shorter than the N-C single bond length of 1.472 Å.¹¹ It should be noted, however, that while the phenyl groups on one triazenide ligand $[N(4)-N(6)]$ are almost coplanar with the N_3 plane, the phenyl groups on the other triazenide $[N(1)-N(3)]$ are twisted (22° and 26°) with respect to the **N3** plane. The lack of significant variation in the N-C bond distances between the triazenide ligands, in spite of the difference in orientation of the phenyl rings, suggests that any delocalization of the $N_3 \pi$ -system with the phenyl rings is relatively insensitive to torsion about the N-C bonds.

Compound **1** represents the first monomeric six-coordinate organometallic aluminum compound to be characterized structurally as well as the first observation of the trans influence in an aluminum compound.

Acknowledgment. Financial support of this work is provided by the donors of the Petroleum Research Fund, administered by the American Chemical Society, and ICI, Wilton Materials Research Center, U.K. We thank Professor David Hoffman for useful discussion.

Supplementary Material Available: Tables of atomic positional and isotropic equivalent thermal parameters, anisotropic thermal parameters, and bond distances and angles *(5* pages); a listing of observed and calculated structure factors **(14** pages). Ordering information is given on any current masthead page.

(11) (a) Sutton, L. E. *Interatomic Distances and Configuration in Molecules and Ions*; Special Publications No. 18; The Chemical Society: London, 1965. (b) Allen, F. H.; Kennard, O.; Watson, D. G.; Brammer, L.; Orpen, A. G.; Taylor, R. *J. Chem. SOC., Perkin Trans. 2* 1987, S1.

Oxidative and Thermal Isomerization of Phosphldo-Bridged Molybdenum Dicobalt Clusters: X-ray Crystal Structures of the Complexes $[{\sf MoCo}_2(\mu_3\textrm{-CC}_6{\sf H}_4{\sf Me}\textrm{-}4)(\mu\textrm{-PPh}_2)({\sf CO})_6(\eta\textrm{-C}_5{\sf H}_5)]$ and $[\text{NEt}_4] [\text{MoCo}_2(\mu_3\text{-}CC_6\text{H}_4\text{Me-4})(\mu\text{-}P\text{Ph}_2)(\text{CO})_6(\eta\text{-}C_5\text{H}_5)]$

Mark R. Bradford, Neil G. Connelly, Nicholas C. Harrison, and John C. Jeffery'

Department of Inorganic Chemistry, The University Bristol BS8 1 TS, U. K.

Received March 9, 1989

Summary: The anion **2-** undergoes two reversible oneelectron oxidations, to **2** and **2+,** and is protonated to give **2-H** which equilibrates with **3-H** via thermal migration of the μ -PR₂ ligand; deprotonation of 2-H \rightleftharpoons 3-H gives 3⁻ which is converted to **2** via a novel oxidatively induced μ -PR₂ migration reaction.

Treatment of metal carbonyl complexes with secondary phosphines can provide an efficient route for the synthesis of new phosphido-bridged derivatives.¹⁻³ The heterotrimetallic complexes $[WFe₂(\mu_{3}-CC_{6}H_{4}Me-4)(\mu-CO)(CO)_{8}(\eta (C_5H_5)$] and $[\text{WCo}_2(\mu_3\text{-}CR)(CO)_8(\eta\text{-}C_5H_5)]$ ($R = C_6H_4Me^{-4}$ or Me) with PPh_2H give well-defined complexes [WFe₂- $(\mu$ -H $)(\mu_3$ -CC₆H₄Me-4 $)(\mu$ -PPh₂ $)(CO)_{7}(\eta$ -C₅H₅ $)$] and $[WC_{O_2}(\mu - H)(\mu_3-CR)(\mu - PPh_2)(CO)_6(\eta - C_5H_5)]$ (R =

 C_6H_4Me-4 or Me), in which the μ -PPh₂ ligand bridges either the heteronuclear W-Fe or the homonuclear Co-Co bond, respectively. 4 Herein we report reactions on the MoCo₂ complex 1 which show that μ -PPh₂ ligands may undergo novel redox-induced dynamic behaviour leading to facile interconversion of isomers in which the μ -PPh₂ ligand bridges either the homonuclear Co-Co or the heteronuclear Mo-Co bond.

Treatment of 1 with 1 equiv of LiPPh₂ in tetrahydrofuran gives a highly reactive anion **2-** which is readily oxidised by air or $[Fe(\eta-C_5H_5)_2][PF_6]$ affording the stable 47 cluster valence electron radical *2.5* The cyclic voltammogram6 (CV) of **2** shows the expected reversible oneelectron reduction to 2^{-} $(E^{\circ} = -0.55 \text{ V})$ and also reveals a reversible one-electron oxidation to 2^+ ($E^{\circ} = 0.39$ V). The structure of the radical **2** was established by a single-crystal X-ray diffraction study7 which confirms that the μ -PPh₂ ligand bridges a Mo-Co bond (Figure 1). The reversibility of the CV waves described above implies that no gross structural rearrangement takes place on oxidation or reduction.

(4) Jeffery, J. C.; Lawrence-Smith, J. G. J. Chem. Soc., Chem. Com-
mun. 1985, 275; 1986, 17. Dunn, P.; Jeffery, J. C.; Sherwood, P. J.
Organomet. Chem. 1986, 311, C55. Jeffery, J. C.; Lawrence-Smith, J. G. *J. Organomet. Chem.* 1985, *280,* C34.

(5) Selected spectroscopic data (¹H NMR in CD₂Cl₂, and ¹³C(¹H) and ${}^{31}P_1{}^{1}H_1$ NMR in CD₂Cl₂-CH₂Cl₂ unless otherwise noted; coupling constants in H2). Compound 2: IR (ν_{co} (max), CH₂Cl2) 200 IR (*v*_{CO}(max), CH₂Cl₂) 2094 s, 2054 vs, 2004 vs, 1920 cm⁻¹. Compound 2-H: IR (*v*_{CO}(max), CH₂Cl₂) 2054 s, 2020 vs, 1984 s, sh, 1880 w, br cm⁻¹; ¹H NMR δ -13.56 [d, 1 H, μ-H, J(PH) = 12]; ³¹P(¹H] δ 1 $J(PC) = 17$]. Compound 3-H: IR $(\nu_{CO}(max), CH_2Cl_2)$ 2039 m, 2010 vs,
1982 s, 1860 w, br cm⁻¹; ¹H NMR δ -13.34 [d, 1 H, μ -H, $J(PH) = 22$];
³¹P[¹H] δ 229.5 ppm (br, $Co_2(\mu-P)$); ¹³C[¹H] δ 256.9 [d, μ -CR, ($\nu_{\rm CO}$ (max), CH₂Cl₂) 2032 m, 1988 vs, 1956 m, 1923 w, br, and 1870 w, br cm⁻¹. Compound 4: IR ($\nu_{\rm CO}$ (max), CH₂Cl₂) 2049 m, 2010 s, 2002 s, 1989 s, 1912 w, br cm⁻¹; ³¹P^{{1}H}, δ 38.7 ppm (br, PPh₂ $(MoCo(\mu-P));$ ¹³C^{[1}H] δ 255.2 [d, μ -CR, $J(PC)$ = 22], 228.8 [d, MoCO,

(6) Cyclic voltammetry was carried out at a platinum bead electrode in CH_2Cl_2 0.1 mol dm⁻³ in [NBuⁿ₄][PF₆] as supporting electrolyte. Potentials are quoted vs the saturated calomel electrode; *Eo* for the oxidation of ferrocene, added as an internal standard, was 0.47 V under the experimental conditions used.

⁽¹⁾ Henrick, K.; Horton, A. D.; McPartlin, M.; Mays, M. J. *J. Chem. SOC., Dalton Trans.* 1988, 1083 and references therein.

⁽²⁾ Colbran, S. B.; Johnson, B. F. G.; Lewis, J.; Sorrel, R. M. *J. Or ganomet. Chem.* 1985, *296,* C1.

⁽³⁾ Carty, A. J.; MacLaughlin, S. A.; Taylor, N. J. *Organometallics* 1984, 3, 392.

Figure 1. Molecular structure of $[MoCo₂(\mu₃-CC₆H₄Me-4)(\mu-1]$ $PPh_2(CO)_{6}(\eta \text{-} C_5H_5)$] (2). Dimensions: $Mo-Co(1) = 2.572$ (3), $Mo-Co(2) = 2.785(3), Mo-P = 2.369(5), Mo-C(40) = 1.99(2),$ $Co(1)-Co(2) = 2.478(4), Co(1)-P = 2.231(6), Co(1)-C(40) = 2.01$ (2) , $Co(2)-C(40) = 1.92$ (2) Å; $Co(1)-Mo-Co(2) = 54.9$ (1), Mo- $Co(1)-Co(2) = 66.9$ (1), Mo-Co(2)-Co(1) = 58.2 (1), Mo-P-Co(1) $= 67.9$ (2), Mo-C(40)-C(41) = 135 (1), Co(1)-C(40)-C(41) = 128 (1), $Co(2)-C(40)-C(41) = 126$ (1)^o.

Low-temperature protonation of 2^- (HBF₄.Et₂O, 0 °C) gives the μ -hydrido derivative 2-H. At ambient temperature, solutions of 2-H slowly (ca. *2* h) equilibrate with a new isomer 3-H $(2-H:3-H = 1:4)$, a process requiring thermally induced migration of the μ -PPh₂ ligand between the Mo-Co and Co-Co bonds. Treatment of 1 with 1 equivalent of PPh_2H initially affords the terminal PPh_2H complex 4 which smoothly rearranges ($Et₂O$, 35 °C) to the same **(1:4)** mixture of 2-H and 3-H obtained from protonation of 2-.

Deprotonation of 2-H and 3-H (KOH-EtOH) gives a comparatively stable anion 3- which was readily isolated as its tetraethylammonium salt. The structure of 3- was established by a single-crystal X-ray diffraction study⁷ which confirms that the μ -PPh₂ ligand bridges the homonuclear Co-Co bond (Figure 2). The CV of 3⁻ (Figure 3) shows two oxidation waves in the potential range -0.9 to 0.7 V. The first wave $(E^{\circ} = -0.31 \text{ V})$ is fully reversible (Figure 3a) and corresponds simply to the formation of 3. Multiple scanning (Figure 3b) through the second wave, however, shows that *rapid* isomerization occurs, via μ -PPh₂ bridge migration, after the formation of 3+, giving 2'; the reversible product wave centered at -0.55 V is identical with that for the couple $2-2⁻⁸$.

The chemical oxidation of $3⁻$ is also consistent with the processes shown in Scheme I. The weak oxidant $[C₇-]$ H_7 [BF₄] (tropylium tetrafluoroborate) (E° = -0.18 V, in $MeCN⁹$ and $3⁻$ in tetrahydrofuran gave 3 which, once isolated, only slowly rearranged to 2. However, the addition of slightly more than 1 equiv of $[Fe(\eta-C_5H_5)_2][PF_6]$ $(E^{\circ} = 0.47 \text{ V})$ to 3⁻ rapidly gave 2. In this case, the conversion of 3 to 2 can be catalyzed via the formation of $3^{+,10}$

These reactions demonstrate that it is possible to isolate

(8) The second oxidation wave is a composite wave corresponding to the couples $3^{+}-3$ (E° = ca. 0.44 V) and $2^{+}-2$ (E° = 0.39 V); the reversibility of either individual wave is impossible to establish from the cyclic voltammogram.

(9) Wasielewski, M. R., Breslow, R. *J. Am. Chem.* Soc. **1976,98,** 4222.

Figure 2. Molecular structure of $[NEt_4][MoCo_2(\mu_3-CC_6H_4Me 4)(\mu\text{-}PPh_2)(CO)_6(\eta\text{-}C_5H_5)$ (3⁻). Dimensions: Mo-Co(1) = 2.741 (2) , Mo-C₀ (2) = 2.761 (2) , Mo-C (10) = 2.05 (1) , C₀ (1) -C₀ (2) = 2.415 (2), $Co(1)-P = 2.176$ (3), $Co(1)-C(10) = 1.964$ (9), $Co(2)-P$ $= 2.175$ (3), Co(2)-C(10) $= 1.965$ (9) Å; Co(1)-Mo-Co(2) $= 52.1$ (1), Mo-Co(1)-Co(2) = 64.4 (1), Mo-Co(2)-Co(1) = 63.5 (1), Co(1)-P-Co(2) = 67.4 (1), Mo-C(10)-C(11) = 130.2 (6), Co(1)- $C(10)-C(11) = 129.2$ (7), $Co(2)-C(10)-C(11) = 130.6$ (7)^o. lecular structure of [1]
 $\frac{1}{2}$

lecular structure of [1]
 $\frac{1}{2}$, (n-C₈H_B)] (3⁻). Dim

= 2.761 (2), Mo-C(10

-P = 2.176 (3), Co(1)

-C(2) = 64.4 (1), Mo-C(10

: 129.2 (7), Co(2)-C(1

: 129.2 (7), Co(2)-C(1

Figure 3. The cyclic voltammogram of 3^- in CH₂Cl₂ at a platinum bead electrode: (a) single scan from -0.9 to 0.0 V and (b) multiple scan from -0.9 to $+0.7$ V.

Scheme I

\n(2)
$$
\frac{-e^-}{1+e^-}
$$
 (2) $\frac{-e^-}{1+e^-}$ (2) $\frac{e^-}{1+e^-}$ (2) $\frac{e^+}{1+e^-}$ (2) $\frac{e^+}{1+e^-}$ (3) $\frac{-e^-}{1+e^-}$ (3) $\frac{e^-}{1+e^-}$ (4) $\frac{e^-}{1+e^-}$ (5) $\frac{e^-}{1+e^-}$ (6) $\frac{e^-}{1+e^-}$ (7) $\frac{e^-}{1+e^-}$ (8) $\frac{e^-}{1+e^-}$ (9) $\frac{e^-}{1+e^-}$ (10) $\frac{e^-}{1+e^-}$ (2) $\frac{e^-}{1+e^-}$ (3) $\frac{e^-}{1+e^-}$ (4) $\frac{e^-}{1+e^-}$ (5) $\frac{e^-}{1+e^-}$ (6) $\frac{e^-}{1+e^-}$ (7) $\frac{e^-}{1+e^-}$ (8) $\frac{e^-}{1+e^-}$ (9) $\frac{e^-}{1+e^-}$ (10) $\frac{e^-}{1+e^-}$ (11) $\frac{e^-}{1+$

both kinetically (2- and 3) and thermodynamically (2 and 3⁻) stable μ -PPh₂-bridged clusters. The mechanism of μ -PPh₂ bridge migration might involve a bridge-terminal-bridge process similar to that observed for carbonyl and nitrosyl ligands. In the case of the μ -H derivatives 2-H and 3-H, we cannot rule out the possibility that isomerisation proceeds via terminal PPh₂H intermediates generated by retromigration of the μ -H ligands to phosphorus. Some support for this suggestion is given by the observation that treatment of 2-H and 3-H with CO readily regenerates **4.**

Acknowledgment. We thank the SERC for support (to M.R.B.).

Supplementary Material Available: Crystal data and tables of interatomic distances and angles, positional parameters, and anisotropic thermal parameters (13 pages); listings of observed and calculated structure amplitudes (34 pages). Ordering information is given on any current masthead page.

⁽⁷⁾ Crystal data for 2: $C_{31}H_{22}Co_2Mo_6P$, $M = 735.3$; orthorhombic, space group $Pbca$; $a = 16.350$ (6), $b = 17.523$ (6), $c = 20.731$ (11) Å; $U = 5939$ (4) Å³; $Z = 8$; $D_{\text{cold}} = 1.64$ g cm⁻³; $F(000) = 2936$; $\mu(\text{Mo$ diffractometer, $MOK\alpha$ ($\bar{\lambda} = 0.71069$ Å)]. Crystal data for 3⁻: C₃₉H₄₂-Co₂MoNO₆P, $M = 865.5$; monoclinic, space group $P2_1/c$; $a = 13.538$ (4), $b = 11.509$ (3), $c = 25.250$ (9) Å; $\beta = 104.36$ (3)°; $U = 3811$ 4; $D_{\text{caled}} = 1.51 \text{ g cm}^{-3}$; $F(000) = 1768$; $\mu(\text{MoK}\alpha) = 12.6 \text{ cm}^{-1}$. Current R = 0.072 $(R_w = 0.068)$ for 3473 absorption-corrected intensities [293 K, Wyckoff w-scans, $2\theta \le 50^{\circ}$, $F \ge 4\sigma(\hat{F})$, Nicolet P3 diffractometer].

⁽¹⁰⁾ Generation of small quantities of **3+** from 3 by the stronger oxicross reaction $2^{\frac{1}{2}} + 3 \rightleftharpoons 2 + 3^{\frac{1}{2}}$ then regenerates $3^{\frac{1}{2}}$ and affords 2 as the final product.