Synthesis and Reactivity of Alkoxy(η^4 -cycloocta-1,5-diene)iridium(I) and -rhodium(I) M(OR)(cod)(PCy₃) Compounds. X-ray Crystal Structure of the Alkynyl Ir($C \equiv CPh$)(cod)(PCy_3) Complex

Maria J. Fernández, Miguel A. Esteruelas, Macarena Covarrubias, and Luis A. Oro*

Departamento de Química Inorgánica, Instituto de Ciencia de Materiales de Aragón, Universidad de Zaragoza-Consejo Superior de Investigaciones Científicas, 50009 Zaragoza, Spain

María-Carmen Apreda, Concepción Foces-Foces, and Felix H. Cano

Departamento de Rayos-X, Instituto de Química Física Rocasolano, Consejo Superior de Investigaciones Científicas, Serrano 119, 28006 Madrid, Spain

Received June 13, 1988

The synthesis and reactivity of the $alkoxy(\eta^4$ -cycloocta-1,5-diene)iridium(I) Ir(OR)(cod)(PCy₃) (R = Me, Et, or Ph; Cy = cyclohexyl; cod = cycloocta-1,5-diene) complexes are described. They are prepared by reaction of $[Ir(\mu-OR)(cod)]_2$ with PCy₃. The synthesis of Rh(OPh)(cod)(PCy₃) by reaction of $[Rh(\mu-OR)(cod)]_2$ $OMe)(cod)]_2$ with PCy_3 and PhOH is also reported. Treatment of $[Ir(\mu-OMe)(cod)]_2$ with PCy_3 in methanol for 24 h gives a mixture of the hydrido $IrH_5(PCy_3)_2$ and *mer*-IrH₃(CO)(PCy₃)₂ complexes. Ir(OEt)(cod)(PCy₃) reacts with $HSiR_3$ (SiR₃ = SiEt₃ or SiMe₂Ph) leading to the formation of $IrH_2(SiR_3)(cod)(PCy_3)$. Ir-(OR)(cod)(PCy₃) undergoes alkoxy exchange with phenol. Alkoxy exchange is also observed in the reaction of Ir(OEt)(cod)(PCy₃) with phenylacetylene (HC=CPh); the resulting Ir(C=CPh)(cod)(PCy₃) complex has been characterized by X-ray diffraction. Ir(C=CPh)(cod)(PCy₃): triclinic, space group $P\overline{1}$, Z = 2, a = 12.3726 (6) Å, b = 11.1529 (4) Å, c = 12.4738 (5) Å, $\alpha = 105.307$ (4)°, $\beta = 101.845$ (3)°, and $\gamma = 107.607$ (4)°. The structure was solved by Patterson and difference direct methods and refined to a conventional agreement factor of 0.034. The coordination around iridium is slightly distorted square planar, with a Ir—C(1) distance of 1.998 (6) Å and a C(1)—C(2) (C=C) bond length and C(1)—C(2)—C(3) angle of 1.200 (10) Å and 176.5 (8)°, respectively.

Introduction

Considerable interest has recently been focused on the chemistry of alkoxide complexes of the group 8-10 metals. Although alkoxides of these late transition metals may participate in several important catalytic reactions,¹ few compounds of this type are known.² The difficulty in isolating such metal alkoxides is mostly due to their relatively easy decomposition by β -hydride elimination³ or hydrolysis.⁴ Our recent work on the catalytic activity of systems derived from the reaction of $[Ir(\mu-OMe)(cod)]_2$ (cod = cycloocta-1,5-diene) with group 15 atom donor ligands (L), in hydrosilylation⁵ and hydrogen-transfer reactions⁶, have resulted in the isolation of the $IrH(cod)L_2^6$ and $IrH_2(SiR_3)(cod)L_2^7$ complexes. We felt that terminal alkoxide species may participate in the formation of those

Radiocnem. 1983, 20, 209. (b) Menrotra, R. C.; Agarwal, S. K.; Singh, Y. P. Coord. Chem. Rev. 1985, 68, 101.
(a) (a) Nutton, A.; Bailey, P. M.; Maitlis, P. M. J. Organomet. Chem. 1981, 213, 313. (b) Bernard, K. A.; Rees, W. M.; Atwood, J. D. Organometallics 1986, 5, 390. (c) Bryndza, H. E.; Calabrese, J. C.; Marsi, M.; Roe, D. C.; Tam, W.; Bercaw, J. E. J. Am. Chem. Soc. 1986, 108, 4805. (4) (a) Yoshida, T.; Okano, T.; Otsuka, S. J. Chem. Soc., Dalton Trans. 1976, 993. (b) Bennet, M. A.; Yoshida, T. J. Am. Chem. Soc. 1978, 100, 1750.

1750.

(5) (a) Oro, L. A.; Fernández, M. J.; Esteruelas, M. A.; Jiménez, M. S. J. Mol. Catal. 1986, 37, 151. (b) Fernández, M. J.; Oro, L. A.; Manzano, B. R. J. Mol. Catal. 1988, 45, 7.

(6) Fernández, M. J.; Esteruelas, M. A.; Covarrubias, M.; Oro, L. A.
J. Organomet. Chem. 1986, 316, 343.
(7) (a) Fernández, M. J.; Esteruelas, M. A.; Jiménez, M. S.; Oro, L. A.
Organometallics 1986, 5, 1519. (b) Fernández, M. J.; Esteruelas, M. A.;
Oro, L. A.; Apreda, M. C.; Foces-Foces, C.; Cano, F. H. Organometallics 1987, 6, 1751.

complexes, and we thus began our study with the expectation of isolating alkoxide compounds from the reaction of $[M(\mu-OR)(cod)]_2$ (M = Ir or Rh) with PCy₃. Here, we wish to report the synthesis and reactivity of complexes of the type $M(OR)(cod)(PCy_3)$ (M = Ir or Rh).

Results and Discussion

Preparation. The reaction of PCy_3 with $[Ir(\mu -$ OMe)(cod)]₂ in methanol for 30 min leads to the orange, air-stable, $Ir(OMe)(cod)(PCy_3)$ complex (eq 1). When the

$$\frac{1}{2}[Ir(\mu-OMe)(cod)]_{2} + PCy_{3} \xrightarrow{MeOH, 30 \text{ min}} Ir(OMe)(cod)(PCy_{3}) (1)$$

reaction is allowed to proceed for a longer time, a more complex reaction occurs (see reactivity). Formulation of the complex is supported by its microanalyses and its ¹H NMR and IR spectra. The ¹H NMR spectrum is compatible with a square-planar structure, analogous to that of IrCl(cod)(PCy₃).⁸ It shows a singlet at 3.44 ppm due to the methoxy protons, two broad signals at 4.34 and 2.78 ppm attributable to the vinyl protons of the cod trans to PCy3 and OCH3, respectively, and complex aliphatic resonances (1.1-2.3 ppm) of the PCy₃ and cod ligands. The presence of the methoxy group is also supported by the IR spectrum, which shows a band at 1072 cm⁻¹ assignable to $\nu(C-O)$.

The $Ir(OMe)(cod)(PCy_3)$ complex is the only product initially formed in the reaction of $[Ir(\mu-OMe)(cod)]_2$ with PCy₃, as is deduced by its ¹H NMR spectrum. The ¹H NMR spectrum of a mixture of $[Ir(\mu-OMe)(cod)]_2$ and PCy_3 , in a 1:1 ratio of Ir to PCy_3 , in $CDCl_3$ shows only the resonances due to $Ir(OMe)(cod)(PCy_3)$. Upon addition of

^{(1) (}a) Forster, D. Adv. Organomet. Chem. 1979, 17, 255. (b) Braca, G.; Sbrana, G. Aspects Homogeneous Catal. 1984, 5, 241. (c) Maitlis, P. M.; Smith, T. A. J. Organomet. Chem. 1985, 289, 385. (d) Rees, W. M.; Churchill, M. R.; Fettinger, J. C.; Atwood, J. D. Organometallics 1985, 4, 2179.

⁽²⁾ For recent reviews see: (a) Mehrotra, R. C. Adv. Inorg. Chem. Radiochem. 1983, 26, 269. (b) Mehrotra, R. C.; Agarwal, S. K.; Singh, Y.

⁽⁸⁾ Crabtree, R. H.; Morris, G. E. J. Organomet. Chem. 1977, 135, 395.

a second mole of PCy_3 the spectrum remains unchanged. In contrast, the reaction of the iridium dimer with PPh₃ suggested the formation of an equilibrium between a species containing 1 and 2 mol of PPh₃ per iridium (eq 2).^{7b}

$$Ir(OMe)(cod)(PPh_3) \xrightarrow{PPh_3} Ir(OMe)(cod)(PPh_3)_2 \qquad (2)$$

The different behavior of PCy3 and PPh3 in this reaction is most probably due to a steric effect; the more sterically demanding PCy₃ ligand disfavors the formation of a pentacoordinated species, similar to that found with IrCl- $(cod)(PCy_3).^8$

The analogous $Ir(OR)(cod)(PCy_3)$ (R = Et or Ph) compounds have been synthesized by reaction of PCy_3 with $[Ir(\mu-OEt)(cod)]_2$ in ethanol or with $[Ir(\mu-OPh)(cod)]_2$ in acetone. These complexes also can be prepared by treatment of $[Ir(\mu-OMe)(cod)]_2$ with PCy₃ in ethanol or in a phenol-acetone mixture. By a similar procedure, $Rh(OPh)(cod)(PCy_3)$ has been isolated from the reaction of $[Rh(\mu-OMe)(cod)]_2$ with PCy_3 in phenol-acetone. Microanalysis and ¹H NMR and IR data of the abovementioned compounds are consistent with the proposed formulation. The ¹H NMR spectra show two signals corresponding to the inequivalent vinyl protons of the cod, in concordance with a square-planar geometry. In addition, the IR spectra show bands around 1100-1265 cm⁻¹ attributable to ν (C–O).

It is of interest to note that the synthetic strategy used for the preparation of $Ir(OR)(cod)(PCy_3)$, cleavage of the alkoxy bridge in $[Ir(\mu-OR)(cod)]_2$ by a phosphine, provides a new procedure for the synthesis of terminal alkoxide complexes of iridium(I) and rhodium(I). Until now, the chemistry of terminal alkoxide iridium(I) and rhodium(I) compounds has been limited to complexes of the type $trans-M(OR)(CO)(PR_3)_2$ (M = Ir,⁹ Rh¹⁰), Ir(OMe)(CO)- $(PPh_3)_2(TCME)$,¹¹ [AsPh₄][Rh(1,2-O₂C₆Cl₄)(CO)₂],¹² $[AsPh_4][Rh(2,3-O_2C_{10}H_6)(CO)_2]$,¹² and $[NBu_4][Rh(2,3-O_2C_{10}H_6)(CO)_2]$ $O_2C_{10}H_6)(cod)].^{13}$

Reactivity. When the reaction of $[Ir(\mu-OMe)(cod)]_2$ with PCy₃, in an Ir to P ratio of 1:1 or 1:2, in methanol is allowed to proceed for 24 h at room temperature, a mixture of mer-IrH₃(CO)(PCy₃)₂ and IrH₅(PCy₃)₂ precipitates from the solution (eq 3). Formation of the known IrH₅(PCy₃)₂¹⁴

$$[Ir(\mu-OMe)(cod)]_2 + 2 \text{ or } 4 PCy_3 \xrightarrow{MeOH, 24 \text{ h}} IrH_5(PCy_3)_2 + mer-IrH_3(CO)(PCy_3)_2 (3)$$

is deduced by the presence in the ¹H NMR spectrum of the precipitate in $CDCl_3$ of a triplet at -11.28 ppm (${}^2J_{H-P}$ = 12.1 Hz) and a band in the IR spectrum at 1940 cm⁻ $(\nu(Ir-H))$. Although we have not isolated mer-IrH₃- $(CO)(PCy_3)_2$ in the pure state, the high-field ¹H NMR spectrum (-12.16 (td, ${}^{2}J_{H-P} = 14.6 \text{ Hz}, {}^{2}J_{H-H} = 4.4 \text{ Hz}),$ -12.83 ppm (tt, ${}^{2}J_{H-P} = 19.3 \text{ Hz}, {}^{2}J_{H-H} = 4.4 \text{ Hz})) and the$

(13) Oro, L. A.; Fernández, M. J.; Modrego, J.; López, J. M. J. Organomet. Chem. 1985, 287, 409.

IR spectrum (2070, 2050, 1925, and 1788 cm⁻¹) support the proposed formulation, by comparison with the spectroscopic data reported for mer-IrH₃(CO)(PPh₃)₂.¹⁵ In an experiment carried out by using an Ir to PCy₃ ratio of 1:2, after 24 h of reaction the composition of the precipitate was approximately 5% of $IrH_5(PCy_3)_2$ and 95% of IrH_3 - $(CO)(PCy_3)_{2}$, according to the integration of the high-field signals in the ¹H NMR spectrum; the remaining solution was analyzed by GC. The presence of cycloocta-1,5-diene (5%), cycloocta-1,3-diene (25%), and cyclooctene (70%)was demonstrated. The use of a 1:1 ratio of Ir to PCy₃ gives the same products along with unreacted dimer. It is worth noting that, as we have previously reported,⁶ treatment of $[Ir(\mu-OMe)(cod)]_2$ with 4 molar equiv of PPh₃ in methanol at room temperature for 3 h gives IrH- $(cod)(PPh_3)_2$ (eq 4). The same complex, $IrH(cod)(PPh_3)_2$,

$$[Ir(\mu-OMe)(cod)]_2 + 4PPh_3 \xrightarrow{MeOH, 24 h} 2IrH(cod)(PPh_2)_2 (4)$$

is also formed when this reaction is allowed to proceed for 24 hours. Formation of hydrido or hydrido carbonyl complexes by β -hydrogen elimination from alkoxy groups has numerous precedents.¹⁶ Interestingly, although dehydrogenation of alcohols with long carbon chains usually is easier,¹⁷ Ir(OEt)(cod)(PCy₃) remains unchanged when treated with PCy_3 in ethanol for 24 h.

The easy synthesis and stability of $Ir(OEt)(cod)(PCy_3)$ allow us to study the reactivity of this type of complex toward silanes. Addition of 2 molar equiv of HSiR₃ (SiR₃ = SiEt₃, SiMe₂Ph) to $Ir(OEt)(cod)(PCy_3)$ gives IrH_2 -(SiR₃)(cod)(PCy₃) and EtOSiR₃ (detected by GC-MS)¹⁸ (eq 5). The reaction most probably involves oxidative $Ir(OEt)(cod)(PCy_3) + 2HSiR_3 \rightarrow$

$$IrH_2(SiR_3)(cod)(PCy_3) + EtOSiR_3$$
 (5)

addition of HSiR₃ to Ir(OEt)(cod)(PCy₃), followed by reductive elimination of EtOSiR₃ and subsequent oxidative addition of HSiR₃ to a hypothetical intermediate, IrH- $(cod)(PCy_3)$, as we have postulated for the formation of the related $IrH_2(SiR_3)(cod)(PPh_3)$.⁷ Unfortunately, as in the preparation of $IrH_2(SiR_3)(cod)(PPh_3)$, we have been unable to detect the proposed hydrido intermediate. The new hydridosilyl complexes have been fully characterized by elemental analyses and IR and ¹H NMR spectroscopy.

Exchange of the alkoxy group has been observed on treatment with phenol. Thus, addition of 1 molar equiv of phenol to $Ir(OR)(cod)(PCy_3)$ (R = Me, Et) results in the total conversion of the starting material (eq 6), according $Ir(OR)(cod)(PCy_3) + PhOH \rightarrow$

 $Ir(OPh)(cod)(PCy_3) + ROH$ (6)

$$R = Me. Et$$

to ¹H NMR measurements. Similarly, reaction of 1 molar equiv of phenylacetylene with Ir(OEt)(cod)(PCy₃) gives $Ir(C \equiv CPh)(cod)(PCy_3)$. Microanalysis and IR and ¹H NMR data are consistent with the proposed formulation. To further characterize this terminal alkynyl compound, we have determined its crystal structure.

X-ray Crystal Structure of $Ir(C = CC_6H_5)(\eta^4$ - C_8H_{12})(P(C_6H_{11})₃). The coordination geometry around

^{(9) (}a) Rees, W. M.; Atwood, J. D. Organometallics 1985, 4, 402. (b) Rees, W. M.; Churchill, M. R.; Fettinger, J. C.; Atwood, J. D. Organometallics 1985, 4, 2179. (c) Churchill, M. R.; Fettinger, J. C.; Rees, W. M.; Atwood, J. D. J. Organomet. Chem. 1986, 308, 361.
(10) (a) Vizi-Orosz, A.; Pályi, G.; Markó, L. J. Organomet. Chem. 1973, 57. 379. (b) Yoshida, T.; Okano, T.; Uleda, V. Otsuka, S. J. Am. Chem.

^{57, 379. (}b) Yoshida, T.; Okano, T.; Ueda, Y.; Otsuka, S. J. Am. Chem. Soc. 1981, 103, 3411.

⁽¹¹⁾ Janik, T. J.; Bernard, K. A.; Churchill, M. R.; Atwood, J. D. J. (12) Girgis, A. Y.; Sohn, Y. S.; Balch, A. L. Inorg. Chem. 1975, 14, 2327.

nomet. Chem. 1986, 287, 409. (14) Albinati, A.; Togni, A.; Venanzi, L. M. Organometallics 1986, 5, 1785. The ¹H NMR spectrum of $IrH_5(PCy_3)_2$ reported in this reference has been recorded in C_6D_6 , and it describes the hydride resonance as a triplet at -10.46 ppm (²J_{H-P} = 12.1 Hz). We have synthesized $IrH_5(PCy_3)_2$ by the same method, and the ¹H NMR spectrum of this complex in CDCl₃ shows a triplet at -11.28 ppm (²J_{H-P} = 12.1 Hz) for the hydride resonance.

⁽¹⁵⁾ Harrod, J. F.; Yorke, W. J. Inorg. Chem. 1981, 20, 1156.

^{(16) (}a) Chaudret, B. N.; Cole-Hamilton, D. J.; Nohr, R. S.; Wilkinson, G. J. Chem. Soc., Dalton Trans. 1977, 1546. (b) Milstein, D. J. Am.

Chem. Soc. 1986, 108, 3525. (c) Reference 3. (17) (a) Shinoda, D.; Itagaki, H.; Saito, Y. J. Chem. Soc., Chem. Commun. 1985, 860. (b) Smith, T. A.; Maitlis, P. M. J. Organomet. Chem. 1985. 289, 395.

⁽¹⁸⁾ MS: m/Z (relative intensity) EtOSiEt₃ 160 (M, 4), 131 (M – Et, 100); EtOSiMe₂Ph 180 (M, 19), 165 (M - Me, 100).

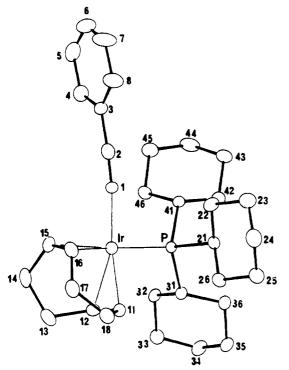


Figure 1. ORTEP drawing of the molecular structure of Ir- $(C \equiv CC_6H_5)(\eta^4 - C_8H_{12})(P(C_6H_{11})_3).$

the iridium is approximately square-planar (see Figure 1). The deviation of the iridium from the coordination plane (midpoints of the cycloocta-1,5-diene olefinic bonds, P atom, C atom of the $C = CC_6H_5$ is 0.026 (1) Å. The Ir-C(1) length (1.998 (6) Å) (Table II) is consistent with a single bond from Ir(I) to a C(sp) atom and indicates a low degree of metal-to-ligand back-bonding.¹⁹ The C(1)-C(2) bond length and C(1)–C(2)–C(3) angle are 1.200 (10) Å and 176.5 (8)°, respectively; a slight bending in the Ir-C-C moiety is present $(Ir-C(1)-C(2) = 172.8 (6)^{\circ})$; similar values have been found for related complexes containing terminal alkynyl groups.²⁰ The C–C distances of the aromatic ring fall in the range 1.319 (35)-1.405 (23) Å; the shortest distances are those of C(5)-C(6) (1.361 (21) Å) and C-(6)-C(7) (1.319 (35) Å) and correspond to the highest values of the thermal parameters. The different structural influence of the phenylacetylide group and the triphenylphosphine ligand is seen in the significant differences in Ir-C(olefin) distances (2.162 (7)-2.197 (8) Å). The cycloocta-1,5-diene presents a noncrystallographic approximate twofold axis (see Table II). The cyclohexane rings show chair conformations with torsion angular values ranging, in absolute values, between 52.4 (8) and 60.7 (6)°; the C-C distances range from 1.509 (10) to 1.550 (8) Å.

Experimental Section

General Data. All reactions were carried out at room temperature under a nitrogen atmosphere by using standard Schlenk techniques. $[Ir(\mu-OR)(cod)]_2^{21}$ (R = Me, Et, Ph) and $[Rh(\mu-OMe)(cod)]_2^{22}$ were prepared as previously reported. ¹H NMR

(21) Pannetier, G.; Fougeroux, P.; Bonnaire, R.; Platzer, N. J. Less-Common. Met. 1971, 24, 83.

(22) Usón, R.; Oro, L. A.; Cabeza, J. A. Inorg. Synth. 1985, 23, 126.
(23) Stewart, J. M.; Machin, P. A.; Dickinson, C. W.; Ammon, H. L.;
Heck, H.; Flack, H. The X-Ray System; Technical Report TR-446; Computer Science Center, University of Maryland: College Park, MD, 1976

Table I. Crystal I	Data ar	nd Data Collection Parameters		
formula		vstal Data		
formula		$_{34}H_{50}$ IrP		
cryst habit	re	ectangular prism		
cryst size, mm		$03 \times 0.08 \times 0.28$ iclinic, $P\bar{1}$		
symmetry unit cell determinatn	-	ast-squares fit from 90 reflctns		
unit cell dimens	12 10	$(2 < \theta < 45^{\circ})$ 2.3726 (6), 11.1529 (4), 12.4738 (5) Å 05.307 (4), 101.845 (3), 107.607 (4)°		
packing: V, Å ³ ; Z D_{calcd} , g·cm ⁻³ ; M, $F(0, \mu, \text{ cm}^{-1})$	15	504.4 (1); 2 506; 682.0; 692		
μ , cm ⁻¹		0.69		
technique	Experimental Data Philips diffractometer (PW 1100)			
		ing geometry		
	graphi	ite-oriented monochromator, Cu K α		
	$\omega/2 heta$ s	scans; scan width 1.5		
	detect	tor apertures $1.0 \times 1.0^{\circ}$		
total measurements	up to			
speed	1 min	/reflctn		
no. of reflctns				
measd	5097			
independent	5097			
obsd	4699 [$[3\sigma(I) \text{ criterion}]$		
std reflctns	2 refle	ctns every 90 min		
		ion, no		
max-min transmissn, factors	1.139-	-0.760		
So	lution a	and Refinement		
solution		Patterson function and DIRDIF		
refinement		least squares on $F_{\rm o}$ with 2 blocks		
parameters				
no. of variables		525		
degrees of freedom		4174		
ratio of freedom		9.0		
H atoms		difference synthesis		
final shift/error		0.16		
max thermal value		$U_{11}[C(6)] = 0.23 (2) Å^2$		
final ΔF peaks		1.22 e-A ⁻³ near Ir and P atoms		
extincn correctn		no		
final R and R_w		0.034 and 0.037		
computer and progr	ams	VAX 11/750 XRAY76 System ²³ and DIRDIF ²⁴		
		and DIRDIF ²⁴		
scattering factors		ref 25		
Table II. Se	lected	Geometrical Parameters ^a		
		d Distances (Å)		
	98 (6)	C(11)-C(12) 1.395 (9)		
	41 (2)	C(15)-C(16) 1.409 (10)		
	52 (7)	C(1)-C(2) 1.200 (10)		
	72 (5)	C(2)-C(3) 1.447 (11)		
	90 (8)	C(21)-P 1.857 (6)		
Ir-C(16) 2.19	97 (8)	C(31)-P 1.854 (6) C(41)-P 1.854 (7)		
	1) F	C(41)-P 1.854 (7)		
(C(1)–Ir–P		$\frac{d}{d} \text{ Angles (deg)} = \frac{105.0}{2} (21) = 1$		
	89.0 (2			
M(12)-Ir-P M(12) Ir $M(56)$	96.6 (1			
M(12)-Ir-M(56) M(56) Ir $C(1)$	85.0 (2			
M(56)-Ir-C(1)	89.4 (2			
C(1)-C(2)-C(3)	176.5 (
(c) So (i) $Ir, M(12)$		east-Squares Planes (ii) Ir,P,C,(1)		
	· · · · ·	·· 0 0 (0)0		

i∧ii 3.3 (2)°

^a M(12) and M(56) are the midpoints of the olefinic bonds in the COD.

spectra were measured in CDCl₃ solution at room temperature on a Varian XL 200 spectrometer. IR spectra were recorded on

⁽¹⁹⁾ Bruce, M. I.; Hambley, T. W.; Snow, M. R.; Swincer, A. G. J. Organomet. Chem. 1982, 235, 105.

^{(20) (}a) Nast, R. Coord. Chem. Rev. 1982, 47, 89. (b) Gutierrez-Puebla, E.; Vegas, A.; Garcia-Blanco, S. Acta Crystallogr., Sect. B 1978, 34B, 3382.

⁽²⁴⁾ Beurskens, P. T.; Bosman, W. P.; Doesburg, H. M.; Gould, R. O.; Van der Hark, E. M.; Prick, P. A. J.; Noordik, J. H.; Beurskens, G.; Parthasarathi, V.; Bruins Slot, H. J.; Waltiwanser, R. C. Dirdif. System; Crystallography Laboratory: Toocrnooivel, Nijmegen, The Netherlands, 1983

Table III. Final Atomic Coordinates

atom	x/a	y/b	z/c	
IR	0.21178 (2)	0.22680 (2)	0.46935 (2)	
Р	0.1800(1)	0.3397 (1)	0.3395 (1)	
C(1)	0.2041 (6)	0.0746 (6)	0.3364 (5)	
C(2)	0.2107 (6)	-0.0163 (7)	0.2644 (6)	
C(3)	0.2267(7)	0.1223 (7)	0.1812 (6)	
C(4)	0.3391 (10)	-0.1068 (13)	0.1706 (8)	
C(5)	0.3561(16)	-0.2108 (19)	0.0924(11)	
C(6)	0.2613(21)	-0.3260 (16)	0.0241 (10)	
C(7)	0.1544(19)	-0.3423(10)	0.0347 (9)	
C(8)	0.1331 (11)	-0.2417 (8)	0.1110 (7)	
C(11)	0.1613 (6)	0.3502(6)	0.5995(5)	
C(12)	0.2855(5)	0.3955(5)	0.6333(5)	
C(13)	0.3596 (6)	0.3723(7)	0.7344(6)	
C(14)	0.3849 (6)	0.2452 (9)	0.6926 (6)	
C(15)	0.2910 (6)	0.1383(7)	0.5857(6)	
C(16)	0.1680 (6)	0.0964 (6)	0.5718 (6)	
C(17)	0.1178 (5)	0.1479 (7)	0.6652 (6)	
C(18)	0.0864(5)	0.2676 (7)	0.6545 (6)	
C(21)	0.0182(5)	0.2888(6)	0.2670 (5)	
C(22)	-0.0433 (6)	0.1365(6)	0.2001 (6)	
C(23)	-0.1761 (6)	0.0960(7)	0.1376 (7)	
C(24)	-0.2403 (6)	0.1444(8)	0.2200(7)	
C(25)	-0.1798 (5)	0.2938(7)	0.2846 (6)	
C(26)	-0.0484 (5)	0.3315(7)	0.3511 (5)	
C(31)	0.2374(5)	0.5251(5)	0.4077 (5)	
C(32)	0.3755 (5)	0.5875 (6)	0.4450(5)	
C(33)	0.4242(5)	0.7354 (6)	0.5220 (6)	
C(34)	0.3690 (6)	0.8149 (6)	0.4635 (6)	
C(35)	0.2332 (5)	0.7522 (6)	0.4221 (6)	
C(36)	0.1858 (5)	0.6051 (6)	0.3431 (5)	
C(41)	0.2331(5)	0.2962 (5)	0.2114(5)	
C(42)	0.2106 (6)	0.3623(7)	0.1212 (5)	
C(43)	0.2324 (7)	0.2933 (7)	0.0100 (6)	
C(44)	0.3605 (7)	0.2971 (8)	0.0355 (6)	
C(45)	0.3899 (6)	0.2398 (8)	0.1308 (6)	
C(46)	0.3644 (5)	0.3076 (6)	0.2422 (5)	

a Perkin-Elmer 783 spectrophotometer. Elemental analyses were carried out with a Perkin-Elmer 240 C elemental analyzer.

Synthesis of the Complexes Ir(OMe)(cod)(PCy₃). [Ir(μ -OMe)(cod)]₂ (60 mg, 0.09 mmol) and PCy₃ (51 mg, 0.18 mmol) in methanol were stirred, at room temperature, for 30 min. The yellow precipitate was filtered, washed with methanol, and dried under vacuum: yield 62 mg (56%). Anal. Calcd for C₂₇H₄₈IrOP: C, 53.00; H, 7.90. Found: C, 52.65; H, 7.74. IR (Nujol); ν (C-O) 1072 cm⁻¹. ¹H NMR (CDCl₃, ppm): 1.1–2.3 (m, 41 H, C₆H₁₁, >CH₂ (cod)), 2.79 (br, 2 H, =CH (cod)), 3.44 (s, 3 H, OCH₃), 4.34 (br, 2 H, =CH (cod)).

Ir(**OEt**)(**cod**)(**PCy**₃). [Ir(μ -OEt)(cod)]₂ (400 mg, 0.58 mmol) was added to a solution of PCy₃ (325 mg, 1.16 mmol) in ethanol. After 3 h at room temperature the resulting yellow precipitate was filtered, washed with ethanol, and dried under vacuum: yield 587 mg (81%). The Ir(OEt)(cod)(PCy₃) complex also can be prepared by this method using [Ir(μ -OMe)(cod)]₂ as the starting material. Anal. Calcd for C₂₈H₅₀IrOP: C, 53.73; H, 8.05. Found: C, 53.69; H, 7.96. IR (Nujol): ν (C-O) 1110 cm⁻¹. ¹H NMR (CDCl₃, ppm): 1.06 (t, 2 H, J_{H-H} = 7 Hz, OCH₂), 1.1–2.3 (m, 41 H, C₆H₁₁, >CH₂ (cod)), 2.79 (br, 2 H, ==CH (cod)), 3.93 (q, 3 H, J_{H-H} = 7 Hz, OCH₂CH₃), 4.57 (br, 2 H, ==CH (cod)).

Ir(OPh)(cod)(PCy₃). $[Ir(\mu-OPh)(cod)]_2$ (53 mg, 0.06 mmol) was added to a solution of PCy₃ (36 mg, 0.12 mmol) in diethyl ether, and the mixture was stirred at room temperature for 5 h. The solution was concentrated and addition of acetone caused the precipitation of a yellow solid. This was filtered, washed with acetone, and dried under vacuum: yield 44 mg (47%). The Ir(OPh)(cod)(PCy₃) complex also can be prepared by treatment of $[Ir(\mu-OMe)(cod)]_2$ (80 mg, 0.12 mmol) with PCy₃ (68 mg, 0.24 mmol) in a solution of phenol (excess) in acetone. After 3 h at room temperature the yellow precipitate was filtered, washed with acetone, and dried under vacuum: yield 44 mg (41%). Anal. Calcd for C₃₂H₅₀IrOP: C, 57.03; H, 7.03. Found: C, 56.48; H,

7.26. IR (Nujol): ν (C–O) 1265 cm⁻¹. ¹H NMR (CDCl₃, ppm): 1.1–2.3 (m, 41 H, C₆H₁₁, >CH₂(cod)), 2.9 (br, 2 H, —CH (cod)), 4.48 (br, 2 H, —CH (cod)), 6.6 (d, $J_{H-H} = 8$ Hz, 3 H, C₆H₅), 7.9 (t, $J_{H-H} = 8$ Hz, 2 H, C₆H₅).

Rh(OPh)(cod)(PCy₃). A mixture of $[Rh(\mu-OMe)(cod)]_2$ (100 mg, 0.2 mmol), PCy₃ (112 mg, 0.4 mmol), and phenol (excess) in acetone was stirred for 3 h. The resulting yellow precipitate was filtered, washed with acetone, and dried under vacuum: yield 150 mg (62%). Anal. Calcd for $C_{32}H_{50}OPRh$: C, 65.74; H, 8.60. Found: C, 65.29; H, 8.40. IR (Nujol): ν (C–O) 1245 cm⁻¹. ¹H NMR (CDCl₃, ppm): 1.1–2.3 (m, 41 H, C₆H₁₁, >CH₂ (cod)), 3.36 (br, 2 H, =CH (cod)); 4.78 (br, 2 H, =CH (cod)), 6.46 (t, $J_{H-H} = 8$ Hz, 1 H, C₆H₅); 6.6 (d, $J_{H-H} = 8$ Hz, 2 H, C₆H₅), 7.0 (t, $J_{H-H} = 8$ Hz, 2 H, C₆H₅).

Formation of $IrH_5(PCy_3)_2$ and $mer-IrH_3(CO)(PCy_3)_2$. A mixture of $[Ir(\mu-OMe)(cod))]_2$ (70 mg, 0.1 mmol) and PCy₃ (118 mg, 0.4 mmol) in methanol was allowed to react at room temperature for 24 h. The white precipitate that formed was filtered, washed with methanol, and dried under vacuum: 105 mg of a white solid was obtained. IR (Nujol): $\nu(C\equiv=O)$ and $\nu(Ir-H)$ 2070, 2050, 1940, 1925, 1788 cm⁻¹. ¹H NMR (CDCl₃, ppm): -11.28 (t, $J_{H-P} = 12.1$ Hz, IrH), -12.16 (td, $J_{H-P} = 14.6$ Hz, $J_{H-H} = 4.4$ Hz, IrH), -12.83 (tt, $J_{H-P} = 19.3$ Hz, $J_{H-H} = 4.4$ Hz, IrH), 1.1–2.3 (m, C₆H₁₁).

IrH₂(SiEt₃)(cod)(PCy₃). A solution of Ir(OEt)(cod)(PCy₃) (100 mg, 0.16 mmol) in acetone was treated with HSiEt₃ (53 μ L, 0.33 mmol), and the mixture was stirred for 30 min. The solution was concentrated under reduced pressure, and methanol was added to give a white precipitate that was filtered, washed with methanol, and dried under vacuum: yield 73 mg (66%). Anal. Calcd for C₃₂H₆₂IrPSi: C, 5.05; H, 8.95. Found: C, 55.14; H, 9.03. IR (Nujol): ν (Ir-H) 2120 cm⁻¹. ¹H NMR (CDCl₃, ppm): -13.52 (d, 2 H, J_{H-P} = 21 Hz, IrH), 0.86 (br, 15 H, SiCH₂CH₃), 1.1-2.3 (m, 41 H, C₆H₁₁, >CH₂ (cod), 3.56 (br, 4 H, ==CH (cod)).

IrH₂(**SiMe**₂**Ph**)(**cod**)(**PCy**₃). The complex was prepared by using the procedure described for IrH₂(SiEt₃)(cod)(PCy₃), with Ir(OEt)(cod)(PCy₃) (100 mg, 0.16 mmol) and HSiMe₂Ph (49 μ L, 0.32 mmol). A white solid was obtained in 79 mg (69%) yield. Anal. Calcd for C₃₄H₅₈IrPSi: C, 56.87; H, 7.86. Found: C, 56.50; H, 7.51. IR (Nujol): ν (Ir-H) 2120 cm⁻¹. ¹H NMR (CDCl₃, ppm): -13.30 (d, 2 H, J_{H-P} = 21 Hz, IrH), 0.72 (br, 6 H, SiCH₃), 1.1-2.3 (m, 41 H, C₆H₁₁, >CH₂ (cod)), 3.58 (br, 4 H, ==CH (cod)), 7.11 (d, 1 H, J_{H-H} = 7 Hz, C₆H₅), 7.20 (t, 2 H, J_{H-H} = 7 Hz, C₆H₅), 7.58 (d, 2 H, J_{H-H} = 7 Hz, C₆H₅).

Exchange of the Alkoxy Group in $Ir(OR)(cod)(PCy_3)$ with Phenol. The reactions were carried out at room temperature by using approximately 0.08 mmol of the $Ir(OR)(cod)(PCy_3)$ complex and 0.08 mmol of phenol in 1 mL of CDCl₃. The ¹H NMR spectra showed a total conversion of the starting complex in all reactions. In a typical procedure, $Ir(OEt)(cod)(PCy_3)$ (50 mg, 0.08 mmol) was dissolved in 1 mL of CDCl₃ and PhOH (8 mg, 0.08 mmol) was added. The solution was placed in a nitrogen-purged NMR tube; 15 min after mixing the compounds, the ¹H NMR spectrum showed only the resonances of $Ir(OPh)(cod)(PCy_3)$ complex and EtOH.

Ir(C=CPh)(cod)(PCy₃). A mixture of Ir(OEt)(cod)(PCy₃) (100 mg, 0.16 mmol) and HC=CPh (37 µL, 0.33 mmol) in diethyl ether was left to react for 2 h. The resulting red solution was concentrated, and methanol was added to give a red precipitate that was filtered, washed with methanol, and dried under vacuum: yield 86 mg (78%). Anal. Calcd for C₃₄H₅₀IrP: C, 59.89; H, 7.39. Found: C, 59.61; H, 6.95. IR (Nujol): ν (C=C) 2090 cm⁻¹. ¹H NMR (CDCl₃, ppm): 1.1–2.3 (m, 41 H, C₆H₁₁, >CH₂ (cod)), 3.65 (br, 2 H, =CH (cod)), 4.79 (br, 2 H, =CH (cod)), 7.06 (d, 1 H, $J_{H-H} = 7$ Hz, C₆H₅), 7.18 (t, 2 H, $J_{H-H} = 7$ Hz, C₆H₅), 7.28 (d, 2 H, $J_{H-H} = 7$ Hz, C₆H₅).

Determination and Refinement of the Structure. Crystals suitable for diffraction studies were obtained by cooling a solution of the complex in acetone to -20 °C. Crystal data are listed in Table I. The stability and orientation of the crystal were checked by measuring two standard reflections every 90 min. No significant variations were detected. An empirical absorption correction was applied.²⁶ In the final cycles of the refinement,

⁽²⁶⁾ Walker, N.; Stuart, D. Acta Crystallogr., Sect. A: Found. Crystallogr. 1983, A39, 158.

weighting scheme was applied as to give no trends in $\langle w \Delta^2 F \rangle$ vs $\langle F_{o} \rangle$ and $\langle (\sin \theta) / \lambda \rangle$, with $w = 1/\sigma_{1}^{2} \sigma_{2}^{2}$. ΔF were first least squares linearly adjusted to $|F_0|$, and the function taken as σ_1 . Then $\Delta^2 F/\sigma_1^2$ were fitted to $(\sin \theta)/\lambda$, and the function taken as σ_2^2 . The final positional parameters of the non-hydrogen atoms are listed in Table III.

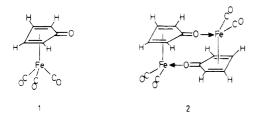
Acknowledgment. Financial support of CAICYT is gratefully acknowledged.

Registry No. Ir(OMe)(cod)(PC_{v3}), 119694-74-5; Ir(OEt)-(cod)(PC_{y3}), 119694-75-6; Ir(OPh)(cod)(PC_{y3}), 119694-76-7; Rh(OPh)(cod)(PCy3), 119694-77-8; IrH5(PCy3)2, 65231-12-1; mer-IrH₃(CO)(PC_{y3}), 119694-78-9; IrH₂(SiEt₃)(cod)(PC_{y3}), 119720-77-3; $IrH_2(SiMe_2Ph)(cod)(PCy_3), 119694-79-0; Ir(C=CPh)(cod)(PC_{13}),$ 119694-79-0; $[Ir(\mu-OMe)(Cod)]_2$, 12148-71-9; $[Ir(\mu-OEt)(cod)]_2$, 35429-65-3; $[Ir(\mu-OPh)(cod)]_2$, 35429-67-5; $[Rh(\mu-OMe)(cod)]_2$, 12148-72-0.

Supplementary Material Available: Tables of hydrogen parameters (Table IV), thermal factors (Table V), and bond lengths and angles (Table VII) (8 pages); a listing of structure factors (21 pages). Ordering information is given on any current masthead page.

X-ray Structure, Reactivity, and Catalytic Properties of a (Cyclopentadienone)ruthenium Dimer, $[(C_4Ph_4CO)(CO)_2Ru]_2$

Martin J. Mays,**[†] Michael J. Morris,**[†] Paul R. Raithby,[†] Youval Shvo,**[‡] and Dorotha Czarkie[‡]


University Chemical Laboratory, Lensfield Road, Cambridge CB2 1EW, U.K., and School of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 69978, Israel

Received July 11, 1988

The title complex 4a as well as several other isostructural complexes have been prepared. Single-crystal X-ray diffraction analysis of 4a indicates a centrosymmetric dimeric structure (Figure 1); the complex crystallizes in space group $P\overline{1}$ (No. 2): a = 10.938 (1) Å, b = 11.990 (1) Å, c = 12.528 (1) Å, $\alpha = 68.62$ (1)°, $\beta = 77.99$ (1)°, $\gamma = 64.18$ (1)°, V = 1374.8 (2) Å³, Z = 2 (monomer units), 4835 unique reflections, R = 0.056, 4324 reflections, $F > 4\sigma(F)$. The cyclopentadienone carbonyl is bent back from the diene plane at an angle of 6.7°, with a > C = O bond length of 1.270 (7) Å. A crossover experiment with two structurally different dimer complexes indicates that the thermal dissociation of these dimers is a relatively low-energy process. Nucleophilic ligands, L (L = CO, phosphines, amines), react readily with 4a to give mononuclear complexes of the type $(\eta^4-C_4Ph_4CO)Ru(CO)_2L$. Treatment of 4a with either dihydrogen or ethanol leads to oxidative addition of dihydrogen to Ru with the formation of $(\eta^5-C_4Ph_4COH)(CO)_2RuH$. The catalytic activity of 4a and other related complexes is discussed in the light of the above results.

Introduction

A complex with the empirical formula $C_7H_4O_3Fe$, first isolated by Reppe¹ from the reaction of acetylene with Fe(CO)₅, was formulated by Wilkinson et al.² and later also by others^{3,4} as the centrosymmetric dimer 2. Complex 2 is presumably formed under the reaction conditions by decarbonylation of (cyclopentadienone)tricarbonyliron (1). Although it was stated that an X-ray analysis of 2 had been undertaken,³ to the best of our knowledge it has never been published. An extensive series of substituted (cyclopentadienone)tricarbonyliron complexes of type 1 was subsequently prepared by Weiss and Hübel,⁵ but the transformation of these substituted complexes into dimers of type 2 was not reported.

ruthenium complex, (tetraphenylcyclo-Α pentadienone)tricarbonylruthenium 3a, analogous to the iron complex 1, has been synthesized by two groups,^{6,7} and its X-ray structure has been reported.⁸ Bruce and Knight⁷ have also prepared (tetrakis(trifluoromethyl)cyclopentadienone)tricarbonylruthenium. No attemps to convert these complexes to ruthenium dimers of type 4 were reported.

The chemical and in particular the catalytic properties of substituted cyclopentadienone (CPD) carbonyl ruthenium complexes have been reported by Shvo et al.8-12 Complex 3a (and later also 5) was found to function as a catalyst precursor in several reactions, originally in the oxidative coupling of primary alcohols to esters and subsequently in the oxidation of secondary alcohols to ketones⁹ and in various catalytic hydrogenations.¹⁰ It was found that in these catalytic reactions, 3a is transformed into a new isolable complex with ν (CO) at 2035, 2010, 1980, and 1970 (sh) cm⁻¹ in KBr, which was initially assigned the molecular formula $[(C_4Ph_4CO)(CO)_2Ru]_2$ and the struc-

[†]University Chemical Laboratory.

[‡]Tel Aviv University.

Reppe, W.; Vetter, H. Liebigs Ann. Chem. 1953, 582, 133.
 Green, M. L. H.; Pratt, L.; Wilkinson, L. In Progress in Inorganic

Chemistry; 1959; Vol. 1, p 108.

⁽³⁾ Weiss, E.; Merenyi, R. G.; Hübel, W. Chem. Ind. (London) 1960, 407

⁽⁴⁾ Weiss, E.; Merenyi, R. G.; Hübel, W. Chem. Ber. 1962, 95, 1155, 1170.

⁽⁵⁾ Weiss, E.; Hübel, W. J. Inorg. Nucl. Chem. 1959, 11, 42.
(6) Cetini, G.; Gambino, O.; Sappa, E.; Valle, M. Atti Accad. Sci. Torino, U.Sci. Fis., Mat. Nat. 1967, 101, 813.
(7) Bruce, M. I.; Knight, J. R. J. Organomet. Chem. 1968, 12, 411.
(8) Blum, Y.; Shvo, Y.; Chodosh, D. F. Inorg. Chim. Acta 1985, 97, Use L25

 ⁽⁹⁾ Blum, Y.; Shvo, Y. Isr. J. Chem. 1984, 24, 144.
 (10) Blum, Y.; Czarkie, D.; Rahamim, Y.; Shvo, Y. Organometallics 1985, 4, 1459.

⁽¹¹⁾ Shvo, Y.; Czarkie, D.; Rahamim, Y.; Chodosh, D. F. J. Am. Chem. Soc. 1986, 108, 7400. (12) Shvo, Y.; Czarkie, D. J. Organomet. Chem. 1986, 315, C25.