ORGANOMETALLICS

Volume 8, Number **5,** *May 1989*

0 Copyright 1989 American Chemical Society

Mass Spectra and Thermal Stability of Mixed-Ligand Ytterbium Compounds Involving Cyclopentadienyl and β -Diketonato **Chelate Ligands**

Lanping Yang" and Liang Dai

Fujian Institute of Research on the Structure of Matter, Fuzhou, China

Huaizhu Ma and Zhongwen Ye

Institute of Organic Chemistry, Anhui Normal University, Wuhu, China

Received April 29, 1988

The mass spectra and the thermal stability of 12 ytterbium compounds of Cp_2YbL and $CpYbL$, types $(Cp = n^5-C_5H_5$; HL = acetylacetone, 2,2,6,6-tetramethyl-3,5-heptanedione, 1,1,1-trifluoroacetylacetone, benzoylacetone, **4-benzoyl-3-methyl-l-phenyl-5-pyrazolone, (trifluoroacetoacety1)-a-thiophene)** have been studied under electron-impact conditions. Disproportionation reactions may take place when these compounds reach a certain evaporation temperature. The disproportionation products Cp_3Yb^{**} and YbL_3^{**} have a fragmentation mechanism which differs from that of the molecular ions $\mathrm{Cp}_2\mathrm{YbL}^{\ast+}$ and $\mathrm{CpYbL}_{2}^{\ast+}$.

Introduction

The mass spectra of lanthanide β -diketonato compounds have recently been reported.^{1,2} However, reports concerning the mass spectra of lanthanide organometallics, involving both cyclopentadienyl and β -diketonato chelate ligands, have been few.3 We have synthesized **12** ytterbium compounds of Cp_2YbL and $CpYbL_2$ types ($HL =$ acetylacetone (H-acac), **2,2,6,6-tetramethyl-3,5-heptane**dione (H-tmd), **l,l,l-trifluoroacetylacetone** (H-tfacac), benzoylacetone (H-bzac), 4-benzoyl-3-methyl-1-phenyl-5 pyrazolone (H-bmphpz); **(trifluoroacetoacety1)-a-thiophene** H-(tfacth)) and reported that all of them tend to disproportionate.

Now a systematic study has been carried out on the cleavage reactions and thermal stability of these compounds by using electron-impact and metastable transition analysis. The significant results obtained have provided important information which illuminates the relationship between the structure and properties of these compounds and the understanding of the bonding between the lanthanide metal ions and their ligands.

Experimental Section

General procedure: Cp_2YbL and $CpYbL_2$ were prepared by the literature methods.⁴

All the mass spectrometric measurements were performed on a MAT 312 mass spectrometer operating in **E1** mode at a resolving power of 1000 (electron energy, 70 eV; emission current, 1 mA; ion acceleration, 3 kV). The samples were protected under argon and were introduced by direct inlet techniques with a source temperature of 130-180 "C and a samples evaporation temperature in the range of 20-300 "C. The metastable transitions were detected by **UA/B** and **UA/B2** linked scans in the first field-free region.

Results and Discussion

1. **Spectral Features of Cp2YbL- and CpYbL,-Type Compounds.** The main fragment ions of 1-12 compounds and their abundances are shown in Table Ia,b. The molecular ions of the Cp_2YbL and $CpYbL_2$ compounds 1-12 are clearly observed in the mass spectra. All the molecular ions are characterized by ready loss of the Cp ligand with the $(M - Cp)^+$ ion as the base peak in the mass spectra of most compounds, but no $(M - L)^+$ ion formed by direct

⁽¹⁾ Xu, **G.;** Wang, C.; Sun, J.; Tang, Y. *Acta Chim. Sin.* **1984,** *42,* **239-245.**

⁽²⁾ Majer, J. B. In *Mass Spectrometry of Metal Compounds: Coordination Compounds*; Charalambous, J., Ed.; Butterworths: London, Boston, 1975; pp 189–247.
Boston, 1975; pp 189–247.
(3) Bielang, G.; Fischer, R. D. *Inorg. C*

⁽⁴⁾ Ma, H.; Ye, 2. *J. Organomet. Chem.* **1987, 326, 369-374.**

516 (10.3)

Table I^a

(a) The Relative Abundances of Main Fragment Ions of Compounds 1-8

All MS data are based on the isotopes 174Yb, 32S, and **I4N.**

loss of the β -diketonato ligand (L) of the molecular ion is observed. This is consistent with the result reported in the literature⁴ that cyclopentadienyl (Cp) forms η^5 bonds with ytterbium, whereas two carbonyl groups of β -diketonato ligand chelate with the ytterbium atom to form a chelate ring of the type

The Yb-Cp bond is weaker than the Yb-L bond, and the former breaks easily under electron impact. It can be seen from Table I that the relative abundances of $CpYbL₂$ molecular ions are lower than those of the corresponding $Cp₂YbL$ molecular ions. It is probably because in the CpYbL_{2} compound the ytterbium atom chelates two β diketonato ligands, thereby weakening the Yb-Cp bond strength, and thus the Cp ligand is more easily lost.

By means of the measurements of metastable ions the major fragmentation patterns in Schemes 1-111 have been deduced. Schemes 1-111 show that generally the Cp ligands of most Cp₂YbL⁺⁺ ions are lost stepwise, and only the $Cp_2Yb(acac)^{4}$ ion can lose two Cp ligands simultaneously. The β -diketonato ligand (L), however, is difficult to fragment as a unit. Because α -cleavage easily takes place at the carbonyl group of β -diketonates, the substituent R or R' at either end frequently breaks first, and the relevant metastable transition can be observed. This is a common feature. The extent of losing the R or R' substituent for molecular ions is R = Ph, $\overline{R'}$ = CH₃ < R = $\overline{R'}$ = CH₃ < $R = CH_3$, $R' = \tilde{C}F_3$. It can be seen from Scheme I, parts a and b, that the fragmentation features of Cp_2YbL molecular ion are, first, to lose the Cp ligand and then the competitive cleavage process occurs between the Cp and the substituent R or R' of the β -diketonate ligand. On the other hand, in the fragmentation of the $CpYbL₂$ molecular ion, the competitive cleavage appears at the very beginning between the Cp and the substituent R or R'. $R = R' = C(CH_3)_3 < R = -C=CHCH=CHS$, $R' = CF_3 <$

As for the mass spectra of trifluorinated Cp₂YbL and $CpYbL₂$, it can be seen that the chief difference from the behavior mentioned above lies in the fact that the mo-

Scheme I. The Major Fragmentation Pathways of Cp_2YbL (Path a) and CpYbL, (Path **b)** Compounds

380 (29.5)

 $L =$ acac, tmd, bzac; \cdots for $R = R' = CH_3$.

lecular ion abundances are low (except that of molecular ion of Cp_2Yb (tfacth)), and the loss of CF_2 fragments with rearrangement of fluorine (migration) to ytterbium occurs during the cleavage. These features can be attributed to the following. First, the existence of the electron-withdrawing group CF_3 weakens the $C-CF_3$ bond strength, thus leading to an easy fragmentation of the molecular ions. Second, the relative stability of fragment ions allows rearrangement to form strong Yb-F bonds. It is surprising

$$
R = CH3, -\overline{C} = CHCH = CHS.
$$

that no fragment ions formed by losing $CF₃$ are observed. Scheme I1 shows that the competitive cleavage of the fragmentation of trifluorinated Cp_2YbL molecular ions occurs initially between the Cp and $CF₃$ or the substituent R of the β -diketonate ligand. However, with the trifluorinated $CpYbL₂$ molecular ions, only the simple Yb-Cp bond breaking takes place initially. When it cleaves further, various competitive cleavage processes can then occur.

Since the β -diketonate ligand in the compounds Cp_2Yb (bmphpz) and CpYb (bmphpz)₂ is heterocyclic, the fragmentation of their molecular ions is complex (shown in Scheme 111). The major fragmentation features of $Cp_2Yb(bmphpz)$ and $CpYb(bmphpz)_2$, however, are similar to those of Cp_2YbL^* and CpYbL_2^{*+} containing CF_3 .

2. Thermal Stability of $\mathbf{Cp}_2\mathbf{YbL}$ and \mathbf{CpYbL}_2 Com**pounds and Spectra of Disproportionation Products.** When the evaporation temperature of samples is manually raised and the samples scanned rapidly, the spectra of 12 compounds of Cp_2YbL and $CpYbL_2$ at different evaporation temperatures are obtained. It is interesting to note that when the evaporation temperature of a sample of these two types of compounds reaches a certain value for each, not only are molecular ion Cp_2YbL^* or $CpYbL_2$ ^{**} peaks observed in the spectra, but also the peaks corresponding to YbL_3 ⁺⁺ and its fragments at a greater mass range than the molecular ion are observed as well. At the same time, the peaks coresponding to Cp_3Yb^{*+} ion also appear. Furthermore, with the increase of evaporation temperature, the molecular ion peaks gradually disappear and the peaks of YbL_3 ⁺⁺ and Cp_3Yb ⁺⁺ are enhanced (as shown in Figures 1 and 2). Moreover, the measurement

of metastable ions shows that Cp_3Yb^{*+} and YbL_3^{*+} have no relevant precursor ions, do not have any relation with the molecular ion cleavage of the samples, and, thus, must result from the disproportionation of hot neutrals in the ion source rather than from ion-molecular reactions of the molecular ions. The following disproportionation reaction may take place:

$$
3\mathrm{CpYbL}_2 \rightleftharpoons \mathrm{Cp}_3\mathrm{Yb} + 2\mathrm{YbL}_3 \tag{1}
$$

$$
3Cp_2YbL \rightleftharpoons 2Cp_3Yb + YbL_3 \tag{2}
$$

The experimental results indicate that the disproportionation temperature of most of Cp₂YbL-type compounds is higher than that of $CpYbL_2$ -type compounds. Furthermore, the disproportionation temperature of the compounds containing N or *S* heteroatoms is higher than 150 "C, while that of the compounds containing no heteroatom is lower than 100 $\rm{^{\circ}C}$ (see Table II). It can be seen that the disproportionation product $\mathbf{YbL_3}^{\bullet +}$ of the $\mathbf{CpYbL_2}\text{-type}$ compounds is more intense than that of the relevant $\mathrm{Cp}_2\mathrm{YbL}$ -type compounds. This is in good agreement with the disproportionation reactions (1) and (2): the amount of YbL_3 formed by the disproportionation of Cp_2YbL is less than that of $YbL₃$ formed by the disproportionation of equimolar CpYbL₂. With another disproportionation product Cp_3Yb , the $\tilde{C}p_3Yb^{*+}$ ion peaks can be observed in the spectra of most compounds but are generally very weak. The Cp_2Yb^+ and $CpYb^+$ are also observed in the spectra, which are more intense than Cp_3Yb^{*+} . This is consistent with the results reported in literature. 5

⁽⁵⁾ Thomas, J. L. *J. Organomet. Chem.* **1970,23, 487-489. Muller, J.** *Chem. Ber.* **1969, 102, 152.**

Figure 1. Mass spectra of Cp₂Yb(tfacth): (a) evaporation temperature, 120 °C; (b) evaporation temperature, 180 °C.

Table 11. Disproportionation Temperature and Products for Cp₂YbL and CpYbL₂^a

	dispro-	molecular	disproportionatn products	
compds	portnatn temp, °C	ion, m/z (9)	Cp_3Yb^{*+} (369%)	$\rm YbL_3$ ** m/z (%)
Cp ₂ Yb(acac)	65	403 (46.7)	(48.5)	471 (39.2)
CpYb(acac) ₂	60	437 (16.3)	(6.2)	471 (78.4)
Cp ₂ Yb(tmd)	$50 - 65$	487 (27.7)	weak	723 (44.4)
$CpYb(tmd)$,	$20 - 45$	605 (11.0)	weak	723 (100)
Cp ₂ Yb(bzac)	$65 - 95$	465 (90)	(46.1)	657(5)
$CpYb(bzac)$,	100-110	561 (11.5)	(7.1)	657 (100)
Cp ₂ Yb(bmphpz)	155-165	582 (32.0)	(8.4)	1008 (38.2)
CpYb(bmphpz)	$150 - 160$	795 (0.5)	weak	1008 (76.2)
Cp ₂ Yb(tfacth)	170	525 (78.6)	(8.2)	837 (17.6)
$CpYb(tfacth)$,	160	681 (5.6)	weak	837 (62.7)
C_p , Y_b (tfacac)	200	457 (20.3)	weak	633 (1.2)
$CpYb(tface_b)$	$50 - 100$	545 (1.4)	(14.2)	633 (89.6)

"MS data are based on the isotopes 174Yb, **32S,** and **I4N.**

The metastable ion measurements of the disproportionation products $YbL_3^{\bullet +}$ of various compounds have been carried out. It is found that the β -diketonate ligand can directly be lost in $YbL_3^{\bullet +}$, whereas in $CpYbL_2^{\bullet +}$ and Cp_2YbL^{*+} , no direct cleavage of β -diketonate ligand can be found. This is probably due to the stearic and induction

Figure 2. Mass spectra of Cp₂Yb(acac): (a) evaporation temperature, 40 °C; (b) evaporation temperature, 200 °C.

Scheme IV. The Major Fragmentation Pathways of YbL3

effects caused by the existence and nature **of** the substituents R and R' in the β -diketonate ligands in YbL₃⁺⁺, which reduces the bond energy of Yb-L, leading to easy cleavage of the Yb-L bond in YbL_{3}^{*+} . The fragmentation pattern of various YbL₃^{**} species is shown in Scheme IV. The Cp_3Yb^{**} ion peaks are so weak in the spectra of most compounds that it is impossible to carry out the metastable ion measurement.

To sum up, molecular ions are clearly observed in the **E1** mass spectra of two types of compounds, Cp,YbL and CpYbL₂, and the former is more intense than the latter. The fragmentation of these molecular ions are characterized by their loss of the Cp ligand. The β -diketonato ligand, however, is difficult to fragment as a unit, and frequently the substituent R or R' at either end cleaves first. The extent of cleavage depends on the properties of R or R'. Although the thermal stability of $12 \text{ Cp}_2\text{YbL}$ -
and CpYbL_2 -type compounds are different, disproportionation reaction may take place, resulting in the creation

of Cp_3Yb and YbL_3 , when these compounds reach a certain evaporation temperature. The disproportionation products Cp_3Yb^* and YbL_3^* have a fragmentation mechanism that is different from that of the corresponding molecular ions.

Registry **No.** 1, **72105-01-2; 2, 106043-08-7; 3, 72105-02-3; 4, 113753-81-4; 5, 113753-76-7; 6, 113753-94-9; 7, 113753-97-2; 8, 113753-96-1.** and CpYbL2-type compounds are different, dispropor- **113753-82-5; 9,106018-28-4; 10,106018-29-5; 11, 113753-95-0; 12,**

Carbonylation of (η⁵- Indenyl) (CO)₂Fe--α-Alkoxyalkyl Complexes Using Bimetallic a-Alkoxyacyl Intermediates

Sharon **A.** Levitre, Alan **R.** Cutler,' and Thomas C. Forschner

Department of Chemistry, Rensselaer Polytechnic Institute, Troy, New York 12 180-3590

Received May 4, 1988

Treatment of alkoxymethyl complexes $In(CO)_2$ Fe-CH₂OR (In = η^5 -indenyl; R = Me, Et) with the metalate In(CO)₂Fe⁻Na⁺ in THF solution affords bimetallic alkoxyacetyl intermediates In(CO)Fe(μ -CO)₂Fe(In)-(COCH20R)-Na+ **(13a,b).** IR spectra of these intermediates closely resemble the data for the fully characterized In₂(CO₎₃Fe₂(COCH₃)⁻ and CpIn(CO)₃Fe₂(COCH₃)⁻ salts. Alkoxyacetyl dimers 13a,b react with MeI and CO (1 atm) to give (3 h) the mononuclear alkoxyacetyl compounds In(CO)₂Fe–COCH₂OR in 50-60% yields. The acetyl complex $In(CO)_2Fe-COCH_3$ upon activating $(Et_3O^+PF_6^-)$ and reducing (NaBH₄) gives In(CO)2FeCH(OEt)CH3 **(12).** Subjecting **12 to** the same two-step carbonylation procedure-treatment with $In(CO)_2Fe^-Na^+$ and then MeI/CO (1 atm)-produces $In(CO)_2Fe-COCH(OEt)CH_3$ (59% yield). This procedure thus is used in carbonylating a-alkoxyalkyl complexes that otherwise are inert toward CO **(100** atm). A mechanism involving reversible $\eta^5-\eta^3$ indenyl ring slippage during both formation and cleavage of bimetallic acyl complexes (e.g., **13)** is advanced.

Introduction

Poly(alkoxymethy1ene) acyl ligands **(5)** that retain an oxygen functionality at each carbon center and derive from carbon monoxide are attractive synthetic objectives. $^{1-3}$ In one synthetic approach these transition organometallic acyl complexes result from repeating a three-step sequence of ligand reactions (eq **1):** (a) electrophilic activation of an acyl ligand, (b) hydride transfer to its oxycarbenoid derivative **2,** and (c) carbonylation of the resulting alkoxyalkyl group on **3.** Selecting the organometallic template for supporting these ligand construction reactions, however, is complicated by their antithetical requirements. The first two ligand reactions a and b, resulting in net reduction of the acyl ligand, require a coordinatively sat-

$$
M \times C \times R
$$
\n

urated, nonlabile metal center in order to contain the chemistry at the acyl ligand? The carbonylation reaction, in contrast, requires a relatively labile metal center for the alkyl-CO migratory-insertion step.5 We recently demonstrated that using the $(dppe)(CO)_2Co$ system as the organometallic template balances these contradictory requirements.^{6,7}

 $Cp(CO)_{2}Fe$ or Fp complexes and their phosphine- or phosphite-substituted derivatives Cp(CO)(L)Fe are desirable systems for supporting the ligand reactions depicted in eq $1.^{2,8}$ The corresponding acyl ligand reduction steps

⁽¹⁾ Reviews concerned with the stoichiometric reduction of ligated CO (a) Keim, W. In Catalysis in C₁ Chemistry; Keim, W., Ed.; D. Reidel
Publishing Co.: Boston, 1983; Chapter 1. (b) Herrmann, W. A. Angew
Chem., Int. Ed. Engl. 1982, 21, 117. (c) Sneedon, R. P. A. In Compre-
hensive Organom 1982, *20,* 1.

⁽²⁾ Crawford, E. J.; Bodnar, T. W.; Cutler, A. R. *J. Am. Chem. SOC.* 1986, 108, 6202. Cutler, A. R.; Hanna, P. K.; Vites, J. C. *Chem. Rev.* 1988, 88, 1363.

⁽³⁾ A limited number of complexes bearing such highly oxygenated alkyl ligands (having two or more alkoxy groups) have been reported.^{2,3a-c} alkyl ligands (having two or more alkoxy groups) have been reported.^{2,3a-c}
These include glycosylmetalate complexes (and their acyl derived from glycoside halides.^{3d} (a) Rosenblum, M.; Turnbull, M. M.;
Foxman, B. M. Or 1985,282, **C43.**

^{(4) (}a) Green, M. L. H.; Michard, L.; Swanwick, M. J. Chem. Soc. A
1971, 794. (b) Davison, A.; Reger, D. J. Am. Chem. Soc. 1972, 94, 9237.
(c) Bodnar, T. W.; Cutler, A. R. Synth, React. Inorg. Met.-Org. Chem. 1985, *15,* 31 and references cited.

⁽⁵⁾ Alexander, J. J. In *The Chemistry of the Metal-Carbon Bond;* Hartley, F. R., Patai, S., Eds; Wiley: New York, 1985; Vol. 2, Chapter *5* -.

⁽⁶⁾ Tso, C. C.; Cutler, A. R. J. Am. Chem. Soc. 1987, 109, 5844.
(7) In related studies, Stimson and Shriver obtained C_1-C_4 alkenes by reacting (CO)₅Mn-CH₃ with CO plus diborane. Chain growth apparently entails BH₃ reduction of an acyl to its homologus saturated alkyl ligand, which then inserts CO. Stimson, R. E.; Shriver, D. F. Organometallics 1982, 1, 787. Brown, S. L.; Davies, S. G. J. Chem. Soc., Chem. Commun. 1986, 84.