telluro)acetylene. To a solution of sodium borohydride (1.9 g, 50 mmol) in ethanol (100 mL) in a 500-mL three-necked flask equipped with a dropping funnel, reflux condenser, and nitrogen inlet were added 2 mL of a solution prepared from phenyl(butyltelluro)acetylene (11.4 g, 40 mmol) and ethanol (40 mL). The reaction mixture was stirred and refluxed until the red color had disappeared and the gas evolution had ceased. Then the remaining ethanolic solution of phenyl(butyltelluro)acetylene (38 mL) was added dropwise. The rate of addition must be carefully adjusted to control foaming. When all the solution had been added, the mixture was refluxed for 3 h, cooled to room temperature, then treated with water (3 mL), diluted with diethyl ether (150 mL), and washed with brine $(3 \times 100 \text{ mL})$. The organic layer was separated, dried over anhydrous magnesium sulfate, and filtered. The filtrate was evaporated in a rotatory evaporator at 20 mmHg and the residue purified by flash chromatography on silica gel with hexane as mobile phase. The product (10.5 g, 92% yield) gave an ¹H NMR spectrum identical with published data.²⁹

(Z)-1-Phenyl-1-hydroxy-3-phenylprop-2-ene from (Z)-1-(Butyltelluro)-2-phenylethene. To (Z)-1-butyltelluro-2phenylethene (0.288 g, 1 mmol) in THF (3 mL) at -78 °C under nitrogen was added dropwise n-BuLi (0.67 mL, 1.5 M in hexane). The mixture was stirred at this temperature for 30 min, warmed to 0 °C, and then treated with benzaldehyde (0.106 g, 1 mmol). The mixture was stirred at 0 °C for 30 min, diluted with diethyl ether (40 mL), and washed with brine (4×15 mL). The organic laver was separated, dried over anhydrous magnesium sulfate, and filtered. The filtrate was evaporated in a rotatory evaporator at 20 mmHg. The product was purified by column chromatography on silica gel. Hexane eluted dibutyl telluride and ethyl acetate, the product (0.176 g, 85% yield). ¹H NMR (CDCl₃): δ 2.40 (s, 1 H); 5.57 (d, J = 9.2 Hz, 1 H), 5.89 (dd, J = 9.2, J = 11.0 Hz, 1 H), 6.64 (d, J = 11.0 Hz, 1 H), 2.2–7.3 (m, 10 H). IR (film): $3351, 1601 \text{ cm}^{-1}$

(Z)-Phenyl-1-hydroxy-3-phenylprop-2-ene from (Z)-Bis-(2-phenylethenyl) Telluride. To a solution of (Z)-bis(2phenylethenyl) telluride (0.334 g, 1 mmol) in THF (4 mL) at -78 °C under nitrogen was added dropwise a solution of n-BuLi (1.34 mL, 2 mmol, 1.5 M solution in hexane). After 40 min of stirring at this temperature, benzaldehyde (212 mg, 2 mmol) was added. The reaction mixture was allowed to reach room temperature (30 min), then diluted with ethyl acetate (40 mL), and washed with brine $(4 \times 15 \text{ mL})$. The organic layer was separated, dried with anhydrous magnesium sulfate, and filtered. The filtrate was evaporated in a rotatory evaporator at 20 mmHg. The residue was purified by column chromatography on silica gel. Elution with hexane removed dibutyl telluride, and elution with ethyl acetate yielded the product (334 mg, 80% yield).

Reaction of Sulfur Dioxide with the Unsaturated Triosmium–Platinum Clusters $Os_3Pt(\mu-H)_2(CO)_{10}(PR_3)$ $(R = c-C_6H_{11}, C_6H_5)$. X-ray Crystal Structure of $Os_3Pt(\mu-H)_2(\mu-SO_2)(CO)_{10}(PCy_3)$

Paul Ewing and Louis J. Farrugia*

Department of Chemistry, The University, Glasgow G12 8QQ, U.K.

Received October 17, 1988

Treatment of $Os_3Pt(\mu-H)_2(CO)_{10}(PR_3)$ (1a, R = Cy) in CH_2Cl_2 with excess SO_2 at ambient temperatures affords reasonable isolated yields of the 60-electron adduct $Os_3Pt(\mu-H)_2(\mu-SO_2)(CO)_{10}(PCy_3)$ (3), which has been characterized by multinuclear NMR and a single-crystal X-ray structure. Crystal data for 3: monoclinic; space group $P2_1/n$; a = 13.254 (2), b = 15.893 (5), c = 17.079 (2) Å; $\beta = 101.073$ (9)°; V = 3531(1) Å³; Z = 4; final $R(\bar{R}_w)$ values 0.027 (0.036) for 4622 independent observed data $(I > 3.0\sigma(I))$. Complex 3 contains a tetrahedral Os_3Pt core with the SO_2 ligand bridging an Os-Os edge (Os(1)-Os(3) = 2.988 (1) Å). The two hydride ligands bridge the Os(2)-Os(3) edge (2.976(1) Å) and the Pt-Os(2) vector (2.906(1) Å)Å). NMR studies on the reaction at 195 K suggest that the initially formed product is a butterfly Os_3Pt species with a Pt-bound SO₂ ligand. This product is unstable at ambient temperatures and rapidly converts to a mixture of complexes including 3. Complex 3 exists as two isomers in solution, and in the absence of excess SO₂ cluster degradation readily occurs. Treatment of (1b, R = Ph) with SO₂ at ambient tem-peratures affords the analogous complex $Os_3Pt(\mu-H)_2(\mu-SO_2)(CO)_{10}(PPh_3)$ which in solution exists primarily as an isomer containing equivalent Os-Os edge-bridged hydrides.

Introduction

Numerous kinetic studies on the ligand substitution reactions of small homometallic carbonyl clusters have shown that both associative and dissociative mechanisms operate and that their relative rates depend both on the metal atom and on the nature of the ancilliary ligands.¹⁻⁴

Although fewer kinetic studies have been carried out on heterometallic clusters, it is well-known that these species may display metal site specificity in their substitution reactions with donor ligands.⁵ In this context the re-

^{(1) (}a) Dahlinger, K.; Falcone, F.; Poë, A. J. Inorg. Chem. 1986, 25, 2654. (b) Poë, A. J.; Sekhar, V. C. Ibid. 1985, 24, 4376. (c) Ambwani, B.; Chawla, S.; Poë, A. J. Ibid. 1985, 24, 2635.

^{(2) (}a) Darensbourg, D. J.; Baldwin-Zusche, B. J. J. Am. Chem. Soc. 1982, 104, 3906. (b) Darensbourg, D. J.; Incorvia, M. J. Inorg. Chem. 1980, 19, 2585. (c) Darensbourg, D. J.; Zalewski, D. J. Ibid. 1984, 23, 4382. (d) Darensbourg, D. J.; Zalewski, D. J. Organometallics 1985, 4, 92.

^{(3) (}a) Sonnenberger, D.; Atwood, J. D. Inorg. Chem. 1981, 20, 3243.
(b) Sonnenberger, D.; Atwood, J. D. Organometallics 1982, 1, 694.
(4) (a) Bavaro, L. M.; Montangero, P.; Keister, J. B. J. Am. Chem. Soc.
1983, 105, 4977. (b) Rahman, Z. A.; Beanan, L. R.; Bavaro, L.; Modi, S. P.; Keister, J. B.; Churchill, M. R. J. Organomet. Chem. 1984, 263, 75.
(c) Bavaro, L. M.; Keister, J. M. Ibid. 1985, 287, 357. (d) Dalton, D. M.; Bearnett, D. L. Durger, T. B.; Keister, L. H. Molit, S. P. Barnett, D. J.; Duggan, T. P.; Keister, J. B.; Malik, P. T.; Modi, S. P.; Shaffer, M. R.; Smesko, S. A. Organometallics 1985, 4, 1854. (5) Matsuzaka, H.; Kodama, T.; Uchida, Y.; Hidai, M. Organometallics

^{1988, 7, 1608} and ref 7 therein.

activity of electronically or coordinatively unsaturated clusters is of particular interest, since such complexes should react with donor ligands exclusively by an associative route. A knowledge of the nature and localization of the LUMO may allow a rationalization of any regioselectivity of nucleophilic attack.

We have been interested in the reactivity of the unsaturated 58-electron heteronuclear clusters tetrahedro- $Os_3Pt(\mu-H)_2(CO)_{10}(PR_3)$ (1)⁶ which have been shown⁷⁻⁹ to react readily with 2-electron donor ligands affording the saturated 60-electron adducts $Os_3Pt(\mu-H)_2(CO)_{10}(PR_3)(L)$ (2). An intriguing feature of these adducts is that they may either adopt a butterfly metal core as for 2a (R = Cy; L = CO)⁸ or **2b** (R = Ph; L = PPh₃)⁷ or a tetrahedral core as for 2c (R = Cy; L = μ -CH₂)⁸ or 2d (R = Cy; L = 2 μ -H)⁸.

Recently reported¹⁰ extended Hückel MO calculations on 1 indicate that the low-lying LUMO is localized along the hydride-bridged Os-Os bond and is strongly Os-Os antibonding. Structural studies on the 58-electron clusters 1a (R = Cy),⁶ Os₃Pt(μ -H)₂(CO)₉(CNCy)(PCy₃),⁹ and [Os₃Pt- $(\mu-H)_3(CO)_{10}(PCy_3)$]⁺BF₄⁻¹¹ all show an unusually short Os(μ -H)Os vector (2.747 (1)–2.789 (1) Å, mean 2.76 Å), while in the 60-electron saturated adducts⁷⁻⁹ the corresponding bond lengths (2.869 (1)-3.043 (2) Å, mean 2.97 Å) are all longer and of normal dimensions. These results are consistent with the population of an orbital of Os-Os antibonding character in going from the 58- to the 60electron species and suggest a localization of unsaturation about this Os-Os bond. The known structures of the adducts 2a-c all contain the incoming ligand L bonded to

- (6) Farrugia, L. J.; Howard, J. A. K.; Mitrprachachon, P.; Stone, F. G. A.; Woodward, P. J. Chem. Soc., Dalton Trans. 1981, 155
- A.; Woodward, P. J. Chem. Soc., Datton Trans. 1981, 155.
 (7) Farrugia, L. J.; Howard, J. A. K.; Mitrprachachon, P.; Stone, F. G.
 A.; Woodward, P. J. Chem. Soc., Datton Trans. 1981, 162.
 (8) Farrugia, L. J.; Green, M.; Hankey, D. R.; Murray, M.; Orpen, A.
 G.; Stone, F. G. A. J. Chem. Soc., Datton Trans. 1985, 177.
 (9) Ewing, P.; Farrugia, L. J. Organometallics 1988, 7, 871.
 (10) Ewing, P.; Farrugia, L. J.; New J. Chem. 1988, 12, 409.
 (11) Ewing, P.; Farrugia, L. J.; Rycroft, D. S. Organometallics 1988, 7
- 7, 859.

Os atoms, and in view of this evidence, it seems a reasonable supposition that nucleophilic attack under orbital control occurs at these Os centers. The EHMO calculations indicate however that if charge considerations are paramount, nucleophilic attack may occur at the Pt atom since this carries a slight positive charge of +0.52, compared with negative charges of ca. -1.7 at the Os centers. The calculations¹⁰ also suggested that a tetrahedral Os₃Pt arrangement in the adducts 2 could be stabilized by bridging ligands L having frontier orbitals resembling those of the CH₂ unit, i.e., a σ -donor and a single π -acceptor function of suitable energy.

The methylene adduct 2c exists as a mixture of two isomers, both containing a tetrahedral Os₃Pt skeleton but differing in the disposition of the hydride ligands and the orientation of the $Pt(CO)(PCy_3)$ unit relative to the Os_3 triangle.⁸ The red C_1 isomer (i, Chart I) has two inequivalent hydrides, one bridging an Os-Os and the other an Os–Pt edge, with the phosphine eclipsing the $Pt(\mu-H)Os$ edge. The yellow C_s isomer (ii) has two hydrides bridging equivalent Os–Os edges, and the $Pt(CO)(PCy_3)$ unit is rotated 180° relative to the Os₃ triangle such that the CO ligand is now eclipsing the Pt-Os edge. The two isomers are in equilibrium, with the red species being the thermodynamically favored product.⁸ In view of the known similarity between the frontier orbitals of SO_2 and CH_2 ,¹² we have examined the reaction of complexes 1a (R = Cy) and 1b (R = Ph) with SO₂ to determine whether analogous products are formed. The HOMO (4 a_1 , σ donor) and LUMO (2b₁, π acceptor) of sulfur dioxide¹² provide suitable symmetry matches for the HOMO and LUMO, respectively, of 1.

Results and Discussion

Reaction of Complex 1a with SO_2 at 298 K. Saturation of a solution of 1a in CH₂Cl₂ with SO₂ at 298 K resulted in a rapid color change from dark green to red. Addition of hexane and overnight cooling afforded the dark red crystalline complex $Os_3Pt(\mu-H)_2(\mu-SO_2)(CO)_{10}(PCy_3)$ (3) in reasonable yields. ¹H NMR studies (discussed in detail below) show that this species is the major product formed and that it is reasonably stable in solution only in the presence of excess SO₂. An IR spectrum (KBr disk) of complex 3 shows two bands at 1040 and 1195 cm⁻¹ in the S–O stretching region, which are typical¹³ for μ -SO₂ ligands. A ¹H NMR spectrum of 3 obtained immediately after dissolution of a pure crystalline sample¹⁴ in CD_2Cl_2

⁽¹²⁾ Ryan, R. R.; Kubas, G. J.; Moody, D. C.; Eller, P. G. Struct. Bonding (Berlin) 1981, 46, 47. (13) Kubas, G. J. Inorg. Chem. 1979, 18, 182.

Reaction of SO₂ with Triosmium-Platinum Clusters

Table I. Final Positional Parameters (Fractional Coordinates) with Esd's in Parentheses and Isotropic Thermal Parameters (Equivalent Isotropic Parameters (U_{eq}) for Anisotropic Atoms) for Os₃Pt(μ -H)₂(μ -SO₂)(CO)₁₀(PCy₃) (3)^a

	0031 0(# 11/2(# 202/(00)/10(2 003) (0)			
	x/a	y/b	z/c	$U_{ m eq}$, Å ²
Os(1)	0.60565 (3)	0.18674 (2)	0.77234 (2)	0.025
Os(2)	0.76513(3)	0.30264 (2)	0.81582(2)	0.025
Os (3)	0.56537 (3)	0.36653(2)	0.72543(2)	0.023
Pt	0.68748 (3)	0.26012(2)	0.64971 (2)	0.022
S	0.49627 (18)	0.28582(14)	0.81741(14)	0.033
Р	0.80915 (17)	0.26150(13)	0.56543 (12)	0.021
0(1)	0.4153(7)	0.0940 (5)	0.6844(5)	0.075
O(2)	0.7585(6)	0.0602(4)	0.7277(4)	0.054
O(3)	0.6268(7)	0.0975 (5)	0.9320 (5)	0.072
O(4)	0.9224 (7)	0.4446 (5)	0.8549 (5)	0.070
O(5)	0.9272(7)	0.1663(5)	0.8493 (6)	0.076
O(6)	0.7384 (7)	0.2876(5)	0.9886(4)	0.064
O(7)	0.6642(7)	0.4765(4)	0.6120(4)	0.069
O(8)	0.3730 (6)	0.3378 (5)	0.6007(4)	0.054
O(9)	0.4790 (6)	0.5203(4)	0.7929 (4)	0.056
O(10)	0.5137 (6)	0.1906 (6)	0.5284(5)	0.064
0(11)	0.5212(5)	0.3127(4)	0.8996 (4)	0.045
O(12)	0.3860 (5)	0.2678(4)	0.7895(4)	0.049
C(1)	0.4848 (9)	0.1286(6)	0.7151 (6)	0.045
C(2)	0.7033 (8)	0.1122(6)	0.7386(5)	0.037
C(3)	0.6174 (8)	0.1308(7)	0.8720 (6)	0.045
C(4)	0.8647 (8)	0.3936 (6)	0.8372(6)	0.041
C(5)	0.8674(8)	0.2165(7)	0.8378 (6)	0.046
C(6)	0.7474 (8)	0.2952 (6)	0.9254 (6)	0.036
C(7)	0.6333 (7)	0.4270 (5)	0.6497 (5)	0.029
C(8)	0.4452(8)	0.3493 (5)	0.6489 (6)	0.035
C(9)	0.5107 (8)	0.4641(6)	0.7667(5)	0.036
C(10)	0.5817 (8)	0.2159 (7)	0.5746 (6)	0.041
C(111)	0.9403 (7)	0.2720 (5)	0.6282 (5)	0.030
C(112)	0.9629 (7)	0.3631(6)	0.6534 (5)	0.031
C(113)	1.0623 (8)	0.3684(6)	0.7159 (6)	0.043
C(114)	1.1522(7)	0.3290(7)	0.6874 (6)	0.045
C(115)	1.1292 (8)	0.2389(7)	0.6617 (6)	0.045
C(116)	1.0315 (7)	0.2336 (6)	0.5961 (5)	0.035
C(121)	0.7894 (7)	0.3533(5)	0.4987 (5)	0.029
C(122)	0.6781 (7)	0.3624(6)	0.4530(5)	0.032
C(123)	0.6654 (8)	0.4451(6)	0.4075 (6)	0.041
C(124)	0.7391 (9)	0.4494(7)	0.3479 (6)	0.053
C(125)	0.8485 (8)	0.4407(6)	0.3929 (6)	0.043
C(126)	0.8648 (8)	0.3583 (6)	0.4411(5)	0.038
C(131)	0.8165(7)	0.1654(5)	0.5062 (5)	0.027
C(132)	0.8257 (8)	0.0893 (5)	0.5618 (5)	0.036
C(133)	0.8532 (9)	0.0099 (6)	0.5205 (6)	0.049
C(134)	0.7723(10)	-0.0073 (6)	0.4402 (0)	0.002
C(130)	0.7094 (9)	0.0078 (7)	0.9919 (0)	0.049
U(130)	0.7339 (8)	0.1494 (0)	0.4320 (8)	0.030
H(1) H(0)	0.13410	0.01410	0.71020	0.000
11(4)	0.07470	0.07440	0.00000	0.000

^a $U_{eq} = \frac{1}{3}\sum_{i}\sum_{j}U_{ij}a_{i}^{*}a_{j}^{*}a_{i}^{*}a_{j}$

showed two sharp doublet signals at δ -14.48 (J(P-H) = 7.9, J(Pt-H) = 574 Hz) and -20.66 (J(P-H) = 1.5, J(Pt-H) = 19 Hz), each of relative intensity 1.0, and a weaker doublet at δ -20.20 (J(P-H) = 3.1, J(Pt-H) = 15 Hz) of relative intensity 0.34. The relative proportions of these two sets of signals are essentially constant in all the spectra we have obtained and indicate that complex 3 exists as two isomers (species D and E, see below) in solution, which are interconverting (though not rapidly on the NMR time scale¹⁵). The major isomer contains inequivalent hydrides bridging an Os-Pt and an Os-Os edge, while the minor isomer contains equivalent hydrides bridging Os-Os edges. The spectroscopic evidence suggests that the major isomer of **3** in solution is related to the red C_1 isomer of **2c**, and

Table II. Selected Bond Lengths (Å) and Bond Angles (deg) for $Os_3Pt(\mu-H)_2(\mu-SO_2)(CO)_{10}(PCy_3)$ (3)

(deg) for ($Os_3Pt(\mu-H)_2(\mu)$	$(00)_{10}(PCy_3)$) (3)
	Bond I	engths	
$\Omega_{n}(1) = \Omega_{n}(2)$	2 795 (1)	$O_{\rm s}(1) = O_{\rm s}(3)$	2 988 (1)
$O_{3}(1) = O_{3}(2)$	2.750 (1)	$O_{3}(1) = O_{3}(3)$	2.300(1)
Os(1)-Pt	2.792 (1)	Us(1)-S	2.367 (3)
Os(1) - C(1)	1.943 (12)	Os(1)-C(2)	1.923 (10)
Os(1)-C(3)	1.899(11)	Os(2)-Os(3)	2.976(1)
Os(2)-Pt	2.906(1)	$O_8(2) - C(4)$	1.945(11)
$O_{n}(2) - C(5)$	1.912(12)	$O_{2}(2) - C(6)$	1 934 (10)
$O_{2}(2)$ $O_{3}(2)$	1.012(12)	$O_{2}(2) = O(0)$	0.046 (9)
Os(3) - Pt	2.821 (1)	Os(3) = S	2.340 (3)
Us(3) - C(7)	1.964(9)	Os(3) - C(8)	1.876 (11)
Os(3) - C(9)	1.903 (10)	Pt-P	2.35 9 (3)
Pt-C(10)	1.847(11)	S-O(11)	1.444(7)
S = O(12)	1,475 (8)	O(1) - C(1)	1.114 (15)
O(2) - C(2)	1 143 (13)	O(3) = C(3)	1 140 (14)
O(2) - O(2)		O(5) $O(5)$	1,140 (14)
O(4) - O(4)	1.115 (14)	O(3) = O(3)	1.110 (10)
O(6) - C(6)	1.115(12)	O(7) - C(7)	1.141 (12)
O(8)-C(8)	1.151(13)	O(9) - C(9)	1.116 (12)
O(10) - C(10)	1.152(14)		
	• •		
	Bond	Angles	
Os(2) - Os(1) - Pt	62.7(1)	Os(2) - Os(1) - S	87.4 (1)
$O_{2}(2) = O_{2}(1) = C(1)$	162 9 (4)	$O_{r}(2) = O_{r}(1) = C(2)$	881 (3)
$O_{S}(2) = O_{S}(1) = O(1)$	102.3(4)	$O_{2}(2) = O_{2}(1) = O_{2}(2)$	50.1 (3)
Us(2) - Us(1) - U(3)	98.2 (4)	Os(3) = Os(1) = Pt	58.3 (1)
Os(3) - Os(1) - S	50.4(1)	Os(3) - Os(1) - C(1)	103.4 (4)
Os(3) - Os(1) - C(2)	127.2(3)	Os(3) - Os(1) - C(3)	131.9 (4)
Pt-Os(1)-S	108.5(1)	Pt-Os(1)-C(1)	102.9(4)
Pt=Os(1)=C(2)	69.6 (3)	Pt-Os(1)-C(3)	153.0.(4)
$S_{-0}(1)_{-}C(1)$	89.0 (4)	$S = O_{2}(1) = C(2)$	1755(3)
$S = O_{S}(1) = O(1)$	00.0(4)	G(1) = O(2)	110.0(3)
S-Us(1)-U(3)	00.3 (4)	C(1) = Os(1) = C(2)	95.4 (5)
C(1) - Os(1) - C(3)	98.4 (5)	C(2) - Os(1) - C(3)	92.1 (5)
Os(1)-Os(2)-Os(3)	62.3(1)	Os(1)-Os(2)-Pt	58.6 (1)
Os(1) - Os(2) - C(4)	172.5(3)	Os(1) - Os(2) - C(5)	93.0 (4)
$O_{s(1)} - O_{s(2)} - C(6)$	89.5 (3)	Os(3)-Os(2)-Pt	57.3 (1)
$O_{s}(3) - O_{s}(2) - C(4)$	110 4 (4)	$O_{S}(3) - O_{S}(2) - C(5)$	150.8 (4)
$O_{2}(2)$ $O_{3}(2)$ $O_{4}(3)$	105.9(9)	$D_{\pm} O_{2}(0) C(4)$	1179(9)
Os(3) = Os(2) = C(6)	100.2(3)	F = OS(2) = O(4)	117.2 (3)
Pt-Os(2)-C(5)	97.5 (4)	Pt - Us(2) - U(6)	147.6 (3)
C(4) - Os(2) - C(5)	93.8 (5)	C(4) - Os(2) - C(6)	93.9 (5)
C(5) - Os(2) - C(6)	88.8 (5)	Os(1) - Os(3) - Os(2)	55.9 (1)
Os(1)-Os(3)-Pt	57.4 (1)	Os(1)-Os(3)-S	51.0(1)
$O_{s(1)} - O_{s(3)} - C(7)$	124.3 (3)	$O_{S}(1) - O_{S}(3) - C(8)$	97.5 (3)
$O_{s}(1) - O_{s}(3) - C(9)$	137.8(3)	$O_{e}(2) = O_{e}(3) = Pt$	60 1 (1)
$O_{2}(1) O_{3}(0) O_{3}(0)$	99.0(1)	$O_{2}(2) O_{3}(3) I_{1}^{2}$	00.1(1)
Os(2) = Os(3) = S	03.0 (1)	Os(2) = Os(3) = C(7)	92.0 (3)
Us(2) - Us(3) - C(8)	149.7 (3)	Os(2) - Os(3) - C(9)	116.7 (3)
Pt–Os(3)–S	108.1(1)	Pt-Os(3)-C(7)	67.4 (3)
Pt-Os(3)-C(8)	94.5 (3)	Pt-Os(3)-C(9)	162.0 (3)
S-Os(3)-C(7)	175.0 (3)	S-Os(3)-C(8)	89.9 (3)
S - Os(3) - C(9)	88.4 (3)	C(7) - Os(3) - C(8)	92.7(4)
$C(7) = O_{2}(3) = C(9)$	95.8 (4)	$C(8) = O_{2}(3) = C(9)$	92.5 (5)
$O_{2}(1) D_{2}(0) O_{2}(0)$	50.0 (4)	$O_{2}(1)$ Dt $O_{2}(2)$	64.0(0)
Os(1) - P(-Os(2))	56.7 (1)	$O_{S}(1) = P_{1} = O_{S}(3)$	04.3(1)
Os(1)-Pt-P	150.6 (1)	Os(1) - Pt - C(10)	90.5 (4)
Os(2)-Pt-Os(3)	62.6(1)	Os(2)-Pt-P	116.0 (1)
Os(2) - Pt - C(10)	147.7(4)	Os(3)-Pt-P	142.6 (1)
Os(3) - Pt - C(10)	96.9 (4)	P-Pt-C(10)	95.5 (4)
$O_{s}(1) - S - O_{s}(3)$	78 7 (1)	$O_{S}(1) = S = O(11)$	118 2 (4)
$O_{0}(1) = S = O(12)$	112 4 (4)	$O_{2}(2) - S - O(11)$	116 2 (2)
$O_{2}(1) = O_{2} = O_{1}(12)$	110.4 (4)	$O_{3}(0) = O_{1} = O_{1}(11)$	110 2 (8)
Us(3)-3-U(12)	112.3 (4)	O(11) - S - O(12)	113.5 (5)
Os(1) - C(1) - O(1)	177.9 (10)	Us(1) - C(2) - O(2)	169.6 (9)
Os(1) - C(3) - O(3)	178.4 (10)	Os(2)-C(4)-O(4)	175.2 (10)
Os(2) - C(5) - O(5)	178.7 (10)	Os(2) - C(6) - O(6)	177.2 (9)
$O_{s(3)} - C(7) - O(7)$	165.7 (8)	$O_8(3) - C(8) - O(8)$	178.2 (9)
$\Omega_{\alpha}(3) = C(0) = \Omega(0)$	178 0 (0)	$P_{t-C(10)-O(10)}$	177.7(10)
$O_{0}(0) = O_{0}(0)$	110.0 (0)	10 0(10)-0(10)	IIIII (IU)

this has been confirmed by a single-crystal X-ray study.

Crystal Structure of Complex 3. Figure 1 shows the molecular structure and atomic labeling scheme, with a stereoview of the molecule illustrated in Figure 2. Atomic coordinates and important metrical parameters are given in Tables I and II, respectively. The molecular structure of 3 closely resembles that of the C_1 isomer of 2c,⁸ with a μ -SO₂ ligand replacing the μ -CH₂ unit. The tetrahedral Os₃Pt skeleton of the parent cluster 1a⁶ is retained, though consistent with the relief of unsaturation, the Os–Os bond lengths in 3 are slightly greater than the corresponding separations in 1a. Corresponding Pt–Os distances in 1a and 3 are, by contrast, rather similar. Metal-metal bond lengths in 3 are very similar to those found⁸ in the C_1

⁽¹⁴⁾ Large well-formed crystals of homogeneous color and habit were used. Their poor solubility precluded low-temperature dissolution.

⁽¹⁵⁾ Magnetization transfer studies at 298 K showed a slow exchange between the resonances at δ -14.48 and -20.66, but no detectable exchange between these signals and the one at δ -20.20.

Figure 1. Molecular structure of the complex $Os_3Pt(\mu-H)_2(\mu SO_2$)(CO)₁₀(PCy₃) (3) showing the atomic labeling scheme.

isomer of 2c, with the exception of the SO₂-bridged Os-(1)-Os(3) distance in 3 which is 2.988 (1) Å, while the corresponding CH₂-bridged Os-Os distance in 2c is 2.865 (1) Å. This difference may be ascribed to the greater steric requirements of the μ -SO₂ ligand versus a μ -CH₂, as has been previously noted¹⁶ in the structural comparison between $Os_3(\mu-H)_2(\mu-SO_2)(CO)_{10}$ (4)¹⁶ and $Os_3(\mu-H)_2(\mu CH_2)(CO)_{10}$.¹⁷

Relatively few clusters containing SO₂ ligands have been reported,^{16,18-32} with the majority of examples coming from the work of Mingos et al.²³⁻³² Tetranuclear clusters that have been crystallographically characterized include Ir₄- $\begin{array}{l} \text{($\mu$-CO)_2($\mu$-SO_2)(CO)_9$,$^{21} Rh_4($\mu$-CO)_4($\mu$-SO_2)($\mu_3$-$\eta2-SO_2)_2$} \\ \text{($0Ph)_3$_4$,$^{24} \quad $[AuPt_3($\mu$-CO)_2($\mu$-SO_2)($PCy_3$_4]^+$,$^{27} \quad and $[AuPt_3($\mu$-SO_2)_2($\mu$-Cl)$_P(C_6H_4F)_3]_(PCy_3_3]^+$,$^{27} \quad The Rh_4 \\ \end{array}$ cluster and the recently reported³¹ pentanuclear cluster $Pd_5(\mu-SO_2)_2(\mu_3-\eta^2-SO_2)_2(PMe_3)_5$ are unusual in that they contain μ_3 - η^2 S,O 4-electron donor SO₂ ligands. In all other

- (18) Otsuka, S.; Tatsuno, Y.; Miki, T.; Aoki, M.; Matsumoto, M.; Yoshioka, H.; Nakatsu, K. J. Chem. Soc., Chem. Commun. 1973, 445.
- (19) Moody, D. C.; Ryan, R. R. Inorg. Chem. 1977, 16, 1052.
- (20) Browning, C. S.; Farrar, D. H.; Gukathasan, R. R.; Morris, S. A. Organometallics 1985, 4, 1750.
- (21) Braga, D.; Ros, R.; Roulet, R. J. Organomet. Chem. 1985, 286. C8. (22) Bogdan, P. L.; Sabat, M.; Sunshine, S. A.; Woodcock, C.; Shriver,
- D. F. Inorg. Chem. 1988, 27, 1904.
 (23) Mingos, D. M. P.; Wardle, R. W. M. Transition Met. Chem. (Weinheim, Ger.) 1985, 10, 441
- (24) Briant, C. E.; Theobald, B. R. C.; Mingos, D. M. P. J. Chem. Soc., Chem. Commun. 1981, 963.
- (25) Evans, D. G.; Hughes, G. R.; Mingos, D. M. P.; Basset, J.-M.;
 Welch, A. J. Chem. Soc., Chem. Commun. 1980, 1255.
 (26) Hallam, M. F.; Howells, N. D.; Mingos, D. M. P.; Wardle, R. W.
- M. J. Chem. Soc., Dalton Trans. 1985, 845. (27) Mingos, D. M. P.; Wardle, R. W. M. J. Chem. Soc., Dalton Trans. 1986, 73.
- (28) Briant, C. E.; Evans, D. G.; Mingos, D. M. P. J. Chem. Soc., (20) Briant, C. L., Disano, L. L., Mingos, D. M. P.; Wil(29) Bott, S. G.; Hallam, M. F.; Ezomo, O. J.; Mingos, D. M. P.; Williams, I. D. J. Chem. Soc., Dalton Trans. 1988, 1461.
- (30) Mingos, D. M. P.; Oster, P.; Sherman, D. J. J. Organomet. Chem. 1987, 320, 257.
- (31) Bott, S. G.; Ezomo, O. J.; Mingos, D. M. P. J. Chem. Soc., Chem. Commun. 1988, 1048.
- (32) Mingos, D. M. P.; Williams, I. D.; Watson, M. J. J. Chem. Soc., Dalton Trans. 1988, 1509.

Ewing and Farrugia

Table III. NMR Parameters for Species A^{a,c}

	chem shift.			J, Hz			
reson	ppm	mult^b	assgnt	^{31}P	¹⁹⁵ Pt	H1	H2
			¹³ C Data				
а	186.3	d	4/5/6	6.0	55		
b	176.2	d	4/5/6	6.4	*		
с	174.5	d	1	4.3		~ 5	3.6
d	174.3	s	3			14.0	2.0
е	171.8	s	4/5/6				
f	169.6	s	7/9/10		45		2.0
g	168.3	s	7/9/10				2.9
h	168.1	s	2		*	2.8	8.4
i	167.8	s	7/9/10				2.8
j	167.3	s	8				8.4
			¹ H Data				
H1	-13.92	dd	$Os(\mu-H)Pt$	7	802		2
H2	-18.94	t	$Os(\mu-H)Os$	2	30	2	
			³¹ P Data				
	69.90	s			4505		

 a218 K; CD₂Cl₂. b Multiplicities for ^{13}C and ^{31}P based on ^{1}H decoupled spectra. c The asterisk indicates a small resolved ^{195}Pt coupling was expected on the basis of signal intensity but was obscured by overlapping resonances.

cluster complexes the SO_2 ligands exhibit an η^1 edgebridging mode, which is somewhat surprising in view of the variety of bonding modes observed in mononuclear SO₂ complexes.¹² The structural parameters involving the SO_2 ligand in 3 are normal. Thus the Os-S distances of 2.367 (3) and 2.346 (3) Å compare well with those found¹⁶ in complex 4 (2.360 (2) and 2.358 (2) Å), and the Os-S-Os angles are also similar (78.7 (1)° in 3 and 75.7 (6)° in 4^{16}). The S atom is virtually coplanar with the Pt-Os(1)-Os(3)triangle (see Figure 2), with a dihedral angle, Pt-Os(1)-Os(3)-S, of 174.2 (1)°. As was observed⁸ for the μ -CH₂ complex 2c, the two carbonyl ligands C(2)-O(2) and C-(7)– $\hat{O}(7)$, which lie in the Pt–Os(1)–Os(3) plane, interact weakly with the Pt atom, such that the associated Pt…C distances are 2.785 (9) and 2.748 (9) Å and the Os-C-O angles 169.6 (9) and 165.7 (8)°, respectively.

The hydride ligands in 3 were not located directly but were included at calculated positions by using the potential energy minimization program HYDEX.³³ These positions are consistent with the metal-metal bond lengths and the carbonyl polytope and agree with the NMR data insofar as one hydride is bridging an Os-Os edge and the other an Os-Pt vector.

NMR Studies on the Reaction of 1a with SO_2 at 195 K. In an attempt to determine the initial site of attack of the SO_2 ligand, we have examined the reaction at low temperatures. Treatment of a solution of 1a in CD_2Cl_2 at 195 K with an excess of SO_2 rapidly gives rise to a yellow-brown solution. The ¹H NMR spectrum of this solution, in the hydride region, is shown in Figure 3. Important ¹H, ¹³C, and ³¹P NMR parameters for the major (ca. 80% or more) species formed, species A, are given in Table III. The ¹H signal at δ –13.92 can be attributed to an $Os(\mu-H)Pt$ hydride (H1) from the magnitude of J- $(^{195}\text{Pt-H}) = 802 \text{ Hz}$, while that at $\delta - 18.94$ is due to an $Os(\mu-H)Os$ hydride (H2). A small coupling of 2 Hz, which was confirmed as an interhydride H-H coupling by selective decoupling experiments, suggests that the two hydrides are proximate; i.e., they bridge to the same Os atom. Similar small H-H couplings of ~ 1.5 Hz between the proximate hydrides in $Os_3(\mu-H)_3(\mu-CR)(CO)_9$ have been reported.³⁴ The singlet ³¹P resonance at δ 69.90 with a

(33) Orpen, A. G. J. Chem. Soc., Dalton Trans. 1980, 2509.

⁽¹⁶⁾ Jarvinen, G. D.; Ryan, R. R. Organometallics 1984, 3, 1434. (17) Schultz, A. J.; Williams, J. M.; Calvert, R. B.; Shapley, J. R.; Stucky, G. D. Inorg. Chem. 1979, 18, 319.

Figure 2. Stereoview of complex 3.

Figure 3. ¹H NMR spectrum (CD_2Cl_2) of the reaction mixture of complex 1a with SO₂ at 195 K (hydride region).

	Table IV. ¹ H and ³¹ P Data for Species B-G ^a
¹ H ³¹ P	Species B ^b δ -16.15 (t, J(P-H) = 1.7, J(H-H) = 1.6, J(Pt-H) = 14 Hz) -17.03 (d, J(H-H) = 1.6 Hz) δ 56.6 (s, J(Pt-P) = 1892 Hz)
¹ H ³¹ P	Species C ^b δ -14.35 (d, J(P-H) = 8.5, J(Pt-H) = 851 Hz) -19.35 (d, J(P-H) = 2.0, J(Pt-H) = 18 Hz) δ 69.93(s, J(Pt-P) = 4396 Hz)
1Н 31Р	Species D ^c δ -14.48 (d, $J(P-H) = 7.9$, $J(Pt-H) = 574$ Hz) -20.66 (d, $J(P-H) = 1.5$, $J(Pt-H) = 19$ Hz) δ 73.0 (s, $J(Pt-P) = 2617$ Hz)
¹ H ³¹ P	Species E^{c} δ -20.20 (d, $J(P-H) = 3.1$, $J(Pt-H) = 15$ Hz) δ 9.3 (s, $J(Pt-P) = 2402$ Hz)
¹ H ³¹ P	Species F^{d} δ -15.02 (s) -18.15 (s, $J(Pt-H) = 28$ Hz) δ 46.2 (s, $J(Pt-P) = 2222$ Hz)
Η	Species G ^c δ -17.57 (t, J(Pt-H) = 15, J(P-H) = J(H-H) = 1.6 Hz) -18.22 (t, J(Pt-H) = 12, J(P-H) = J(H-H) = 1.6 Hz)
°C	D_2Cl_2 . ^b 218 K. ^c 298 K. ^d 233 K.
large phos	e ¹⁹⁵ Pt coupling of 4505 Hz clearly indicates the sphine ligand remains bonded to the Pt center. The

large ¹³⁵Pt coupling of 4505 Hz clearly indicates the phosphine ligand remains bonded to the Pt center. The ¹³C spectrum of a ¹³CO-enriched sample shows ten signals in the CO region, indicating that species A has low symmetry. The lack of any signal having a large ¹⁹⁵Pt coupling is of particular relevance, since this clearly indicates that there is no Pt-bound carbonyl in species A. For CO ligands directly bonded to Pt in Os₃Pt clusters typical values for ¹J(¹⁹⁵Pt-C) are 1500–1750 Hz.^{9,11} We hence presume that there is an SO₂ ligand coordinated to the Pt center.

While the spectroscopic data do not unambiguously allow assignment of the structure of species A, several

points are clear. The ¹H-¹³C coupling constants (Table III) show that seven CO ligands (resonances c, d, and f-j) are coupled to H2 (at δ –18.94), with three of these signals (c, d, and h) also coupled to H1 (at δ -13.92). This indicates that the $Os(\mu-H)Os$ hydride H2 bridges between an $Os(CO)_3$ group and an $Os(CO)_4$ group, while the $Os(\mu-H)Pt$ hydride H1 bridges from the Pt atom to the same $Os(CO)_3$ unit. Three CO resonances a, b, and e show no coupling to either hydride and are presumably due to an $Os(CO)_3$ group more remote from the hydrides. The structure shown is compatible with the data, though the exact bonding mode of the SO_2 ligand remains unclear. Due to the instability of species A, we have been unable to obtain IR data on the S–O stretching bands which might prove informative. Either terminal or bridging modes (including μ_x - η^2 -S,O) are likely, though we cannot discount the possibility that A contains more than one SO₂ ligand. The polarization of the SO₂ molecule, i.e. $S^{\delta^{2+}}(O^{\delta-})_2^{35}$ suggests (in conjunction with charges for 1 obtained from EHMO calculations) that if a μ_x - η^2 -S,O mode is present in species A-C, it is likely that the Pt atom is O-bonded and an Os atom is S-bonded.

(35) Our EHMO calculations place a charge of +0.98 on the S atom; $X\alpha$ -SW calculations produce a similar charge of +1.15, see: Noodleman, L.; Mitchell, K. A. R. Inorg. Chem. 1978, 17, 2709.

⁽³⁴⁾ Holmgren, J. S.; Shapley, J. R.; Belmonte, P. A. J. Organomet. Chem. 1985, 284, C5.

Figure 4. ¹H NMR spectrum (CD_2Cl_2) of the reaction mixture of complex 1a with SO₂ at 298 K (hydride region): (a) ca. 0.5 h after addition of SO₂; (b) same solution as (a) after 12 h. The upper spectrum has been shifted slightly for clarity.

In addition to species A, two other complexes are also formed at 195 K, species B in ca. 10–20% yield with hydride resonances at δ –16.15 and –17.03 and a ³¹P signal at δ 56.6 and smaller quantities of species C with hydride signals at δ –14.35 and –19.35 and a ³¹P signal at δ 69.93. Further details, given in Table IV, clearly show from the large ³¹P–¹⁹⁵Pt couplings that both complexes have Ptbound phosphine ligands. Species B has two inequivalent Os(μ -H)Os groups with a small H–H coupling suggesting they are proximate, while the NMR parameters for species C closely resemble those of A. The suggested structures are compatible with the data, though by no means unique.

NMR Studies of the Reaction of 1a with SO₂ at 298 K. If the solution prepared at 195 K is allowed to warm to 298 K, there is a rapid and irreversible color change from yellow-brown to red. ¹H NMR spectra of this solution are essentially the same as those obtained from direct reaction of 1a with SO₂ at 298 K. The spectum obtained from the direct reaction is shown in Figure 4a. Signals due to species A-C disappear rapidly on warming, and resonances from five new species D-H become visible. NMR details for D-G are given in Table IV. Spectra obtained during the warming process show that species A is rapidly converted to B, which then more slowly converts to the mixture shown in Figure 4a. The major component at 298 K, species D, is assigned to the isolated complex 3, and the signal from the isomeric species E at δ -20.20 is also observed. The spectra are both time and temperature dependent, and the spectrum obtained after 12 h is shown in Figure 4b. Signals from species F and G slowly diminish in intensity with time, while that due to H increases. If the excess SO₂ is removed, then the signal at δ -16.06 due to H increases in intensity more rapdily, such that after 12 h this compound is the predominant hydride-containing species. The removal of the SO₂ also results in significant amounts of the known^{7,8} complex Os₃Pt(μ -H)₂(CO)₁₁(PCy₃) (5), as evidenced by ¹H signals at δ –11.44 and –17.56 and a ³¹P resonance at δ 50.8. This complex presumably arises from loss of SO₂ from 3, followed by addition of adventitious CO.

A solution of a pure crystalline sample of complex 3 in CD_2Cl_2 saturated with SO_2 gave a very similar spectrum after 12 h to that shown in Figure 4b. A similarly prepared solution containing *no* added SO_2 showed strong signals due to 5 but was otherwise the same. These results indicate that the isolated complex 3 is unstable in solution, particularly in the absence of excess SO_2 , and that there is a complex set of equilibria relating several species, which is dependent on the SO_2 concentration. Unfortunately this mixture could not be separated by column chromatography, and we have only been able to obtain solution NMR data. The relationships between the various ¹H and ³¹P resonances were established by selective decoupling and saturation experiments and by consideration of relative intensities in the time dependent spectra.

Evidence for Dynamic Behavior. Theoretical stud ies^{36} have suggested that the barrier to rotation of the PtL₂ unit about the M₃ centroid in tetrahedral M₃Pt clusters could be very low. We have reported¹¹ that the variabletemperature ¹³C spectra of complex 1a and $[Os_3Pt(\mu H_{3}(CO)_{10}(PCy_{3})]^{+}$ are compatible with such a process and have recently obtained³⁷ unequivocal evidence for the "spinning" of the Pt(H)(CNCy)(PCy₃) in Os₃Pt(μ -H)₂-(CO)₉(CNCy)(PCy₃) from dynamic ¹⁸⁷Os-H couplings. The barrier to rotation of the $Pt(CO)_2$ unit in $[Pt_4(\mu_3-CO) (CO)_2(\eta$ -C₅Me₅)₃]⁺ is also apparently very low.³⁸ Such dynamic processes must therefore be considered for the isomers of $Os_3Pt(\mu-H)_2(\mu-SO_2)(CO)_{10}(PCy_3)$ (3). The rotation of the PtL_n unit in 3 is not a degenerate process, and Chart II shows there are three possible³⁹ C_1 rotomers having one $Os(\mu-H)Os$ and one $Os(\mu-H)Pt$ hydride, rotomers a-c, and four rotomers having two $Os(\mu-H)Os$ hydrides, rotomers d-g. Rotomers e and g have enantiomeric pairs and inequivalent hydrides, while the C_s rotomers d and f have equivalent hydride ligands. Free rotation of the PtL_n unit will result in interchange of rotomers a-c with each other, and rotomers d-g with each other, but extra fluxional processes are necessary to exchange isomers between these two groups.

At 298 K the major solution species D (which from the crystal structure we assume corresponds to rotomer b, Chart II) shows ten sharp CO resonances in the ¹³C NMR spectrum (see Experimental Section). Individual assignments were not possible, apart from the signal at δ 159.3 which has a ¹⁹⁵Pt coupling of 1560 Hz and can be clearly assigned to the carbonyl C(10) on the Pt atom. This resonance is also coupled to the Pt(μ -H)Os hydride (J(H-C) = 33 Hz). The ¹⁸⁷Os satellite patterns seen on the hydride signals of D are compatible with rigidity of the cluster framework. Figure 5a shows that two satellite sets ($J(1^{187}Os-H) = 40.7, 32.0$ Hz) are observed for the Os(μ -H)Os signal, due to coupling to the inequivalent Os atoms

⁽³⁶⁾ Schilling, B. E. R.; Hoffmann, R. J. Am. Chem. Soc. 1979, 101, 3456.

⁽³⁷⁾ Farrugia, L. J., submitted for publication.

⁽³⁸⁾ Boag, N. M., personal communication. See also: Boag, N. M. J. Chem. Soc., Chem. Commun. 1988, 617.

⁽³⁹⁾ The Pt-bound ligand (PR₃ or CO) eclipsing the Pt-Os edge is not shown. We have only considered those rotomers with the plane of the PtL_n unit perpendicular to an Os-Os vector since theoretical studies³⁶ indicate that configurations with a parallel geometry are at energy maxima. In addition only those configurations with the phosphine cis to the Pt(μ -H)Os hydride are considered sterically favorable: see ref 8.

Figure 5. Expansions in the hydride region of ¹H NMR signals due to complex 3 (species D): (a) the Os(μ -H)Os signal, showing the ¹⁸⁷Os (·) and ¹⁹⁵Pt satellites; (b) the Os(μ -H)Pt signal, showing the ¹⁸⁷Os (·) and ¹³C (+) satellites.

Os(2) and Os(3). As expected only one ¹⁸⁷Os-H coupling (28.1 Hz) is observed⁴⁰ for the Os(μ -H)Pt signal (Figure

Figure 6. The proposed structure of species E and complex 6 (major isomer).

5b). These magnitudes fall within the range reported in the literature for nondynamic ${}^{1}J({}^{187}Os-H)$ couplings in hydridoosmium clusters.^{34,41} However both the hydride and ³¹P signals due to species D broaden at 168 K, which implies that a fluxional exchange is being frozen out at this temperature. The origin of this behavior is not clear, but if it arises from the slowing of a rapid exchange between rotomers a, b, and c caused by a rotation of the Pt(H)- $(CO)(PCy_3)$ unit, then the ¹⁸⁷Os couplings observed at 298 K are only compatible with such an exchange if we assume one rotomer predominates at this temperature. This follows since rapid rotation does not introduce a new time-averaged symmetry element, and hence at the fastexchange regime each hydride and carbonyl resonance will occur at population-weighted chemical shifts and display population-weighted coupling constants.

Species E shows a single $Os(\mu-H)Os$ resonance at δ -20.20 and a ³¹P signal at δ 9.3. These chemical shifts (and the ³¹P and ¹⁹⁵Pt couplings, Table IV) are very similar to those assigned to the yellow C_s isomer of $2a^8$ (ii, Chart I), and hence we propose for E the structure shown in Figure 6 (corresponding to rotomer f). The hydride signal broadens considerably on cooling below 178 K, though the ³¹P resonance remains sharp, indicating the freezing out of fluxional processes, which may possibly involve a rotation between rotomers d-g.⁴²

Relatively little can be said about species F and G, save that they both have two inequivalent $Os(\mu-H)Os$ hydrides and one PtPCy₃ unit. Since their formation is unaffected by the presence or absence of SO_2 but is supressed under a CO atmosphere, we suspect they arise from loss of CO from isomers of 3. They may possibly contain μ_3 - η^2 -SO SO₂ ligands. Variable-temperature spectra show that the broad hydride signals attributed to species F at 298 K (Figure 4a) arise from a rapid nondegenerate exchange between at least two isomers. The broadening seen at 298 K is due to exchange between the inequivalent hydride environments, as shown by saturation transfer experiments. On cooling to 218 K these signals sharpen due to the slowing of this exchange but on further cooling broaden again and decoalesce at 168 K. The signal at δ –15.02 splits into two signals at δ -15.08 and -15.18 (intensity ratio 0.1:0.9), as does the signal at δ -18.15, giving resonances at δ -18.15 and -18.20 (intensity ratio 0.1:0.9). The ³¹P

⁽⁴⁰⁾ In addition a $^{13}C^{-1}H$ coupling of 33 Hz, also observed in the ^{13}C spectrum, is clearly resolved.

^{(41) (}a) Constable, E. C.; Johnson, B. F. G.; Lewis, J.; Pain, G. N.; Taylor, M. J. J. Chem. Soc., Chem. Commun. 1982, 754. (b) Koridze, A. A.; Kizas, O. A.; Kolobova, N. E.; Petrovskii, P. V.; Fedin, E. I. J. Organomet. Chem. 1984, 265, C33. (c) Colbran, S. B.; Johnson, B. F. G.; Lahoz, F. J.; Lewis, J.; Raithby, P. R. J. Chem. Soc., Dalton Trans. 1988, 1199.

⁽⁴²⁾ A hindered rotation of the $Pt(CO)(PR_3)$ resulting in an exchange between either the enantiomers of rotomer e or those of rotomer g would account for the observed behavior, since this process exchanges the two inequivalent hydrides but has no effect on the P environment.

spectrum shows a corresponding behavior, with the signal at δ 46.2 broadening below 218 K and decoalescing at 168 K to two signals at δ 44.9 (J(Pt-P) = 2243 Hz) and 45.7 (J(Pt-P) = 2197 Hz) with relative intensities 0.1:0.9, respectively.

Cluster Degradation Reactions. Cluster degradation is a major reaction pathway for complex 3 in the absence of high concentrations of SO_2 . Species H becomes the predominant hydride-containing species under these conditions. The singlet hydride resonance (δ -16.06) for H at 298 K collapses to two doublets at δ -16.05 and -16.14 (J(H-H) = 1.4 Hz) on cooling to 213 K, indicating that species H contains inequivalent hydrides that undergo exchange. Although we have not isolated pure H, a ¹³C spectrum at 198 K of a mixture containing ca. 50% of this species shows nine sharp CO signals of equal intensity from δ 176.4 to δ 158.1 that can unambiguously be assigned to H on the basis of selective ¹H decoupling experiments. These signals show no evidence of ³¹P or ¹⁹⁵Pt couplings and indicate that species H does not contain a PtPCy₃ unit. As mentioned below ¹H signals for species H are also seen when the reaction mixture of 1b (the triphenylphosphine analogue of 1a) and SO_2 is allowed to stand, which is further evidence for the lack of a PtPR₃ unit in H. The NMR data (see Experimental Section) suggest a formulation $Os_3(\mu-H)_2(CO)_9(SO_2)_n$ (n = 1 or 2) for species H. Jarvinen and Ryan¹⁶ have reported the synthesis and structure of $Os_3(\mu-H)_2(\mu-SO_2)(CO)_{10}$, which is formed by reaction of $Os_3(\mu-H)_2(CO)_{10}$ with SO_2 . We have reexamined this reaction and concur with the findings of these authors in that numerous other hydride-containing products are also formed. However no significant signals attributable to species H were observed. Solutions containing significant concentrations of species H show in addition a ³¹P signal at δ 68.5 due to another species, with ¹⁹⁵Pt couplings (J(Pt-P) = 4056, 330; J(P-P) = 34 Hz)characteristic of a complex containing two equivalent $Pt(PCy_3)$ units. This signal may arise from a symmetric Pt_2 species⁴³ or a Pt_2Os_n cluster resulting from degradation of the starting Os₃Pt cluster. Small quantities of the known cluster $Pt_3(\mu-SO_2)_2(\mu-CO)(PCy_3)_3$ were also isolated and identified by a single-crystal X-ray structure.⁴⁵

Reaction of Complex 1b with SO_2 . Although we have not followed the reaction of (1b, R = Ph) with SO₂ in as much detail, NMR studies show that a similar reaction ensues, but the relative stabilities of the various isomers and complexes are strikingly different. The major species formed (ca. 90%) has been isolated as yellow microcrystals and characterized as $Os_3Pt(\mu-H)_2(\mu-SO_2)(CO)_{10}(PPh_3)$ (6). NMR parameters for this complex are given in Table V. Complex 6 appears to be more stable in solution than complex 3 and shows a single hydride resonance at δ -20.27 indicative of two equivalent $Os(\mu-H)Os$ protons. The ¹³C spectrum in the CO region is consistent with C_s symmetry, and we assign a structure, shown in Figure 6, similar to that for species E and analogous to the C_s isomer of 2c. The relatively large ³¹P coupling of 17.4 Hz on the CO resonance at δ 168.8 is consistent with a trans disposition of the phosphine relative to the unique carbonyl C1 on Os.⁴⁶ Despite numerous attempts no crystals suitable for

Table V. NMR Parameters for	
$Os_3Pt(\mu-H)_2(\mu-SO_2)(CO)_{10}(PPh_3)$ (Major Isomer)a

chem shift,				J, Hz	
ppm	mult ^b	$assgnt^{c}$	³¹ P	¹⁹⁵ Pt	¹ H
		¹³ C Data		········	
$178.6 \ (2)^d$	d	C3/C5	1.8	56	
174.5(2)	s	C3/C5			4
174.0 (1)	d	C6	17.1	1790	
168.8 (1)	d	C1	17.4		4
167.2 (2)	d	C2/C4	3.1		10
163.4(2)	s	C2/C4			11
-20.27	d	¹ H Data Os(µ-H)Os	3.2	15	
-10.1	s	³¹ P Data Pt-P		2499	

 a298 K; CD₂Cl₂. b Multiplicities for ^{13}C and ^{31}P based on 1H -decoupled spectra. cSee Figure 6. dRelative intensities in parentheses.

an X-ray determination could be obtained. The other principal species formed (ca. 10%) shows one doublet resonance at δ -20.15 (J(P-H) = 3.3, J(Pt-H) = 15.5 Hz) in the hydride region and a singlet in the ³¹P spectrum at δ 20.7 (J(Pt-P) = 3540 Hz) and may be a rotomer of 6, though there is no evidence for any exchange between these species.

Only trace amounts of hydride signals were observed that could be attributable to analogues of the cyclohexylphosphine species D [resonances at δ -13.06 (J(P-H) = 10.3, J(Pt-H) = 573 Hz) and δ -20.95 (J(P-H) = 1.5, J(Pt-H) = 18 Hz)] and species F [resonances at δ -14.91 and -18.00 (J(P-H) = 2, J(Pt-H) = 29 Hz)]. A signal at δ -16.06 attributed to species H was also observed. The substituents on the phosphine ligand (and hence its steric and electronic factors) thus have a significant effect on the relative stabilities of the C_1 versus the C_s isomers of the SO₂ adducts of complex 1.

Conclusions

Although the reaction of complex 1a with SO₂ affords thermodynamic products analogous to those obtained with CH₂N₂, the reaction pathway is complex and other species are formed. The initial kinetic product appears to involve attack by SO₂ at the platinum center, combined with a migration of a CO ligand from Pt to Os, yielding a butterfly species. The apparent migration of a Pt bound ligand has been previously observed⁹ in the reaction of the related cluster Os₃Pt(μ -H)₂(CO)₉(CNCy)(PCy₃) with CO, where the isonitrile ligand moves from Pt to Os on formation of the butterfly adduct. The experimental results disagree with our predictions based on EHMO calculations on complex 1, which suggest that attack by SO₂ should proceed at the Os centers, irrespective of whether orbital or charge control is operative.

Experimental Section

All manipulations were carried out under dry, oxygen-free dinitrogen atmosphere, using standard vacuum line/Schlenk tube techniques. Solvents were deoxygenated and freshly distilled under dinitrogen prior to use; petroleum ether refers to that fraction with a boiling point of 40–60 °C. ¹H, ¹³C, and ³¹P NMR spectra were obtained on a Bruker WP 200SY FT NMR spectrometer. Chemical shifts were referenced to internal solvent signals for ¹H and ¹³C spectra and are reported relative to Me₄Si.

⁽⁴³⁾ These signals are not due to the known⁴⁴ complex $Pt_2(\mu$ -SO₂)-(CO)₂(PCy₃)₂.

⁽⁴⁴⁾ Evans, D. G.; Hallam, M. F.; Mingos, D. M. P.; Wardle, R. W. M. J. Chem. Soc., Dalton Trans. 1987, 1889.

⁽⁴⁵⁾ Crystal data: monoclinic; space group $P2_1/n$; a = 15.362 (2), b = 21.653 (13), c = 20.881 (5) Å; $\beta = 86.64$ (2)°; V = 6933 (5) Å³; Z = 4; current $R(R_w) = 0.079$ (0.107) for 3402 independent, absorption-corrected, observed ($I > 2.0\sigma(I)$) data. This complex has also been structurally characterized by D. M. P. Mingos and co-workers (personal communication).

⁽⁴⁶⁾ Relatively large ${}^{3}J({}^{13}C-{}^{31}P)$ coupling constants across metal-metal bonds have been previously reported in cases where the phosphine and CO ligands are in a transoid geometry; see, for example: Stuntz, G. F.; Shapley, J. R. J. Am. Chem. Soc. 1977, 99, 607.

Table VI	Experimental	Data for	Crystallogra	nhie Study
таре ут.	- IVA DEI IIIICIIIAI	Data IVI	UI VSUAIIUEIA	

formula	$C_{28}H_{35}O_{12}Os_3PPtS$
М.	1392.3
space group	$P2_1/n$ (No. 14, C_{2h}^5)
cryst system	monoclinic
a, Å	13.254 (2)
b, Å	15.893 (5)
c, Å	17.079 (2)
β , deg	101.073 (9)
V, Å ³	3531 (1)
Z	4
D_{calcd} , g cm ⁻³	2.62
F(000)	2544
$\mu(Mo K\alpha), cm^{-1}$	149.0
T, K	298
scan mode	$\theta/2\theta$
θ range, deg	$2^{\prime} < \theta < 25$
cryst size, mm	$0.18 \times 0.38 \times 0.38$
range of trans coeff corr	0.77/1.65
no. of data collected	6751
no. of unique data	6204
std reflctns	814, 148, 457
observability criterion $n (I > n\sigma(I))$	3.0
no. of data in refinement	4622
no. of refined parameters	253/217
final R	0.027
R_w	0.036
largest remaining feature in elec	+1.47 (max), -1.26 (min)
chift (and in last cycle	0.16 (max) 0.03 (arr)
sinit/esu in last cycle	0.10 (max), 0.00 (av)

³¹P spectra were referenced to external 85% H₃PO₄. Infrared spectra were measured on a Perkin-Elmer 983 photospectrometer. Elemental analyses (C/H) were performed by the microanalytical unit in the Department of Chemistry, University of Glasgow. Sulfur dioxide (BDH) was used as supplied, and $Os_3Pt(\mu-H)_2$ -(CO)₁₀(PR₃) (R = Cy, Ph) was prepared as previously described.⁶

Preparation of $Os_3Pt(\mu-H)_2(\mu-SO_2)(CO)_{10}(PCy_3)$ (3). A solution of $Os_3Pt(\mu-H)_2(CO)_{10}(PCy_3)$ (0.2 g, 0.15 mmol) in CH_2Cl_2 (5 mL) was saturated with SO_2 by rapid passage of the gas and the solution allowed to stand for 0.5 h. Light petroleum (ca. 5 mL) was added and the solution stored at $-20\ ^{\circ}\mathrm{C}$ overnight. Large well-formed dark red crystals of the product $Os_3Pt(\mu-H)_2(\mu-H)$ SO₂)(CO)₁₀(PCy₃) are obtained (0.11 g, 0.08 mmol, 53% yield): IR (KBr disk) ν_{CO} 2100 (w), 2080 (vs), 2060 (s), 2040 (s), 2018 (s), 1995 (m), 1985 (s), 1956 (m), $\nu_{\rm SO}$ 1195 (vw), 1040 (s) cm⁻¹; ¹H and ³¹P NMR, see text; ¹³C NMR (CD₂Cl₂, 298 K, CO region, ¹³COenriched sample) δ 179.4 (d, 1 C, J(P-C) = 8.0 Hz), 176.8 (s, 1 C), 174.2 (d, 1 C, J(P-C) = 8.4 Hz), 172.8 (s, 1 C), 172.2 (s, 1 C), 172.17 (s, 1 C), 172.0 (s, 1 C), 169.5 (s, 1 C, J(Pt-C) = 28 Hz), 161.7 (d, 1 C, J(P-C) = 1.3, J(H-C) = 12 Hz), 159.3 (d, 1 C, J(P-C)= 6.3, J(Pt-C) = 1560, J(H-C) = 33 Hz). Anal. Calcd for C₂₈H₃₅O₁₂Os₃PtPS: C, 24.15; H, 2.53. Found: C, 24.33; H, 2.31.

NMR Data for Species H: ¹H NMR (CD_2Cl_2 , 213 K) δ -16.05 (d, H1, J(H-H) = 1.4 Hz), -16.14 (d, H2, J(H-H) = 1.4 Hz); ¹³C (CD₂Cl₂, 198 K, ¹³CO-enriched sample, CO region) δ 176.4 (J-(H2-C) = 10.3 Hz, 175.3 (J(H1-C) = 4.8 Hz), 174.3 (J(H1-C))= 7.3 Hz), 171.9 (J(H2-C) = 3.0 Hz), 169.6 (J(H2-C) = 3.4 Hz), 166.7 (J(H1-C) = 4.6, J(H2-C) = 4.6 Hz), 164.2 (J(H1-C) = 2.2) Hz), 163.8 (J(H1–C) = 10.2, J(H2–C) = 4.7 Hz), 158.1 (J(H1–C) = 3.8, J(H2-C) = 11.7 Hz).

Preparation of $Os_3Pt(\mu-H)_2(\mu-SO_2)(CO)_{10}(PPh_3)$ (6). Treatment of 0.2 g (0.16 mmol) of complex 1b with SO_2 and similar workup to complex 3 afforded bright yellow microcrystals of complex 6 (0.16 g, 0.12 mmol, 75% yield): IR (CH₂Cl₂) ν_{CO} 2105 (s), 2084 (vs), 2070 (vs), 2038 (vs), 2027 (vs), 1971 (m) cm⁻¹; IR (KBr disk) $\nu_{\rm SO}$ 1208 (w), 1055 (s) cm^-1; NMR data, see text. Anal. Calcd for C₂₈H₁₇O₁₂Os₃PPtS: C, 24.47; H, 1.25. Found: C, 24.89; H, 0.82.

Crystal Structure Determination. Details of data collection procedures and structure refinement are given in Table VI. Data were collected on an Enraf-Nonius CAD4F automated diffractometer, with graphite-monochromated X-radiation ($\lambda = 0.71069$ Å). Unit cell parameters were determined by refinement of the setting angles ($\theta \ge 12^\circ$) of 25 reflections. Standard reflections were measured every 2 h during data collection, and a decay corresponding to 4% over 10000 reflections was observed and corrected for. Lorentz-polarization and absorption (DIFABS 47) corrections were also applied. Systematic absences uniquely determined the space group $P2_1/n$. The structure was solved by direct methods (MITHRIL⁴⁸) and subsequent electron density difference syntheses. All non-hydrogen atoms were allowed anisotropic thermal motion. Hydride positions were determined from potential energy minimization calculations (HYDEX,³³ Os-H, Pt-H = ca. 1.85 Å), while cyclohexyl hydrogens were included at calculated positions (C-H = 1.073 Å). Isotropic thermal parameters for H atoms were fixed at 0.05 Å². Refinement was by full-matrix least squares, but due to matrix size limitations the parameters were divided into two blocks (253, 217) and each was refined separately. The function minimized was $\sum w(|F_{o}| - |F_{c}|)^{2}$ with the weighting scheme $w = [\sigma^2(F_o)]^{-1}$ used and judged satisfactory. $\sigma(F_0)$ was estimated from counting statistics. Neutral atom scattering factors were taken from ref 49 with corrections for anomalous dispersion. All calculations were carried out on a Gould-SEL 32/27 mini computer using the GX suite of programs.50

Acknowledgment. We thank the SERC for a research studentship to P.E. and Johnson-Matthey for a generous loan of Pt salts.

Registry No. 1a, 68091-56-5; 1b, 68091-55-4; 3, 120204-16-2; 5, 77700-90-4; 6, 120204-17-3; SO₂, 7446-09-5; Pt, 7440-06-4; Os, 7440-04-2.

Supplementary Material Available: Tables of anisotropic thermal parameters and calculated hydrogen positional parameters and a complete listing of bond lengths and angles (6 pages); listings of calculated and observed structure factors (22 pages). Ordering information is given on any masthead page.

(50) Mallinson, P. R.; Muir, K. W. J. Appl. Cryst. 1985, 18, 51.

⁽⁴⁷⁾ Walker, N.; Stuart, D. Acta Crystallogr., Sect. A: Found. Crystallogr. 1983, A39, 158. (48) Gilmore, C. J. J. Appl. Cryst. 1984, 17, 42.

⁽⁴⁹⁾ International Tables for X-Ray Crystallography; Kynoch: Birmingham, 1974; Vol. 4.