorter than the nonbonding value of 4.1018 (4) Å in $[Li(THF)_3^+]_2[(\mu-PPh_2)_2W_2(CO)_8]^{.15}$ In comparison, the unsupported W-W single bond in $Cp_2W_2(CO)_6$ is 3.222 (1) Å.¹⁶ The W–P–W bond angle of 83.9 (2)° in 6 also lies within those reported for $(\mu - PPh_2)_2W_2(CO)_8$ (75.14°) and $(\mu$ -PPh₂)₂W₂(CO)₈²⁻ (104.20°).¹⁵ The ³¹P NMR spectra of 6 is consistent with its structure in the solid state. A triplet at 139.2 ppm and a doublet at 73.4 ppm (${}^{3}J_{P-P} = 9.7 \text{ Hz}$) were assigned to the bridging phosphido and terminal phosphine ligands, respectively. The small W-P-W bond angle and the downfield shift⁸ of the bridging phosphorus atom suggest that there could be some interaction between two tungsten atoms. Alternatively, $(\mu$ -PPh₂ $)(\mu$ - η ²- $(Ph_3PAu)_2W_2(CO)_8$ can be regarded as consisting of two W(CO)₄ units bridged by both PPh₂ and (Ph₃P)Au-Au- (PPh_3) units. The (triphenylphosphine)gold dimer can be considered to be isolobal with hydrogen molecule according to Mingo's principle.¹⁷ Being a bridge between two tungsten atoms, the Au-Au distance of 2.749 (2) Å is well within the range for a Au-Au single bond.¹⁸ Though the mean W-Au distance of 2.915 Å is longer than those in Au $W_2(\mu$ -CC₆H₄Me-4)₂(CO)₄Cp₂⁺ (2.752 Å),¹⁹ (Ph₂PMe)₂Au₂WS₄ (2.84 Å),²⁰ and CpW(CO)₃AuPPh₃ (2.698 Å)²¹, similar long metal-gold bond lengths were also found in complexes containing bridging gold units such as $Au_{3}Ru_{3}(\mu_{3}-COMe)(CO)_{9}(PPh_{3})_{3}^{22}$ and $Os_{4}H_{2}(CO)_{12}$ -(AuPPh₃)₂.²³

The unusual reactivity of 4 toward Ph₃PAuCl bears a close resemblance to the reaction between $AuPPh_3^+$ and $PtHCl(PEt_3)_2^{24}$ or $Nb(\eta^5-C_5H_4SiMe_3)_2H_3^{25}$ The chemical properties of 3 and 4 are currently under investigation.

Acknowledgment. We thank Prof. John E. Ellis for helpful discussions. Financial support from the National Science Council is gratefully acknowledged.

Supplementary Material Available: Tables of selected bond distances and angles (Table S1), all bond distances and angles (Table S2), atomic coordinates (Table S3), anisotropic thermal parameters and hydrogen parameters (Table S4) (12 pages); a listing of structure factors (71 pages). Ordering information is given on any current masthead page.

- (16) Wilson, F. C.; Shoemaker, D. P. Naturwissenschaften 1956, 43, 57.
- (17) Mingos, D. M. P. J. Chem. Soc., Dalton Trans 1974, 133.
 (18) Hall, K. P.; Mingos, D. M. P. Prog. Inorg. Chem. 1984, 32, 237.
 (19) Awang, M. R.; Carriedo, G. A.; Howard, J. A. K.; Mead, K. A.; Moore, I.; Nunn, C. M.; Stone, F. G. A. J. Chem. Soc., Chem. Commun.
- 1983. 964
- (20) Huffman, J. C.; Roth, R. S.; Siedle, A. R. J. Am. Chem. Soc. 1976, 98, 4340.
- (21) Wilford, J. B.; Powell, H. M. J. Chem. Soc. A 1969, 8.
 (22) Bateman, L. W.; Green, M.; Howard, J. A. K.; Mead, K. A.; Mills, K. M.; Salter, I. D.; Stone, F. G. A.; Woodward, P. J. Chem. Soc., Chem.
- Commun. 1982, 773. (23) Handy, L. B.; Ruff, J. K.; Dahl, L. E. J. Am. Chem. Soc. 1970, 92,
- 7312. (24) Braunstein, P.; Lehner, H.; Tiripicchio, D. M. A.; Tiripicchio-
- Camellini, M. Angew. Chem., Int. Ed. Engl. 1984, 23, 304. (25) Fajardo, M.; Gomez-Sal, M. P.; Royo, P.; Carrera, S. M.; Blanco,
- S. C. J. Organomet. Chem. 1986, 312, C44.

⁽⁹⁾ Lin, J. T.; Hagen, G. P.; Ellis, J. E. J. Am. Chem. Soc. 1983, 105, 2296.

 ^{(10) (}a) Arif, A. M.; Jones, R. A.; Schwab, S. T. J. Organomet. Chem.
 1986, 307, 219. (b) Rosenberg, S.; Mahoney, W. S.; Hayes, J. M.; Geoffroy,
 G. L. Organometallics 1986, 5, 1065. (c) Mercer, W. C.; Geoffroy, G. L. Organometallics 1985, 4, 1418. (d) Rosenberg, S.; Geoffroy, G. L.; Rheingold, A. L. Organometallics 1985, 4, 1184. (e) Breen, M. J.; Shulman, P. M.; Geoffroy, G. L.; Rheingold, A. L.; Fultz, W. C. Organometallics 1984, 3, 782