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Summary: The complexes (n®-CgHe)M(EL,C,B,H,), where
M = Fe or Ru, undergo reversible one-electron oxidation
to the corresponding M(I11) monocations, as determined
by cyclic voltammetry measurements. The E° values are
0.54 and 0.85 V vs Cp,Fe”™ for the Fe and Ru com-
plexes, respectively. A bis(ferracarborane) complex of
biphenyl shows two reversible oxidations (E° = 0.55 and
0.84 V). This is the first evidence that Fe(II) or Ru(II)
arene complexes can be reversibly oxidized and further
establishes the ability of nido -R,C,B,H,% ligands to sta-
bilize arene—transition-metal w-complexes.

The reversible oxidation of r-arene complexes of Fe(II)
or Ru(II) has been the goal of a number of investigations.
However, except for the report of a frozen solution ESR
signal attributed to Fe(III) when (arene)FeCp cations are
oxidized in SbCl;/CH,Cl,,! these efforts have been un-
successful.? Fe(II) arene complexes have been generally
shown to be inert to oxidation either at an electrode?® or
by chemical oxidants.*® Analogous Ru(II) arene com-
plexes have been reported to undergo irreversible elec-
trochemical oxidation.”® In this communication we show
by cyclic voltammetry experiments that metal carborane
complexes of arenes undergo reversible M(II)/M(III)
processes.

The nido-carborane dianion (R,C;B,H,)?* forms sand-
wich complexes that are electronically and structurally
analogous to those of the cyclopentadienyl anion,® and a
number of air-stable divalent carboranyl metal arene
complexes have recently been described.!® Since small
carborane ligands are known to strongly stabilize high
metal oxidation states,!! we decided to investigate the
electrochemical oxidation of Fe and Ru arene complexes
containing the ligand (Et,C,B,H,)*. Reversible one-
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electron processes are observed for complexes [(n®-
CeHo)M(Et,C,B,H,) 1 [M = Fe (1) or Ru (2)] in di-
chloromethane solutions.

Cyclic voltammetry scans are shown in Figure 1 for
(n8-CeHg)Fe(Et,C,B,H,) (solid line) and for the ruthenium
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Figure 1. Cyclic voltammograms of Fe complex 1 (solid line) and
Ru complex 2 (open circles) in CH,Cl,/0.1 M Bu,NPF; at Pt
electrode. Conditions: ambient temperature; scan rate = 200
mV/s; concentration = 0.56 mM. Full scale on the y axis is 4.5
UA.

analogue (n%-CgHg)Ru(Et,C,B,H,) (open circles). Both
M(I) complexes undergo diffusion-controlled one-electron
oxidation processes. The one-electron nature of the oxi-
dation was established through comparison of the wave
heights with that of a le standard (ferrocene) and by ex-
haustive coulometry of the Fe complex. Separations of
about 70-80 mV were observed for the cathodic and anodic
peak currents, close to those observed for ferrocene under
similar conditions and scan rates (ca. 0.1-0.2 V/s).

The chemical reversibility of the Fe(II)/Fe(III) couple
is complete at 298 K when the scan rate is at least 0.1 V/s.
The stability of the Ru(III) complex is slightly lower, as
indicated by the lower chemical reversibility of the Ru-
(I1)/Ru(III) couple. At 298 K and a scan rate of 0.2 V/s,
the ratio of i, to i, is only 0.67 for the Ru complex (this
ratio increased to 0.93 at a scan rate of 0.5 V/s). The E°
of the Fe complex is 0.54 V vs Cp,Fe%* (+1.01 V vs SCE)
and that of the Ru complex is +0.85 V vs Cp,Fe%*. In
earlier work, substitution of a Cp~ ligand by R,C,B,H,*
(R = H, Me) was shown to shift a Fe(II)/Fe(IlI) wave
negative by about 0.8 V.1* This stabilization is much larger
than the shifts in potential (either positive or negative) that
have been achieved through substitution within the cy-
clopentadienyl group.'? Therefore, where synthetically
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Figure 2. Cyclic voltammogram of biphenyl diiron complex 3
in CH,Cl,/0.1 M Bu,NPF; at Pt electrode. Conditions: ambient
temperature; scan rate = 200 mV/s; concentration = 1.0 mM. Full
scale on the y axis is 13 uA.

feasible, substitution of a cyclopentadienyl ligand by a
carboranyl ligand should be considered when stabilization
of a Fe(III) or Ru(IIl) complex is desired.

The reduction of dinuclear iron(II) arene complexes,
linked either through the arenes'® or through cyclo-
pentadienyl units,! or in cyclophane complexes,'® has
received attention owing to questions concerning mixed
valency and electronic delocalization in the formal Fe-
(IT) /Fe(I) species. However, lack of a suitable oxidation
process has precluded studies of mixed valency for Fe-
(IT)/Fe(III) systems with arene linkages.® The use of the
carborane capping ligand in place of Cp™~ allows oxidation
of dinuclear iron complexes to be observed. Therefore, the
biphenyl complex 3 undergoes two reversible one-electron
oxidations (Figure 2) at E° = +0.55 and +0.84 V vs
Cp,Fe%*, The separation of the successive E° values (290
mV) is slightly less than those reported for the successive
oxidations of biferrocene (330-350 mV).1617 A study of
mixed valency in the cations derived from 3 and other
diiron systems is underway.
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Summary: Ce(OCMeg),(NO,),(THF), reacts with 2 equiv
of NaC5H5 to form (C5H5)2CG(OCM63)2 in 90% yield. The
reaction of Ce(OCMe;XNO;)s(THF), with NaC;H; forms a
mixture of (C5H5)2C6(OCM93)2 and (C5H5)303(OCM93).
The latter product can be isolated by recrystallization from
hexane at -34 °C. It crystallizes in space group Pnma
with unit cell parameters at 183 K of a = 14.8351 (17)
A, b= 13.3467 (14) A, c = 8.9677 (9) A, V = 1775.6
(3) A% and Dy = 1.58 g cm™ for Z = 4. Least-
squares refinement of the model based on 1661 reflec-
tions converged to a final Re of 5.1%. The three C;H;
ring centroids and the alkoxide oxygen atom form a dis-
torted tetrahedron around the Ce(IV) center with a 2.76
(2) A average Ce-C distance and a 2.045 (6) A Ce-0O
length.

A fundamental question that has persisted for many
years in the organolanthanide area is whether or not or-
ganometallic complexes of tetravalent cerium can exist.'™
There is good reason to question the existence of organo-
metallic Ce(IV) complexes, since Ce(IV) is strongly oxi-
dizing and the anionic ligands typically found in organo-
lanthanide complexes (e.g., C;Hs~, CgHg?", and R") are
strongly reducing. Skepticism increased when some early
syntheses®2 of organometallic cerium(IV) complexes were
found to be irreproducible or to form cerium(III) com-
plexes.!37 In 1985, the synthesis of Ce(CgHy),!® was
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