Electrophilic Acetylation and Alkylation of Arene-Coordlnated Triosmlum Clusters

Hong Chen, Brian F. G. Johnson,* and Jack Lewis

University Chemical Laboratory Lensfield Road, Cambridge CB2 lEW, U.K. Received August 11, 1989

Summary: (Benzyne)triosmium clusters of the type H₂-C,H2NMe (4)) undergo Friedel-Crafts acetylation and alkylation under mild conditions to produce the derivatives $H_2Os_3(CO)_9Ar'$ (5–11; Ar' = C₆H₃R, C₉H₅R, C₄H₂RN, and C₄HRNMe, where R = COCH₃ and Bu^t), displaying the nucleophilicity of the arene ligands despite the loss of electron density on coordination to the metal clusters. Most of the reaction products have been fully characterized by spectroscopic techniques. $\text{Os}_3(\text{CO})_9\text{Ar}$ (Ar = C_6H_4 (1), C_9H_6 (2), $\text{C}_4\text{H}_3\text{N}$ (3), and

Although the triosmium benzyne complex $H_2Os_3(C H_2Os_3(CO)_9(\overline{C-CH=CH-CH=N})$ (3), and H_2Os_3 -**ICO)**₉(C=C-CH=CH-NMe) (4), are well-known and easily prepared,¹⁻⁸ their chemistry has not been investigated in any detail. In the course of our recent work, we were interested in the reactivities of these cluster complexes toward the substitution on both the metal framework and the organic moiety. While the former will be reported elsewhere? here we report the electrophilic substitution reactions of the organic moieties via Friedel-Crafts acetylation and alkylation. O ₉(C₆H₄) (1) and its analogues, e.g. $H_2Os_3(\text{CO})_9(C_9H_6)$ (2),

On coordination to a metal cluster, the electron density of an arene is expected to decrease and the arene thereby to be deactivated toward the reaction with electrophiles. For example, in the face-capping benzene cluster $\text{Os}_3(\text{C-}$ $O₉(C₆H₆)$, the coordinated benzene ligand easily undergoes reaction with nucleophiles, which is in contrast to the behavior of free benzene.l0 In complexes **1,2,** and **4,** each organic moiety donates four electrons to the metal framework via two σ -bonds and one π -bond, while in complex 3, a slightly different bonding mode is present,⁴ in which the carbon atom of the pyrrole ligand bridges two osmium atoms while the nitrogen atom donates two electrons to the third osmium atom. In spite of this loss of electron density on the arene ligands, these cluster com-

plexes readily undergo acetylation reactions under Friedel-Crafts conditions, giving acylated products in moderate to good yields. In a typical reaction, **10** mg of the relevant cluster complex is dissolved in **5 mL** of carbon disulfide, and the solution is added dropwise to a carbon disulfide solution of preformed aluminum chloride-acetyl chloride complex $(20 \text{ mg of AlCl}_3 \text{ and } 0.7 \text{ mL of CH}_3\text{COCl in } 5 \text{ mL})$ of CS2) at 0 "C over **30-45** min. The reaction mixture is then gradually warmed up to room temperature and stirred for ca. **0.5** h. The solvent is evacuated, and the residue is worked up by TLC on silica plates, with $50\% \text{ CH}_2\text{Cl}_2$ in hexane as eluent. Apart from the unreacted starting material, the acylated cluster complexes $H_2O_{s_3}(CO)_9(C_6 H_3COCH_3$) (5; 40-60%), $H_2Os_3(CO)_9(C_9H_5COCH_3)$ (6; $50-70\%$), $H_2O_{S_3}(CO)_{9}$ [C-CH=C(COCH₃)-CH=N] **(7;** $\text{ca. } 25\%$), and $\text{H}_2\text{Os}_3(\text{CO})_9[\text{C}=\text{C}-\text{C}(\text{COCH}_3) = \text{CH}-\text{C}$ NMe] **(8;** ca. **40%)** are separated. When a similar strategy is applied in the reaction with tert-butyl chloride, complexes 1 and 2 give the substituted compounds H_2Os_3 - $(CO)_9(C_6H_3Bu^t)$ (9) and $H_2Os_3(CO)_9(C_9H_5Bu^t)$ (10) in reasonable yields (ca. 50% and **30%,** respectively), while complex 3 only affords a very low yield of $H_2O_{S_3}(CO)_{9}$ -(C4H2ButN) **(11)** and complex **4** gives no separable substituted product. Complexes **5-1 1** have been characterized by spectroscopic methods, and the relevant data are shown in Table I.

Scheme I. Friedel-Crafts Reactions of Complexes **1-4**

$$
H_2Os_3(CO)_9(C_6H_4) \xrightarrow[CS_2, 0 \text{ °C} \to \text{room temp}]{RC1/AlCl_3}
$$

\n
$$
H_2Os_3(CO)_9(C_6H_3R) \qquad (1)
$$

\n
$$
R = CH_3CO \quad (5), \text{ Bu}^t \quad (9)
$$

$$
H_2Os_3(CO)_9(C_9H_6) \xrightarrow[CS_2, 0 \text{ °C} \to \text{room temp}]{RCl/AlCl_3} \atop \text{C}} \frac{H_2Os_3(CO)_9(C_9H_5R)}{H_2Os_3(CO)_9(C_9H_5R)} \tag{2}
$$
\n
$$
R = CH_3CO \text{ (6), Bu}^t \text{ (10)}
$$

$$
H_2Os_3(CO)_9(C_4H_3N) \xrightarrow[CS_2, 0\degree C \to \text{room temp}]{\text{RC/ALCl}_3} H_2Os_3(CO)_9(C_4H_2RN) \tag{3}
$$

\n
$$
R = CH_2CO(7), \text{Bu}^t(11)
$$

- - - - - - - -

$$
\mathrm{CH_{3}COCl/AlCl_{3}}
$$

$$
\mathrm{H_2O s_3(CO)_9(C_4H_2NMe)\xrightarrow{\mathrm{CH_3COCl/AlCl_3}}\atop{\mathrm{CS_2,0}\circ\mathrm{C}\xrightarrow{\mathrm{room\,temp}}}}\mathrm{H_2O s_3(CO)_9[C_4H(COCH_3)NMe]\ (4)}
$$

The infrared spectra of these acylated and alkylated clusters are very informative. In the 1R spectra of complexes **5-8,** the characteristic absorptions at **1693** cm-l **(5** and **6**), 1683 cm⁻¹ (7), and 1677 cm⁻¹ (8) indicate unambiguously the presence of an acyl group. Moreover, as expected, most of the complexes (except complex **8)** have the same IR pattern **as** their corresponding parent clusters, but the absorptions have shifted 1-5 wavenumbers higher (in the case of acylation) or **1-3** wavenumbers lower (in the case of alkylation). This implies that the electrophilic substitution on the arene does not cause any change in the symmetry of the molecule but a slight change in the electron density on the arene and also that on the cluster

⁽¹⁾ **Goudsmit, R. J.; Johnson, B. F. G.; Lewis, J.; Raithby, P. R.; Ro sales, M. J. J.** *Chem. SOC., Dalton Trans.* 1983, 2257.

⁽²⁾ **Deeming, A. J.** *J. Organomet. Chem.* 1978,150, 123. (3) **Yin, C. C.; Deeming, A. J. J.** *Chem. Soc., Dalton Trans.* 1982,2563. (4) **Arce, A. J.; De Sanctis, Y.; Deeming, A. J.** *J. Organomet. Chem.* 1986, 311, 371.

⁽⁵⁾ Arce, A. J.; Acuna, C.; Deeming, A. J. *J. Organomet. Chem.* 1988, 356, C47.

⁽⁶⁾ **Deeming, A. J.; hce, A. J.; De Sanctis, Y.; Day, M. W.; Hardcastle, K.** I. *Organometallics* 1989,8, 1408.

⁽⁷⁾ **Hardcastle, K. I.; Minassian, H.; Acre, A. J.; 'De Sanctis, Y.; Deeming, A.** J. **J.** *Organomet. Chem.* 1989,368, 119.

⁽⁸⁾ Gallop, M.; Johnson, B. F. G.; Lewis, J.; McCamley, A,; Pertuz, R. (9) **Chen, H.; Johnson, B. F. G.; Lewis, J.; Raithby, P. R. J.** *Organo-***N.** *J. Chem. SOC., Chem. Commun.* 1988, 1071.

met. Chem., **in press.** (10) **Gallop, M.; Johnson, B. F. G.; Lewis, J.; Wright, A. H.** *J. Chem.*

SOC., Dalton Trans. 1989, 481.

Table I. Spectroscopic Data for the Acylated and Alkylated Complexes

^aBased on ¹⁹²Os. ^bRecorded in hexane solution. ^cThe absorptions of the corresponding parent clusters are listed in parentheses. ^dRecorded in CD₂Cl₂ solution on a WM 250-MHz spectrometer. "Yield of this complex is not enough to record an NMR spectrum.

as a whole. In the case of acylation, the presence of the electron-withdrawing group COCH₃ decreases the electron density on the arenes and the metal frameworks. Therefore, the back-donation from the metal atoms to the carbonyl ligands is weakened, which in turn results in stronger bonding between the carbon atom and the oxygen atom of a carbonyl. In the case of alkylation, since the tert-butyl group is weakly electron-donating, the result is just the opposite. The lH NMR data of these clusters give not only further confirmation of the occurrence of the substitution but also some information about the position of the substitution, as shown in Figure 1. The structures of clusters **8** and **9** have been confirmed by an X-ray crystallographic study, which will be reported later.

In the literature, there have been some reports on the Friedel-Crafts reactions of tricarbonyl(diene, triene, or $tetrgene)$ iron compounds, $^{11-13}$ and the yields of these reactions vary with the different systems. This reflects the different nucleophilicities of the relevant systems investigated. Such differences among the clusters **1-4** are also manifested by the yields of their Friedel-Crafts acylation reactions. In cluster 2, $H_2O_{S_3}(CO)_9(C_9H_6)$, the indyne ligand coordinates to the metal framework via the fivemembered ring and the six-membered benzene ring remains intact. It is therefore expected to have the highest electron density and nucleophilicity. Indeed, the conversion from cluster **2** to the acylated species **6** could be up to **70%.** At the other extreme, the pyrrole ligand in cluster 3, $H_2Os_3(CO)_9(C_4H_3N)$, has a bonding mode different from the others in that a carbon atom bridges two osmium atoms and the nitrogen atom donates two electrons to the third Os atom, so the ligand has lost its aromaticity. Therefore, cluster 3 acts more like a diene species and its reactivity toward the electrophiles decreases.

Interestingly, the Friedel-Crafts reactions of these cluster complexes might provide a new scope for the or-

Figure **1.** Proposed structures for clusters **5-11.**

ganic synthesis. For example, uncomplexed indene is readily polymerized in the presence of aluminum chloride;14 therefore, it is impossible for indene to undergo a Friedel-Crafts reaction under normal conditions. However, on coordination to a metal triangle in 2, the π -bond

⁽¹¹⁾ Graf, R. E.; Lillyia, C. P. J. Am. Chem. Soc. 1972, 8282. (12) Johnson, B. F. G.; Lewis, J.; Parker, D. G. J. *Organomet. Chem.* 1977,141,319.

⁽¹³⁾ Randall, G.L.P. Ph.D. Thesis, University College, London, 1970.

⁽¹⁴⁾ Kraemer, G.; Spilker, A. *Chem. Ber.* 1900,33, 2252.

of the five-membered ring is bonded to a metal atom; thus, the ligand loses the ability to polymerize, which in turn makes the Friedel-Crafts reaction possible. Moreover, in each case of the reactions of complexes **1-4,** only one substituted complex is isolated, which might imply the high selectivity of the reaction. Further investigation of the reactivity of the acylated cluster complexes is in progress in order to find out the possibility of synthetic utility of the acylation reactions of these clusters.

Acknowledgment. We thank the Sino-British Friendship Scholarship Scheme for financial support (H.C.) and Johnson-Matthey for the generous loans of osmium tetraoxide.

Registry No. 1,38979-81-6; 2,67265-50-3; 3, 109464-89-3; **4,** 85159-47-3; **5,** 123358-57-6; **6,** 123358-58-7; **7,** 123358-59-8; 8, 123358-60-1; **9,** 123358-61-2; 10, 123358-62-3; 11, 123380-76-7.

Reactlvfty of Coordlnated Carbon Dloxlde: Reactions of (C,H,),Mo(q2-C0,) with Electrophiles

Jing-Cherng Tsal, Masood Khan,' and Kenneth M. Nicholas*

Department of Chemistry and Biochemistry University of Oklahoma, Norman, Oklahoma 730 19 Received August 28, 1989

Summary: The title complex 1 reacts with a variety of electrophilic reagents to afford products derived from O-centered electrophilic attack on coordinated CO,. In the case of Me₃SiCI, 'BuMe₂SiCI, and HCI complete oxygen transfer occurs, producing [(C,H,),Mo(CO)CI] CI **(2a)** and R,SiOSiR, or **H,O.** The reaction of 1 with $Me₃SiOSO₂CF₃$ in THF affords the unusual dicationic complex $\left[\overline{(C_5H_5)}_2\text{Mo(CO)}(THF)\right](OSO_2CF_3)_2$ (3), whose structure has been established by X-ray diffraction.

The prospects for useful transition-metal-mediated reactions of carbon dioxide have stimulated widespread interest in the coordination chemistry of this typically unreactive molecule.2 Although a number of discrete metal- $CO₂$ complexes have been characterized,³ the reactivity of coordinated carbon dioxide, particularly in η^2 complexes, remains virtually unknown.⁴ For a few η^1 complexes reductive disproportionation and O-centered electrophilic attack have been observed.^{5,6} Following our recent discovery of the first photoinduced reaction **of** coordinated CO_2 in $(C_5H_5)_2Mo(\eta^2-CO_2)$ (1),⁷ we present here our find-

Figure 1. ORTEP diagram for the cation of $[(\eta^5 - C_5H_5)_2M_0 -$ (CO)(C,H,O)](CF,S0,)2 (3). **Selected bond lengths (A)** *cu* $\text{Cp}(2) = 137.2$ (8), O(2)-Mo-C(1) = 89.3 (7).

ings on the *dark* reactions of this η^2 complex with several electrophilic and oxophilic reagents, which result in reduction of coordinated $CO₂$ via \bar{O} -transfer to the attacking reagent.

Treatment of a THF solution of 1 with 2 equiv of Me₃SiCl at -78 °C results in the immediate precipitation of a pale orange solid identified as $[(C_5H_5)_2Mo(CO)Cl]Cl$ (2a, 97%⁸) on the basis of its spectroscopic properties⁹ (Scheme **I).** Analysis of the reaction solution by lH **NMR** and GC/MS methods revealed the presence of an approximately equal amount of $Me₃SiOSiMe₃$.¹⁰ The reaction between 1 and ^tBuMe₂SiCl proceeded analogously, albeit more slowly, also giving **2a** (92%) and ^tBuMe₂SiOSiMe₂Bu^{t.11} Complex 1 also reacts rapidly with 2 equiv of $Me₃SiOSO₂CF₃$ in THF at -78 °C to quantitatively afford the cationic carbonyl complex 3 *(vco* 2060 cm^{-1}) and $Me₃SiOSiMe₃$. Since spectroscopic and analytical datal2 for **3** did not allow **an** unambiguous structural

⁽¹⁾ Address inquiries regarding X-ray diffraction results to this author. **(2)** Reviews: (a) Behr, A. *Carbon Dioxide Activation by Metal Complexes;* VCH: Weinheim, West Germany, **1988.** (b) Ito, T.; Yamamotq A. In *Organic and Bioorganic Chemistry of Carbon Dioxide;* Inoue, *S.,* Yamaaaki, N., Eds.; Halstead Press: New York, **1982;** Chapter **3,** pp **79-151.** (c) Darensbourg, D.; Kudaroski, R. A. Adu. *Organomet. Chem.* **1983, 22, 129.**

⁽³⁾ Reference **2a,** pp **15-25.**

⁽⁴⁾ Protonation of $(Cy_3P)_2$ Ni(η^2 -CO₂) by RSH and HCl to produce $(Cy_3P)_2$ Ni(CO)₂ has been reported recently: Aresta, M.; Quaranta, E.; Tommun. 1988, 450.
Tommasi, I. J. Chem. Soc., Chem. Commun. 1988, 450.
(5) Ma

Commun. **1980, 813.** For O-alkylation/silylation of other n'-C02 com- plexes **see:** Fomhner, T.; Menard, K.; Cutler, A. R. *J. Chem. SOC., Chem. Commun.* **1984,121.** Giuseppetti, M. E.; Cutler, A. R. *Organometallics* **1987, 6, 970.** Senn, D. R.; Gladysz, J. A.; Emerson, K.; Larsen, R. D. *Inorg. Chem.* **1987,26,2737.**

⁽⁷⁾ Belmore, K. A.; Vanderpool, R. A.; Tsai, J.-C.; Khan, M. A.; Nic-

c) behinder, K. A., Vanderpool, K. A.; 1881, 0.304.
holas, K. M. J. Am. Chem. Soc. 1988, 110, 2004.
(8) IR (KBr): 2040 cm⁻¹. ¹H NMR (DMSO-d_e): δ 6.39. MS (FAB):
 m/e 291 (Cp₂⁹⁸MoCOCl⁺), 263 (Cp₂⁹⁸MoCl⁺ IR and NMR data coincide with those of $\{Cp_2Mo(CO)Cl\}AICl_4$.

⁽⁹⁾ Bell, **L.** G.; Brintzinger, H. H. J. *Organomet. Chem.* **1977,135,173, (10)** MS (EI, **12** eV) **of** (CH,),SiOSi(CH& *m/e* **147** (M+ - CHs, **lW), ⁷³**(Si(CH3)3+, **2).** The ratio of *m e* **147 148/149** peaks **(100:17:8)** was identical with that for authentic (CHs)\$&OSi(CHs)s.

⁽¹¹⁾ MS (EI, 12 eV) of $\text{(CH}_3)_{3}\text{CSi}(\text{CH}_3)_{2}\text{OSi}(\text{CH}_3)_{2}\text{C}(\text{CH}_3)_{3}$ **:** *m/e* **246 (M⁺**, 1), 231 **(M⁺** – CH₃, 1), 189 **(M⁺** – C(CH₃)₂, 20), 147 **(M⁺** – 2C(CH₃)₂,

^{100).&}lt;br>
(12) Analytical and spectroscopic data for 3 are as follows. IR (KBr):

2060 cm⁻¹. ¹H NMR (acetone-d_e): δ 6.96 (s, C₃H₅, 10 H), 4.01 (apparent

t, $J = 6.6$ Hz, 4 H), 1.98 (m, 4 H). ¹⁹F NMR (acetone-d $(Cp₂⁹⁸MoOSO₂CF₃⁺)$, 328 $(Cp₂⁹⁸MoCO(C₄H₈O))$, 256 $(Cp₂⁹⁸MoCO₁)$.
Anal. Calcd for $[(C₅H₅)₂Mo(CO)(C₄H₈O)](CF₃SO₂)₂: C, 32.7; H, 2.9; F, 18$