$H_3)C_6H_5$, *erythro-d₂-3a,b, threo-d₂-4a,b, threo-d₂-5a,b, and <i>erythro-d2-6a,b,* 13C NMR data for *threo-dz-5a,b* and *erythrod2-6a,b,* and **'H** NMR data and decoupling results for *cis-2,cis-***3-dz-r-1-phenylcyclopropane,** *trans-2,trans-3-d2-r-l-phenyl*cyclopropane, and *cis-2,trans-3-d₂-r-1-phenylcyclopropane* (13 pages). Ordering information is given on any current masthead page.

Resolution of the Chlral-at-Iron Acetyl Complexes C,H,(CO)(PR,)FeC(O)CH, (R = **CH,, CH2CH,). Enantloselective Cyclopropane Synthesls Uslng the Chiral Carbene Complexes (S_{Fe})**- and *(R* **Fo)-C5Hs(CO)(PR,)Fe=CHCH,+** $(R = CH_3, CH_2CH_3)$

Maurlce Brookhart" and Yumin Liu

Department of Chemistty, The University of North Carolina Chapel Hill, North Carolina 27599-3290

Received April 4, 1989

Summary: A simple and efficient method for resolving acetyl complexes $C_5H_5(CO)(PR_3)Fe-C(O)CH_3 (R = CH_3,$ CH,CH,) has been developed. These acyl complexes were converted to optically pure carbene complexes $C_5H_5(CO)(PR_3)Fe=CHCH_3^+$ (R = CH₃, CH₂CH₃) which transfer ethylidene to vinyl acetate with high enantioselectivity. The potential utility of $C_5H_5(CO)(PMe_3)$ Fe and $C_5H_5(CO)(PEt_3)$ Fe as chiral auxillaries is illustrated by the transfer reactions.

 $C_5H_5(NO)(PPh_3)$ Re and $C_5H_5(CO)(PR_3)$ Fe have been extensively used as chiral auxillaries to carry out diastereoselective reactions¹⁻⁶ and, when the auxillary is optically pure, enantioselective reactions.^{$7-10$} Of particular

(i) $(1S)-(+)$ -10-camphorsulfonic acid, CH_2Cl_2 ; (ii) crystallize from CH_2Cl_2 / Et_2O , -25°C; (iii) neutralization with 20% K₂CO₃; (iv) Yields are based on total weight of racemic 1 and 2 used, i.e., maximum yield of a single enantiomer is 50%.

(v) $(1R)$ -(-)-10-camphorsulfonic acid, CH_2Cl_2 .

synthetic interest are iron acyl complexes of the type $C_5H_5(CO)(PR_3)FeC(O)R'$, since these species can be elaborated in many useful ways.^{1-7,9,10} Brunner has prepared several optically pure acyl complexes.^{11,12} For example, (R) - and (S) -C₅H₅(CO)(PPh₃)Fe-C(O)CH₃ were resolved via separation of the diastereomers of $C_5H_5(CO)(PPh_3)$ -Fe-C(O)-O-menthyl followed by reaction with $CH₃Li^{11,13}$ We have achieved chromatographic separation of the diastereomers of $C_5H_5(CO)(\overline{P}P\overline{h}_2R^*)\overline{FeC}(O)CH_3$ (R^* =

⁽¹⁾ For examples from the Gladysz lab, see: (a) Constable, A. G.; Gladysz, J. A. J. Organomet. Chem. 1980,202, C21. (b) Kiel, W. A.; Lin, C.H.; Constable, A. G.; McCormick, F. B.; Strouse, C. E.; Eisentein, O.; Gladysz, J. A. J. Am. Chem. Soc. 1982, 104, 4862. (c) Kiel, W. A.; Lin, G.-H.; Bodner, G. S.; Gladysz, J. A. J. Am. Chem. Soc. 1983, 105, 4958.
(d) C

Tetrahedron Lett. 1985,26,2129. (c) Baird, G. J.; Daviea, *S.* G.; Maberly, T. R. Organometallics 1984,3, 1764. (d) Ayscough, A. P.; Davies, S. G. J. Chem. SOC., Chem. Commun. 1986, 1648. (e) Davies, *S.* G.; Dordor-Hedgecock, I. M.; Warner, P. *J. Organomet. Chem*. 1985, 285, 213. *(f)*
Davies, S. G.; Dordor-Hedgecock, I. M.; Warner, P. *Tetrahedron Lett.* 1985, *26, 2125. (g) Brown, S. L.; Davies, S. G.; Warner, P.; Jones, R. H.; Prout, K. J. Chem. Soc., Chem. Commun. 1985, 1446. (h) Davies, S. G.;* Seeman, J. I. Tetrahedron Lett. 1984,25, 1845.

⁽³⁾ For examples from the Liebeskind lab, see: (a) Liebeskind, L. S.; Welker, M. E.; Fengl, R. W. J. Am. Chem. Soc. 1986, 108, 6328. (b)
Liebeskind, L. S.; Fengl, R.; Welker, M. E. *Tetrahedron Lett*. 1985, 26, 3075, 3079. (c) Liebeskind, L. S.; Welker, M. E.; Goedken, V. *J.* Am. Chem. SOC. 1984, 106, 441. (d) Liebeskind, L. S.; Welker, M. E. Organometallics 1983, 2, 194.

^{(4) (}a) Brookhart, M.; Liu, Y.; Buck, R. C. *J. Am. Chem. Soc.* 1988, 110, 2337. (b) Brookhart, M.; Tucker, J. R.; Husk, G. R. *J. Am. Chem.* Soc. 1981, 103, 979. (c) Brookhart, M.; Tucker, J. R.; Husk, G. R. *J. Am.* Chem. SOC. 1983,105, 258.

⁽⁵⁾ Ojima, I.; Kwan, J. Am. Chem. *SOC.* 1988,110, 5617.

⁽⁶⁾ **Herndon and co-workers have demonstrated that Michael addition reactions of** $C_5H_5(CO)(PBu_3)FeCOCH=CHR$ **exhibit high diastereose**reactions of C₅H₅(CO)(PBu₃)FeCOCH=CHR exhibit high diastereose-
lectivity. Thus, PBu₃ serves to effectively shield one face of the double
bond from nucleophilic attack. Herndon, J. W.; Wu, C.; Ammon, H. L. *J.* Org. Chem. 1988,53, 3875.

⁽⁷⁾ Brookhart, M.; Timmers, D.; Tucker, J. R.; Williams, G. D.; Husk, G. R.; Brunner, H.; Hammer, B. J. Am. Chem. SOC. 1983, 105, 6721. (8) Davison, A.; Krusell, W. C.; Michaelson, R. C. J. Organomet. *Chem.* 1974, 72, **C7.**

^{(9) (}a) Merrifield, J. H.; Strouse, C. E.; Gladysz, J. A. Organometallics
1982, 1, 1204. (b) Buhro, W. E.; Wong, A.; Merrifield, J. H.; Lin, G.-H.; Gladysz, J. A. Organometallics 1983, 2, 1852. (c) O'Conner, E. J.; Kobayas 4837.

^{(10) (}a) Davies, S. G.; Walker, J. C. J. Chem. SOC., Chem. Commun. 1986,609. (b) Davies, S. G. Pure *Appl.* Chem. 1988,60, 13. (c) Bechett, R. P.; Davies, S. G. *J.* Chem. SOC., Chem. Commun. 1988, 160. (d) Bashiardes, G.; Davies, S. G. Tetrahedron Lett. 1988, 29, 6509.

⁽¹¹⁾ Brunner, H.; Schmidt, E. J. Organomet. Chem. 1972, 36, C18.

(12) Diastereomers of Cp'(CO)Fe(COR)P(C₀H₀)₂NR'R* (Cp' = C₀H₀, C₀H₇(indeny)); R = CH₃, C₂H₅, CH₂C₆H₆; R' = H, CH₃, C₂H₅, CH

⁽¹³⁾ Optically pure complexes (S) - and (R) -C₆H₆(CO)(PPh₃)FeC(O)- $CH₃$ are commercially available from BP Chemicals¹⁰ and Fluka. Procedures used for their preparation have not been published.

(i) MeOTf, 25°C; (ii) NaBH₄/NaOMe/MeOH, -78°C;

(iii) **TMSOTf.** -78° C; (iv) -78° C to 25°C, 0.1 equiv. NEt₃ and 10 equiv. vinyl acetate

 $(S)-2$ -methylbutyl).⁷ No convenient procedures are available for resolution of simple trialkylphosphine acyl complexes. Described here is an easy and inexpensive procedure for resolution of $C_5H_5(CO)(PR_3)FeC(O)CH_3(1,$ $R = CH₃$; 2, $CH₂CH₃$) which should prove to be a general method for resolution of chiral metal acyl complexes. The utility of optically pure 1 and 2 is illustrated by conversion to the Corresponding optically pure iron ethylidene complexes followed by ethylidene transfer to vinyl acetate to form cyclopropanes with high enantioselectivity.

The acyl oxygen of iron acyl complexes $C_6H_6(CO)$ - $(PR₃)FeC(O)R$ is basic and can be readily methylated or protonated to give the corresponding methoxy- or hydroxycarbene salts.^{4,7,14} Protonation of 1^{15} and 2^{15} (ν_{CO}) = 1910 cm⁻¹) in CH₂Cl₂ with either (1S)-(+)- or (1R)- $(-)$ -10-camphorsulfonic acid leads to complete conversion
to 1:1 mixtures of diastereomeric hydroxycarbene salts (ν_{CD}) $t = 1967-1977$ cm⁻¹). These diastereomeric carbene salts can be readily separated by successive crystallizations in CH_2Cl_2/Et_2O at -25 °C, and optically pure 1 or 2 can be recovered by simple neutralization. Results are summarized in Scheme I, and a typical resolution procedure is described.¹⁶ The enantiomeric excesses of the acetyl The enantiomeric excesses of the acetyl complexes 1 and **2** were determined by 'H NMR spectroscopy using the chiral shift reagent $(+)$ -Eu(hfc)₃.¹⁵ Absolute configurations were assigned by using the sign

and magnitude¹⁷ of $\lbrack \alpha \rbrack^{23}$ ₄₃₆ in analogy with similar acyl complexes of known configuration.^{7,12,13}

Optically pure 1 and **2** are readily converted to optically pure ethylidene complexes $C_5H_5(CO)(PMe_3)$ Fe=CHCH₃⁴ (3) and $C_5H_5(CO)(PEt_3)Fe=CHCH_3^+$ (4) using standard procedures.' Methylation of 1 and **2** with methyl triflate $\text{[CH}_2\text{Cl}_2\text{]}$ followed by hydride reduction using NaBH₄/ CH30H/CH30Na yields **C6H5(CO)(PMe3)FeCH(OCH3)-** CH_3 (5)¹⁵ and $C_5H_5(CO)(PEt_3)FeCH(OCH_3)CH_3$ (6).¹⁵ Treatment of either 5 or 6 with TMSOTf $(CH_2Cl_2, -78 \text{ °C})$ yields carbene **salts 3** and **4.** Both *anticlinal* and *synclinal* isomers are observed at -104 "C **(3-anticlinal:3-synclinal** $=$ ca. 4.6:1.0, 4-anticlinal:4-synclinal $=$ ca. 10.9:1.0), and rates of interconversion have been determined by using variable-temperature ¹H NMR data.^{4a}

Enantioselective ethylidene transfers from **3** and **4** to vinyl acetate were performed, and results are summarized Reactions were conducted by adding TMSOTf (1.1 equiv) to the ether complexes (5 or 6) in CH_2Cl_2 (-78 °C) containing vinyl acetate (10 equiv) and triethyl amine (0.1 equiv). Reaction mixtures were warmed to 25 "C and stirred for 2 h prior to workup. The product cis- and trans-cyclopropanes¹⁵ were separated and purified by GC; yields of 50-60% for **3** and 27-35% for **4** were determined by using nonane as an internal standard. Enantiomeric excesses were determined by 'H NMR spectroscopy using the chiral shift reagent $(+)$ -Eu(hfc)₃. Optical yields for **all** products are high and fall in the range of 89-97%. Absolute configurations are unknown. Configurations shown in Scheme **I1** are based on analogy with ethylidene transfers to styrene7 and are consistent with the most likely mechanism for transfer that involves alkene attack on the more reactive synclinal isomers followed by $C_{\gamma}-C_{\alpha}$ bond formation via inversion of the configuration at C_{α} ^{4a,18,19} The high ee's obtained indicate that $PMe₃$ and PEt_3 effectively shield one face of the carbene moiety from attack and that such shielding does not necessarily require phosphines which may place an arene ring in a face-to-face orientation with the planar carbene ligand. $2h,5,6$

In summary, a simple and efficient method for resolving acyl complexes $C_5H_5(CO)(PR_3)FeC(O)CH_3$ (R = CH₃, $CH₂CH₃$) has been developed and is potentially applicable to any chiral acyl complex sufficiently basic to be protonated by alkyl sulfonic acids. Optically pure carbene complexes $C_5H_5(CO)(PR_3)Fe=CHCH_3^+$ (R = CH_3 , $CH₂CH₃$) were used to carry out ethylidene transfer with high enantioselectivity that illustrates the potential utility of $C_5H_5(CO)(PMe_3)$ Fe and $C_5H_5(CO)(PEt_3)$ Fe as chiral auxillaries.

Acknowledgment is made to National Institute of Health (GM28938) and the donors **of** the Petroleum Research Fund, administered by the American Chemistry Society, for support of this work.

Supplementary Material Available: 'H, lSC NMR, IR, and elemental analysis data for **1,2, 5,** and **6** and **'H** NMR data for **cis-1-acetoxy-2-methylcyclopropane** and trans-l-acetoxy-2 methylcyclopropane and **'H NMR shift** experiments on **1-S** using $(+)$ -Eu(hfc)₃ (4 pages). Ordering information is given on any current masthead page.

_____~~ **(14)** Green, M. L. H.; Swanwick, M. G. J. *Chem.* SOC. *A* 1971, **794.** (15) See supplementary material for ¹H and ¹³C NMR spectral data, and elemental analyses and **'H** NMR shift experiments.

⁽¹⁶⁾ A **0.49-g** sample of 1 **(1.83** mmol) in **15** mL of CH2C12 was treated with **0.52** g **(2.24** mmol) of **(IS)-(+)-lO-camphorsulfonic** acid. Ether **(45 mL)** was added, and the solution was stirred at room temperature for **10** min. A small additional quantity of CH₂Cl₂ was added if any precipitation was evident. The homogeneous solution **was** then cooled to **-25** "C overnight. Crystalliie solid was isolated by filtration and (S)-l **(47%** yield and 86% ee) was regenerated by neutralization with aqueous K_2 Neutralization of the solution phase results in (R)-1 **(42%** yield and **91%** ee). Recycling (S)-1 in analogous fashion results in 80% yield (overall yield 38%) of (S)-1 (>99% ee). Similarly, treatment of (R)-1 with $(1R)$ -(-)-10-camphorsulfonic acid and neutralization of the solid fraction folloanng crystallization results in 80% yield (overall yield **34%)** of (R)-1 **(96%** ee).

 (17) $[\alpha]^{23}$ **as = -500°** for (S)-1 (>99% ee) and $[\alpha]^{23}$ **as = +493°** for (R)-1 (96% ee); $[\alpha]^{23}$ **as = -529°** for (S)-2 (95% ee) and $[\alpha]^{23}$ **as = +545°** for *(R)-2* **(96%** ee).

⁽¹⁸⁾ Brookhart, M.; Liu, Y. NATO *Aduanced Research Workshop. Advances in Metal Carbene Chemistry;* Schubert, U., Ed.; D. Reidel: Boston, **1989;** in press.

⁽¹⁹⁾ Brookhart, M.; Liu, Y. *Organometallics,* submitted for publication.