adduct itself. Conversely, for iron, a metallacycle of type C finds a large energy barrier along the pathway to its formation due to the destabilization of some filled orbitals. Ultimately, this is due to the difficulty of transferring electrons from the metal to the acetylene carbon atom.

Acknowledgment. We thank MRT for financial support of the form of scholarship (F.C.) and the CNRS for partial financial support. We are indebted to Dr. Brevard for recording NMR spectra on a Bruker AM 400 spectrometer and stimulating discussions.

We are grateful to NATO for its generous support of this research through Grant No. 200.81, which made this collaboration possible. J.L. would like to express her thanks to the members of ISSECC for their hospitality during her stay in Florence. We thank Joyce Barrows for the production of this manuscript and Jane Jorgensen and Elisabeth Fields for the drawings.

Registry No. 1, 112803-32-4; 2, 119382-09-1; 3, 119382-10-4; 4, 119382-11-5; 5, 119382-13-7; 6, 119434-98-9; 7, 119382-14-8; 8, 121056-08-4; 9, 5512-84-5; dmad, 762-42-5; CF<sub>3</sub>C=CCF<sub>3</sub>, 692-50-2; HC=CCN, 1070-71-9.

Supplementary Material Available: Tables of anisotropic thermal parameters for 2, 4, 6, and 7 and hydrogen atom coordinates for 4, 6, and 7 (7 pages); listings of structure factors for 2, 4, 6, and 7 (44 pages). Ordering information is given on any current masthead page.

# Synthesis and Properties of Some New ( $\eta^6$ -Arene)cobalt Complexes

Helmut Bönnemann, \* Richard Goddard, Joachim Grub, Richard Mynott, Eleonore Raabe, and Stefan Wendel

> Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, D-4330 Mülheim a. d. Ruhr, Federal Republic of Germany

> > Received December 15, 1988

The preparation of several new types of  $(\eta^6$ -arene)cobalt complexes is described.  $(\eta^3$ -Cyclooctenyl) $(\eta^2, \eta^2$ -cyclooctadiene)cobalt (1) reacts with H<sub>2</sub> in the presence of arenes and N bases such as piperidine to form  $(\eta^6$ -arene) $(\eta^1, \eta^2$ -cyclooctenyl) cobalt complexes (2). The structure of the  $1-\eta^1, 4, 5-\eta^2$ -cyclooctenyl ligand was determined by 2D NMR techniques. Complexes 2 react with HBF<sub>4</sub>·Et<sub>2</sub>O in the presence of dienes to give  $(\eta^{6}$ -arene)(diene)cobalt tetrafluoroborates (5, 6, 8, 10), which in turn react with NaBEt<sub>3</sub>H to afford  $(\eta^{6}-arene)(\eta^{3}-allyl)$  cobalt complexes. When the latter are treated with HBF<sub>4</sub>-Et<sub>2</sub>O in the presence of dienes, then  $(\eta^{6}$ -arene)(diene)cobalt tetrafluoroborates are re-formed.  $(\eta^{6}$ -Arene)(butadiene)cobalt tetrafluoroborates can be prepared by treating (5-methylheptadienyl)( $\eta^4$ -butadiene)cobalt with HBF<sub>4</sub>·Et<sub>2</sub>O in the presence of arenes. The reaction of 1 with HBF<sub>4</sub>·Et<sub>2</sub>O and arene results in the synthesis of ( $\eta^6$ arene) $(\eta^1, \eta^3$ -cyclooctenediyl)cobalt(III) tetrafluoroborate complexes (18). The NMR evidence for this structure is discussed. The arene ligand in 18 is easily displaced by acetonitrile to give  $(\eta^1, \eta^3$ -cyclooctenediyl)tris(acetonitrile)cobalt tetrafluoroborate (21), which is a versatile compound for the synthesis of neutral cobalt complexes with  $\eta^1, \eta^3$ -cyclooctenediyl ligands. The crystal structures of ( $\eta^5$ -cyclopentadienyl) $(\eta^1, \eta^3$ -cyclooctenediyl)cobalt (22) and  $(acetylacetonato)(\eta^1, \eta^3$ -cyclooctenediyl)cobalt (23) were confirmed by X-ray diffraction techniques. Crystals of 22 are tetragonal, space group  $P\overline{4}$ , with a = b =16.583 (2) Å, c = 7.995 (1) Å, and Z = 8; R = 0.031 for 2525 unique observed reflections. Crystals of 23 are triclinic, space group PI, with a = 8.4165 (8) Å, b = 8.9539 (9) Å, c = 9.3770 (5) Å,  $\alpha = 72.588$  (5)°,  $\beta = 72.224$  (5)°,  $\gamma = 70.521$  (8)°, and Z = 2; R = 0.033 for 3160 unique observed reflections. Both complexes are monomeric and contain similar C<sub>8</sub>H<sub>12</sub>Co fragments.

#### Introduction

In the past 30 years a number of neutral and cationic  $\eta^6$ -arene complexes of cobalt<sup>1</sup> have been synthesized in which the arene is benzene, an alkylated benzene, or an annelated arene. However, only a few examples of arene-cobalt complexes are known where the arene ligands bear functional groups.<sup>2</sup> In this paper we wish to report some novel cationic and neutral arene-cobalt complexes

with arenes and functionized arenes. We also report some compounds containing ligands that are  $\eta^1, \eta^2, \eta^3$ , or  $\eta^1, \eta^3$ -bound to cobalt, some of which are of types previously unknown for this metal.

## **Results and Discussion**

1.  $(\eta^6$ -Arene) $(\eta^1, \eta^2$ -cyclooctenyl)cobalt Complexes (2). The reaction of  $(\eta^3$ -cyclooctenyl) $(\eta^2, \eta^2$ -cyclooctadiene-1,5)cobalt (1)<sup>3,4</sup> with H<sub>2</sub> at room temperature in benzene solution leads to hydrogenation and decomposition of 1 to metallic cobalt, cyclooctane, and cyclohexane (eq 1). However, when basic auxiliary ligands (for example, an amine such as piperidine) are added, the formation of metallic cobalt is suppressed almost completely and the

<sup>(1) (</sup>a) Silverhorn, W. E. Adv. Organometal. Chem. 1975, 13, 47. (b) Gastinger, R. G.; Klabunde, K. J. Transition Met. Chem. (Weinheim, Ger.) 1979, 4, 1. (c) Kemmitt, R. D. W.; Russel, D. R. In Comprehensive Organometallic Chemistry; Wilkinson, G., Stone, F. G. A., Abel, E. W., Eds.; Pergamon Press: New York, 1982; Vol. 5. (d) Geiger, W. E.; Edwin, J. Organometallics 1984, 3, 1910. (e) Jonas, K. Angew. Chem., Int. Ed. Evel 1985, 24, 295. (f) Barannen, H. Angew. Chem., Int. Ed. Engl. 1985, 24, 295. (f) Bönnemann, H. Angew. Chem. Int. Ed. Engl. 1985, 24, 248.

<sup>(2) (</sup>a) Efraty, A.; Maitlis, P. M. J. Am. Chem. Soc. 1967, 89, 3744. (b) Fairhurst, G.; White, C. J. Chem. Soc., Dalton Trans. 1979, 1531.

<sup>(3)</sup> Otsuka, S.; Rossi, M. J. Chem. Soc. A 1968, 2630.
(4) Grard, Ch. Dissertation, Ruhr-Universität Bochum, 1967.

Co + 2 cyclooctane + cyclohexane (1)

new cobalt complex 2a can be isolated from the reaction solution as dark red crystals (eq 2). The structure of 2a



N base: piperidine, 85% (2a)

was determined unambiguously and the spectrum assigned by <sup>13</sup>C NMR by means of a 2D INADEQUATE spectrum<sup>5</sup> (see section 5). In addition to a  $\eta^6$ -benzene ring, this compound contains a  $C_8$  ring which is bound to the central metal atom by a metal-olefin bond and a metal-carbon  $\sigma$ -bond. This 1- $\eta^1$ ,4,5- $\eta^2$ -enyl structure element is known for Ni,<sup>6</sup> Pd,<sup>7</sup> and Pt<sup>8</sup> compounds. Cobalt complexes with a  $\eta^1, \eta^2$ -bound C<sub>8</sub> ring have been previously postulated as intermediates,<sup>4</sup> but this is the first time that such compounds have been isolated or their structures determined spectroscopically. The effect of adding other amines such as triethylamine and quinuclidine was investigated. It was found that when the ratio of amine to 1 was 5:1, the yield of 2a is strongly dependent upon the basicity of the amine added (eq 3). Thus in the case of triethylamine, the yield

$$1 + O + 2H_2 - \frac{\operatorname{room temp/4 h}}{N \text{ base}}$$

$$1 + O + 2H_2 - O + \operatorname{cyclooctane} (3)$$

$$2a$$

N base: pyridine, 42% (2a); triethylamine, 48% (2a)

of 2a is about 50%, but with quinuclidine and piperidine (eq 2) the yield increases to over 80%. Since triethylamine and quinuclidine have almost identical  $pK_{\rm B}$  values,<sup>9</sup> this must mean that steric effects must play a role in the influence of the amines. Clearly, quinuclidine is better at stabilizing the cobalt complexes formed as intermediates during the reaction. Surprisingly, in contrast to triethylamine and quinuclidine, when piperidine is added, then only 7 mol of  $H_2/mol$  of cobalt complex is taken up

(9) (a) Grob et al. Chem. Ind. (London) 1957, 598. (b) Weast, C. W.; Astle, M. J.; Beyer, W. H. In Handbook of Chemistry and Physics, 64th ed.; CRC Press: Cleveland, 1983-1984.

and one of the  $C_8$  rings is liberated as cyclooctene (eq 2).

Further studies showed that the yield is not affected if the molar ratio of 1 to piperidine is less than 2:1. However, when this ratio is exceeded, then the parallel reaction is no longer suppressed. For example, when the molar ratio of 1 to piperidine is 10:1, then metallic cobalt is produced and the yield of 2a is only 32%. Twenty-one percent of the starting material 1 remains unchanged (eq 4). The



synthetic method in eq 2 accommodates a wide range of arene components. Thus at 50 °C with piperidine added, the  $(\eta^6$ -arene) $(\eta^1, \eta^2$ -cyclooctenyl)cobalt compounds (2a-m) are obtained in very good yields (eq 5). The reaction to



arene: benzene, 88% (2a); hexamethylbenzene, 15% (2b); mesitylene, 81% (2c); pseudocumene, 76% (2d); biphenyl, 65% (2e); diphenylmethane, 72% (2f); 9,10-dihydroanthracene, 35% (2g); anisole, 96% (2h); p-anisidine, 72% (2i); 1,4-dimethoxybenzene, 57% (2j); p-methoxybenzoic acid methyl ester, 56% (2k); fluorobenzene, 23% (2m)

form the analogous aniline complex 2n proceeds at room temperature in almost quantitative yield (eq 6). Here the aniline not only appears in the final product but also acts as the auxiliary ligand. Similarly, with p-phenylenedi-



amine, the corresponding *p*-phenylenediamine complex 2p is formed without another amine having to be added. However, since *p*-phenylenediamine only melts at 142 °C, at 50 °C the reaction has to be carried out in a 1:1 mixture of the aromatic compound and THF (eq 7). When the



<sup>(5)</sup> For general references, see: Ernst, R. R.; Bodenhausen, C.; Wokaun, A. Principles of Nuclear Magnetic Resonance in One and Two Dimensions; Pergamon: Oxford, 1987. Bax, A.; Freeman, R.; Frenkiel, T. A.; Levitt, M. H. J. Magn. Reson. 1981, 43, 478. (6) Jolly, P. W.; Wilke, G. In The Organic Chemistry of Nickel; Aca-

<sup>demic Press: New York, 1973; Vol. 1, p 350.
(7) Chatt, J.; Vallarino, L. M.; Venanzi, L. M. J. Chem. Soc. 1957, 3413. Maitlis, P. M.; Espiret, P.; Russel, M. J. H. In Comprehensive</sup> Organometallic Chemistry; Pergamon Press: New York, 1982; Vol. 6, p 365

<sup>(8)</sup> Chatt, J.; Vallarino, L. M.; Venanzi, L. M. J. Chem. Soc. 1957, 2496.

## $(\eta^{6}-Arene)cobalt Complexes$

pseudocumene complex 2d is prepared by the route in eq 5, the two diastereomeric pairs of compounds A and B are obtained. The ratio A/B is strongly dependent upon the temperature (eq 8). The reaction of a 1:1 mixture of 1



T = 0 °C, A:B = 4,5:1

with biphenyl gives the mononuclear complex 2e. The binuclear complex 2q can be obtained in 8% yield by taking a twofold excess of 1 (eq 9). The meso form and



the d/l racemate are formed in a 1:1 ratio. The new cobalt complexes  $2\mathbf{a}-\mathbf{q}$  are isolated as orange to deep red crystals. They are stable at room temperature in an inert atmosphere. Their characterization by NMR is discussed in section 5.

Wilke et al.<sup>6</sup> discovered that  $\eta^1, \eta^2$ -cyclooctenyl ligands in Ni complexes undergo thermal isomerization to form the corresponding  $\eta^3$ -allyl systems. No similar reaction could be found for the  $(\eta^6$ -arene) $(\eta^1, \eta^2$ -cyclooctenyl)cobalt complexes 2, nor did differential thermal analysis of 2a and 2b produce any indication of such an isomerization reaction. Clearly the arene stabilizes the complex. Only after the arene has been replaced (for example, by PMe<sub>3</sub> ligands) does isomerization of the  $\eta^1, \eta^2$ -enyl ligand take place.



$$\int Co - \left( \int + 3 PMe_3 \frac{pentane}{35 \circ C} - Co(PMe_3)_3 (11) \right)$$

2.  $[(\eta^6\text{-}Arene)(\text{diene})\text{Co}]\text{BF}_4 \text{ Complexes.}$  A general method of preparing the  $[(\eta^6\text{-}arene)(\text{diene})\text{Co}]^+$  systems 5, 6, 8, and 10 is to treat the appropriate complex 2 with HBF<sub>4</sub>·Et<sub>2</sub>O in the presence of the corresponding diene. Protolysis of the Co-C  $\sigma$ -bond occurs with displacement of the C<sub>8</sub> ring by a diene (eq 12). For example, the complexes 5a-c, 5e, and 5h are obtained as orange-red crystals

Co(arene) + diene 
$$\frac{\text{HBF}_4 \cdot \text{Et}_2\text{O}}{-\text{cyclooctene}}$$
 [(arene)(diene)Co]BF<sub>4</sub> (12)  
5, 6, 8, 10

when 2 reacts with cyclooctadiene-1,5 (eq 13). These

$$2$$
Co(arene) + 1,5-COD 
$$\frac{HBF_4 \cdot Et_2O}{-cyclooctene}$$
(arene)<sup>+</sup>
Co  $BF_4^-$  (13)
$$5a-c, 5e, 5h$$

arene: benzene, 67% (5a); hexamethylbenzene, 63% (5b); mesitylene, 74% (5c); biphenyl, 82% (5e); anisole, 41% (5h)

cations, with the exception of **3b**, dissolve with decomposition in polar solvents such as ethanol, acetone, and acetonitrile. **3c** and **3h** are soluble in  $CH_2Cl_2$  below -30 °C without decomposition while **3a** decomposes above -50 °C and **3e** above -70 °C. The hexamethylbenzene-cobalt complex **3b**, which has been prepared by Geiger et al.<sup>1d</sup> from [bis(hexamethylbenzene)cobalt] hexafluorophosphate<sup>10</sup> and COD-1,5, is stable in  $CH_2Cl_2$  at room temperature.

Treatment of 2a with  $HBF_4 \cdot Et_2O$  in the presence of cyclohexadiene-1,3 produces the benzene-cobalt complex 6a (eq 14). In contrast, the analogous hexamethyl-



benzene-cobalt complex **6b** is best prepared by treating complex **7b**, which will be described later, with cyclo-hexadiene-1,3. The  $\eta^3$ -allyl ligand undergoes protolysis (eq 15). The reaction of cyclopentadiene-1,3 with the com-



plexes 2 affords the corresponding cyclopentadienyl complexes 8a-c (eq 16). Whereas complexes 8b and 8c are



arene: benzene (8a); hexamethylbenzene (8b); mesitylene (8c)

obtained pure in good yields, compound 8a is always contaminated with cobalticenium tetrafluoroborate, which is formed together with metallic cobalt as a product of the

<sup>(10)</sup> Fischer, E. O.; Lindner, H. H. J. Organomet. Chem. 1964, 1, 307.

disproportionation of 8a (eq 17). The hexamethylbenzene



complex 8b can be prepared from the crotyl complex 7b (eq 18). On the other hand,  $[(\eta^{6}\text{-arene})(\eta^{4}\text{-butadiene-})$ 



1,3)Co]<sup>+</sup> systems are formed in good yields from (5methylheptadienyl)( $\eta^4$ -butadiene)cobalt (9)<sup>11</sup> and HBF<sub>4</sub>·Et<sub>2</sub>O in the presence of the arene (eq 19). Here one



arene: benzene (10a); hexamethylbenzene (10b); mesitylene (10c)

observes that, similar to complexes 5a-c, the thermal stability of the complexes 10 increases with increasing alkyl substitution. The complex of unsubstituted benzene (10a) is stable in CH<sub>2</sub>Cl<sub>2</sub> only to about -60 °C. Solutions of 10c and 10b in CH<sub>2</sub>Cl<sub>2</sub> are stable to -30 and to 10 °C, respectively.

3.  $(\eta^6$ -Arene) $(\eta^3$ -allyl)cobalt Complexes. Previously no general method was known for preparing complexes of the type  $(\eta^6$ -arene) $(\eta^3$ -allyl)cobalt. Indeed, the only reported example was described by Cibura,<sup>12</sup> who prepared  $(\eta^6$ -benzene) $(\eta^3$ -cyclohexenyl)cobalt (11a) by reacting 1 with cyclohexadiene-1,3 (eq 20). However, the reaction



of the  $[(\eta^{6}\text{-}arene)(\eta^{4}\text{-}1,3\text{-}diene)Co]^{+}$  cations with NaBEt<sub>3</sub>H<sup>13</sup> is a general method of preparing  $(\eta^{3}\text{-}allyl)Co$  complexes (eq 21). The  $\eta^{3}$ -cyclopentenyl complexes **12a**-c are obtained

$$[(arene)(1,3-diene)Co]BF_{4} \xrightarrow[-NaBEt_{3}H]{-NaBEt_{4}} (\eta^{3}-allyl)(arene)Co$$
  
6, 8, 10  
-BEt\_{3} 7, 11, 12  
(21)

in good yields starting from the cationic cyclopentadiene-1,3 complexes 8a-c at -30 °C (eq 22). In



arene: benzene (12a); hexamethylbenzene (12b); mesitylene (12c)

contrast, the reaction of the cyclohexadiene-1,3 complex **6b** gives complex **11b** in only 20% yield with most of complex **6b** undergoing decomposition (eq 23). By com-



parison, treatment of the analogous rhodium complex  $13^{14}$ with NaBEt<sub>3</sub>H at -30 °C leads to the formation of the isomeric ( $\eta^6$ -benzene)(1- $\eta^1$ ,3,4- $\eta^2$ -cyclohexenyl)rhodium 14 (eq 24). However, at room temperature the  $\eta^3$ -cyclo-



hexenyl complex 15 is produced (eq 25). The reaction of



the butadiene complex 10b at -30 °C gives the  $\eta^3$ -butenyl complex 7b already mentioned, together with approximately the same amount of the isomeric  $1-\eta^1,3,4-\eta^2-3$ -butenyl complex 16 (eq 26). When the reaction temperature



is raised to 20 °C, the product contains no 16 and the yield of 7b increases to about 60% (eq 27). It can be assumed that any of the  $1-\eta^1,3,4-\eta^2-3$ -butenyl isomer 16 that may be formed during the reaction is converted to the ther-

<sup>(11)</sup> Natta, G., et al. Chim. Ind. (Milan) 1965, 47, 524.

<sup>(12)</sup> Cibura, K. Dissertation, Ruhr-Universität Bochum, 1985.

<sup>(13)</sup> Binger, P.; Benedikt, B.; Rotermund, G. W.; Köster, R. Liebigs Ann. Chem. 1968, 717, 21-40.

<sup>(14)</sup> Green, M.; Kuc, T. A. J. Chem. Soc., Dalton Trans. 1972, 832.



modynamically more stable  $\eta^3$ -allyl isomer 7b by decomplexation of the C=C double bond and  $\beta$ -H elimination (eq 28). This isomerization has been studied thoroughly



in the case of  $(\eta^5$ -cyclopentadienyl) $(1-\eta^1,3,4-\eta^2-3$ -butenyl)nickel systems.<sup>15</sup> However, when the unsubstituted complex **10a** is treated with NaBEt<sub>3</sub>H at -30 °C, a mixture of isomers consisting of  $(\eta^6$ -benzene) $(\eta^3$ -crotyl)cobalt (**7a**) and  $(\eta^5$ -cyclohexadienyl) $(\eta^4$ -butadiene)cobalt (**17**) in the ratio 2:1 is formed and the overall yield is only 10% (eq 29).



4.  $[(\eta^6-\text{Arene})(\eta^1,\eta^3-\text{cyclooctenediyl})\text{Co}]\text{BF}_4$  Complexes and Their Chemistry. The protolysis of 1 in the presence of aromatic hydrocarbons might be expected to provide an alternative method of preparing [ $(\eta^6$ -arene) $(\eta^2, \eta^2$ -COD-1,5)Co]BF<sub>4</sub> complexes. However, the reaction of 1 with  $HBF_4$ ·Et<sub>2</sub>O in the presence of benzene at -70 °C affords a mixture of two isomeric benzene-cobalt cations in a 1:1 ratio. One of these compounds is the expected [ $(\eta^6$ -benzene) $(\eta^2, \eta^2$ -COD-1,5)Co]BF<sub>4</sub> (5a), already obtained from  $(\eta^6$ -benzene) $(\eta^1, \eta^2$ -cyclooctenyl)cobalt (2a) according to eq 13, while the other is the  $(\eta^6$ benzene) $(\eta^1, \eta^3$ -cyclooctenediyl)cobalt(III) tetrafluoroborate complex (18a) (eq 30). The presence of the  $\eta^1, \eta^3$ -cyclooctenediyl ligand was established by <sup>13</sup>C NMR (see section 5). Complexes containing such a  $C_8$  ring bonded by a  $\sigma$ -bond and a  $\eta^3$ -envl group to the central atom have been reported for individual cases on iron, ruthenium, and osmium.<sup>16</sup> Low-temperature chromatography on  $Al_2O_3$  (7%



 $H_2O$ ) at -78 °C with acetone as eluent yielded the pure cyclooctenediyl complex 18a in 35% yield; the cation 5a decomposes under these conditions.

When the reaction is carried out at room temperature, 18a is obtained after low-temperature chromatography and recrystallization from  $Et_2O$ -CH<sub>2</sub>Cl<sub>2</sub> in 72% yield as orange crystals which are not stable at room temperature (eq 31). When the reaction temperature is raised, the ratio of isomers shifts in favor of 18a.



The  $(\eta^6$ -arene) $(1-\eta^1, 4-6-\eta^3$ -cyclooctenediyl)cobalt(III) monocations 18b,c,e,r,s can be prepared the same way in similarly good yields (eq 32). This method of preparing



arene: hexamethylbenzene, 58% (18b); mesitylene,72% (18c); biphenyl, 30% (18e); naphthalene, 48% (18r); 1,4-dihydroxybenzene, 67% (18s)

arene-cobalt monocations from 1 (eq 32) can also be applied to the analogous rhodium compounds<sup>17</sup> 19 (eq 33).



arene: hexamethylbenzene (20b); 1,4-dihydroxybenzene (20s)

However, as opposed to cobalt, the cation with  $\eta^2, \eta^2$ -bound COD is formed selectively. With the exception of the hexamethylbenzene complex 18b, the aromatic ring in complexes 18 can be displaced easily by acetonitrile to afford the tris(acetonitrile) complex 21 (eq 34). Even in



<sup>(17)</sup> Mutler, J.; Stühler, H. O.; Goll, W. Chem. Ber. 1975, 108, 1074-1086.

<sup>(15) (</sup>a) Lehmkuhl, H.; Rufinska, A.; Benn, R.; Schroth, G.; Mynott, R. J. Organomet. Chem. 1980, 188, C36-C40. (b) Lehmkuhl, H.; Rufinska, A.; Benn, R.; Schroth, G.; Mynott, R. Liebigs Ann. Chem. 1981, 317.

<sup>(16) (</sup>a) Cotton, F. A.; LaPrade, M. D.; Johnson, B. F. G.; Lewis, J. J. Am. Chem. Soc. 1971, 93, 4626. (b) Cotton, F. A.; Deeming, A. J.; Jasty, P. L.; Ullah, S. S.; Domingos, A. J. P.; Johnson, B. F. G.; Lewis, J. J. Am. Chem. Soc. 1971, 93, 4624.

boiling acetonitrile neither is the hexamethylbenzene ring of 18b exchanged nor does the reverse reaction with complexation of hexamethylbenzene take place (eq 35).



Treatment of 21 with anionic ligands X<sup>-</sup> leads to formation of the neutral  $(1-\eta^1,4-6-\eta^3$ -cyclooctenediyl)cobalt complexes 22-26 (eq 36). Complexes 22 and 23 can be converted to



the isomeric  $\eta^2$ ,  $\eta^2$ -COD-1,5 complexes 27 and 28 (eq 37).



Y: Cp (27), 160 °C; fluorenyl (28), 75 °C

With strongly solvating solvents such as THF and DMF, the green 16e complex 23 undergoes color changes with the reversible formation of solvent adducts 29 (eq 38). 23, like



21, reacts with anionic ligands to form neutral  $\eta^1, \eta^3$ -cyclooctenediyl complexes. For example, the reaction of 23 with C<sub>5</sub>H<sub>7</sub>Li at room temperature in THF gives 30 (eq 39).

5. NMR and X-ray Crystallography. (a)  $(\eta^6$ -Arene) $(\eta^1, \eta^2$ -cyclooctenyl)cobalt Complexes. The structure of the  $\eta^1, \eta^2$ -cyclooctenyl ligand in the complexes 2 was confirmed with the help of a <sup>13</sup>C 2D NMR INADEQUATE measurement of 2a. This showed that the complexed double bond lies between C-4 and C-5. The chemical shifts of the  $\eta^1, \eta^2$ -cyclooctenyl group are affected little by vari-



ation of the arene and the signals of all the other complexes in this series (2b-2q) can be assigned without ambiguity.

The  ${}^{13}$ C NMR data for the new cobalt complexes 2a-qin THF- $d_8$  solution are collected in Table I. These NMR data including the number of signals in the spectra are fully consistent with the given structures. C-1 in the  $(\eta^1,\eta^2$ -cyclooctenyl)cobalt group is chiral. 2q contains two such groups and the observation of two sets of signals for this compound in the ratio 1:1 is explained by the presence of diastereomers. Similarly, when the pseudocumene ring is complexed, this is also chiral (see C-10); here the diastereomers are present in a 2:1 ratio. In the complexes with one substituent in the complexed aromatic ring (2e, 2f, 2h, 2m, 2n, 2q) the ortho and the meta carbon atoms are diastereotopic. Similarly, the ortho carbons are diastereotopic in the para-disubstituted compounds 2i, 2j, 2k, and 2p.

(b)  $(\eta^6$ -Arene) $(\eta^1, \eta^3$ -cyclooctenediyl)cobalt Complexes. The <sup>13</sup>C NMR data for the cationic and neutral  $1-\eta^1, 4-6-\eta^3$ -cyclooctenediyl complexes are collected in Table II.

In the <sup>13</sup>C NMR spectra of complexes 18 the number of signals, their intensities, multiplicities, and values of <sup>1</sup>J-(C,H) all suggest that a  $1-\eta^1, 4-6-\eta^3$ -cyclooctenediyl ring is present. However, in the <sup>13</sup>C NMR spectra of transition-metal complexes of symmetrically substituted  $\eta^3$ -allyl groups the resonance of the meso carbon atom is usually found well to a lower field of that of the terminal carbon atoms, as observed here for the cyclopentenyl and cyclohexenyl compounds 12 and 15. The chemical shifts of the  $\eta^3$ -allyl carbon atoms of 18 are very unusual because the signal of the meso carbon atom is found to higher field than that of the terminal carbons.

The structure of the C<sub>8</sub> ring in 18a and the signal assignments were therefore checked by further experiments. The assignment in the <sup>1</sup>H NMR spectrum of H-5 (triplet) and H-4 (quartet) is unambiguous. A 2D <sup>13</sup>C,<sup>1</sup>H shift correlated NMR spectrum<sup>18</sup> showed that the <sup>1</sup>H and <sup>13</sup>C assignments are completely consistent. Further confirmation of the structure was obtained from a 1D INADE-QUATE NMR spectrum.<sup>19</sup>

The other complexes containing this  $\eta^1, \eta^3$ -cyclooctenediyl ligand in which the  $\eta^6$ -arene has been replaced by Cp, acac, or other ligands (21-26, 30) show the usual pattern of chemical shifts, with the meso resonance at a lower field of that of the other allyl carbon atoms.

An X-ray crystallographic analysis was carried out on complexes 22 and 23; their molecular structures are illustrated in Figure 1.

The atomic fractional coordinates for both compounds are given in Table III and selected distances and angles are given in Table IV. In 22 there are two independent molecules in the asymmetric unit. They are essentially similar and differ only by a rotation of the  $\eta^5$ -cyclopentadienyl ring about the metal-ring axis.

<sup>(18)</sup> For a general review, see: Bax, A. Top. Carbon-13 NMR Spectrosc. 1984, 4, 197.

<sup>(19)</sup> Bax, A.; Freeman, R.; Kempsell, S. P. J. Am. Chem. Soc. 1980, 102, 4849.



Figure 1. Molecular structures of complexes 22 and 23.



Figure 2. Continuous-flow apparatus for optimation of homogeneous catalytic processes: A, catalyst solution; B, educts; C, thermostated reactor; D, trap; E, gas chromatograph; F, data interpretation.

Replacement of the  $C_5H_5$  ring in 22 by the acetylacetonate ligand (acac) in 23 results in no significant change in the geometry in the remainder of the molecule, the acac ligand merely adopts a position such that the atoms Co, C7, C13, O1, and O2 lie in a plane ( $\pm 0.02$  Å). It is clear from the observed geometry that the coordination about the metal atom is not determined by steric effects alone. The square-pyramidal ligand geometry can be attributed to the six d electrons on the metal, which force the metal to retain its octahedral origins.<sup>20</sup> The favorable delocalization afforded by the coordinated acac ligand appears to play a minor role, since a similar square-pyramidal geometry is observed for bis(butadiene) monocarbonyliron,<sup>21</sup> which has no equivalent  $\pi$ -acceptor orbitals in the basal plane.



In both compounds there are no intermolecular distances shorter than 3.0 Å between non-hydrogen atoms. The molecules of 23 crystallize in pairs across centers of symmetry with the coordination planes containing the acac ligand lying 3.4 Å apart. As a result, the free coordination site of the cobalt atom points approximately toward C2 of the neighboring molecule. The Co-C2 distance is 3.444 (2) Å and is too large to indicate strong interaction between the two molecules.

6. Test of Complexes 1, 2b, 7b, 11a-c, 12b, and 22 as Catalysts in the Pyridine Synthesis. Complexes of the type [YCoL], where Y is a univalent anionic ligand and L is a neutral ligand, catalyze the cyclotrimerization of alkynes with nitriles (eq 40). In the initial step of the

$$2-C = C - + R - C = N \xrightarrow{[Co]} N - R + (40)$$

#### R = H, alkyl, aryl, functional groups

catalysis the stabilizing neutral ligand is eliminated to form the catalytically active species.<sup>22</sup> The Y ligand, which remains bound to the metal during the catalytic cycle, acts as a steering ligand (Scheme I). Reaction 41 is used to characterize the catalysts. The catalytic properties of the

YCoL complexes are described by three characteristic quantities. 1. The Activity of the Catalyst: this is given indirectly as the temperature required in a continuous-flow reactor to achieve 65% conversion of propyne in the test reaction (eq 41). The higher the temperature required, the lower the activity. 2. Chemoselectivity: the ratio of heterocyclics to carbocyclics in the product. 3. Regioselectivity: the proportions of symmetric and asymmetric products in the heterocyclic and carbocyclic fractions.

Complexes 1, 2b, 7b, 11a-c, 12b, and 22 were investigated to see whether the catalytic trimerization (eq 41)

 <sup>(20)</sup> Elian, M.; Hoffmann, R. Inorg. Chem. 1975, 14, 1058-1076.
 (21) Whiting, D. A. Cryst. Struct. Commun. 1972, 1, 379-381.

<sup>(22)</sup> Bönnemann, H.; Brijoux, W.; Brinkmann, R.; Meurers, W.; Mynott, R.; von Philipsborn, W.; Egolf, T. J. Organomet. Chem. 1984, 272, 231-249.

|       | C17             |                               |                  |                   | 19.1<br>127<br>18.9<br>q                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                  | 127.0<br>d<br>159                                              |
|-------|-----------------|-------------------------------|------------------|-------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|----------------------------------------------------------------|
|       | C <sub>16</sub> |                               |                  |                   | 17.5°<br>q<br>127<br>18.0°<br>q                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 128.2<br>d<br>161                                                | 128.2<br>d<br>160                                              |
|       | C <sub>16</sub> |                               |                  |                   | 17.1°<br>q<br>127<br>17.0°<br>q                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 129.6<br>d<br>159                                                | 129.5<br>d<br>158                                              |
|       | C <sub>14</sub> |                               |                  |                   | 96.5<br>d<br>168<br>95.6<br>d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 127.9<br>d<br>157                                                | 141.4<br>s                                                     |
| arene | C <sub>13</sub> |                               |                  |                   | 93.3<br>d<br>167<br>94.8<br>d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 139.4<br>s                                                       | 41.0<br>t<br>128                                               |
|       | C <sub>12</sub> |                               |                  |                   | 104.7<br>s<br>103.9<br>s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 94.4<br>d<br>170                                                 | 94.5<br>d<br>169                                               |
|       | Сп              |                               |                  | 19.67<br>q<br>127 | 97.1<br>d<br>165<br>96.4<br>d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 94.5 <sup>d</sup><br>d<br>171<br>94.0 <sup>d</sup><br>171<br>171 | 94.8 <sup>d</sup><br>d<br>171<br>171<br>171<br>171             |
|       | C10             |                               | 15.6<br>q<br>127 | 105.72<br>s       | 102.7 <sup>b</sup><br>s<br>101.7 <sup>b</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 93.0 <sup>4</sup><br>d<br>168<br>92.1 <sup>4</sup><br>d<br>169   | 94.3 <sup>4</sup><br>d<br>170<br>93.4 <sup>4</sup><br>d<br>169 |
|       | లో              | 94.3<br>d<br>170              | 101.8<br>s       | 94.16<br>d<br>167 | 102.8 <sup>b</sup><br>s<br>104.9 <sup>b</sup><br>s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 106.6<br>s                                                       | 109.4<br>s                                                     |
|       | ငိ              | 38.6<br>t<br>122              | 36.7<br>t<br>121 | 38.55<br>t<br>121 | 37.9<br>t<br>121<br>38.1<br>t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 38.5<br>t<br>121                                                 | 38. <b>4</b><br>t<br>121                                       |
|       | C,              | 27.4<br>t<br>126              | 27.6<br>t<br>a   | 27.00<br>t<br>124 | 27.2<br>t<br>122<br>27.2<br>t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 26.7<br>t<br>124                                                 | 27.5<br>t<br>124                                               |
|       | C <sub>6</sub>  | 29.6<br>t<br>123              | 29.4<br>t<br>a   | 29.75<br>t<br>122 | 30.1<br>t<br>122<br>30.0<br>t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 29.6<br>t<br>122                                                 | 29.6<br>t<br>122                                               |
|       | C,              | 54.9<br>d<br>147              | 56.5<br>d<br>144 | 56.4<br>d<br>144  | 56.3<br>d<br>144<br>56.4<br>d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 56.4<br>d<br>144                                                 | 55.8<br>d<br>145                                               |
|       | °,              | 65.5<br>d<br>151              | 66.2<br>d<br>a   | 66.7<br>d<br>149  | 65.8<br>d<br>156<br>65.7<br>d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 67.0<br>d<br>146                                                 | 66.3<br>d<br>150                                               |
|       | ပိ              | 29.9<br>t<br>124              | 30.5<br>t<br>a   | 30.61<br>t<br>123 | 30.5<br>t<br>124<br>30.5<br>t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 30.0<br>t<br>124                                                 | 30.0<br>t<br>125                                               |
|       | C2              | 44.1<br>t<br>123 <sup>g</sup> | 41.6<br>t<br>122 | 42.89<br>t<br>123 | 42.6<br>t<br>122<br>42.5<br>t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 43.2<br>t<br>123                                                 | 43.8<br>t<br>122                                               |
|       | cı              | 28.5¢<br>d′<br>a              | 31.5<br>d        | 30.2<br>d<br>132  | 29.8<br>d<br>29.6<br>d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 28.8<br>מ                                                        | ≈ 29.0<br>d<br>a                                               |
|       |                 |                               |                  | 26 (243 K)        | 26 (203 K)<br>$\frac{1}{2^{2}} = \frac{1}{2^{2}} = $ |                                                                  |                                                                |

Table I. <sup>13</sup>C NMR Data of Complexes 2a-2q in THF-d<sub>8</sub> Solution

1948 Organometallics, Vol. 8, No. 8, 1989

Bönnemann et al.

| 126.8 <sup>d</sup><br>d<br>160<br>126.75 <sup>d</sup><br>d<br>160 |                                                             |                                                                    |                                           | 52.3<br>q<br>147                                                   |                                                                                                    |                                                                |
|-------------------------------------------------------------------|-------------------------------------------------------------|--------------------------------------------------------------------|-------------------------------------------|--------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|----------------------------------------------------------------|
| 128.4 <sup>d</sup><br>d<br>156<br>d<br>158.3 <sup>d</sup><br>156  |                                                             |                                                                    |                                           | 166.8<br>s                                                         |                                                                                                    |                                                                |
| 136.6 <sup>d</sup><br>s<br>136.4 <sup>d</sup><br>s                | 55.3<br>q<br>145                                            | 55.1<br>q<br>144                                                   |                                           | 56.1<br>q<br>145                                                   |                                                                                                    |                                                                |
| 34.8 <sup>d</sup><br>t<br>128<br>34.3 <sup>d</sup><br>t<br>128    | 87.1<br>d<br>170                                            | 121.5<br>s                                                         |                                           | 139.4<br>s                                                         | 87.3<br>d<br>172                                                                                   | 83. <b>4</b><br>170                                            |
| 105.8 <sup>d</sup><br>s<br>105.6 <sup>d</sup><br>s                | 95.3 <sup>b,d</sup><br>d<br>94.8 <sup>b,d</sup><br>d<br>170 | 78.9 <sup>6,d</sup><br>d<br>168<br>76.9 <sup>6,d</sup><br>d<br>167 | 55.5<br>q<br>144                          | 81.2 <sup>d</sup><br>d<br>172<br>79.2 <sup>d</sup><br>d<br>172     | 95.8 <sup>d</sup><br>d<br>= 8<br>95.2 <sup>d</sup><br>95.2 <sup>d</sup><br>170<br>= 8              | 95.7 <sup>d</sup><br>d<br>168<br>95.6 <sup>d</sup><br>d<br>168 |
| 93.8 <sup>4</sup><br>d<br>93.6 <sup>4</sup><br>d<br>166           | 79.7 <sup>d</sup><br>d<br>170<br>79.0 <sup>d</sup><br>170   | 80.5 <sup>b,d</sup><br>d<br>168<br>d<br>168<br>168                 | 79.0 <sup>4</sup><br>d<br>169<br>d<br>171 | 96.1 <sup>b,d</sup><br>d<br>173<br>95.8 <sup>b,d</sup><br>d<br>172 | $\begin{array}{l} 82.3^{d} \\ d \\ 176 \\ J_{CF} = 21 \\ 81.1^{d} \\ d \\ 176 \\ = 21 \end{array}$ | 79.1 <sup>4</sup><br>d<br>168<br>d<br>d<br>166                 |
| 92.4 <sup>d</sup><br>d<br>91.7d<br>d<br>a                         | 138.2<br>s                                                  | 130.2<br>s                                                         | 132.1<br>s                                | 8.83.6<br>8                                                        | $^{141.0}$ s $J_{\rm CF} = 260$                                                                    | 128.9<br>s                                                     |
| 38.0                                                              | 39.1                                                        | 39.4                                                               | 39.2                                      | 38.9                                                               | 39.1                                                                                               | 39.5                                                           |
| t                                                                 | t                                                           | t                                                                  | t                                         | t                                                                  | t                                                                                                  | t                                                              |
| 122                                                               | 122                                                         | 121                                                                | 121                                       | 122                                                                | 123                                                                                                | 121                                                            |
| 26.5                                                              | 27.7                                                        | 28.6                                                               | 28.0                                      | 27.0                                                               | 26.9                                                                                               | 28.1                                                           |
| t                                                                 | t                                                           | t                                                                  | t                                         | t                                                                  | t                                                                                                  | t                                                              |
| a                                                                 | 124                                                         | 123                                                                | 122                                       | 125                                                                | 125                                                                                                | 126                                                            |
| 29.1                                                              | 29.8                                                        | 30.7                                                               | 30.6                                      | 30.1                                                               | 29.9                                                                                               | 30.0                                                           |
| t                                                                 | t                                                           | t                                                                  | t                                         | t                                                                  | t                                                                                                  | t                                                              |
| 124                                                               | 123                                                         | 123                                                                | 122                                       | 123                                                                | 123                                                                                                | 123                                                            |
| 56.2                                                              | 55.7                                                        | 58.3                                                               | 57.9                                      | 58.8                                                               | 57.0                                                                                               | 54.6                                                           |
| d                                                                 | d                                                           | d                                                                  | d                                         | d                                                                  | d                                                                                                  | d                                                              |
| 146                                                               | 146                                                         | 146                                                                | 142                                       | 148                                                                | 146                                                                                                | 144                                                            |
| 66.5                                                              | 65.3                                                        | 63.7                                                               | 65.7                                      | 68.4                                                               | 67.0                                                                                               | 62.8                                                           |
| d                                                                 | d                                                           | d                                                                  | d                                         | d                                                                  | d                                                                                                  | d                                                              |
| 142                                                               | 150                                                         | 150                                                                | 150                                       | 152                                                                | 152                                                                                                | 150                                                            |
| 30.3                                                              | 30.5                                                        | 31.3                                                               | 31.1                                      | 30.1                                                               | 30.3                                                                                               | 31.0                                                           |
| t                                                                 | t                                                           | t                                                                  | t                                         | t                                                                  | t                                                                                                  | t                                                              |
| 125                                                               | 123                                                         | 124                                                                | 122                                       | 123                                                                | 123                                                                                                | 124                                                            |
| 42.8                                                              | <b>4</b> 3.9                                                | 43.7                                                               | 44.0                                      | 43.2                                                               | 43.5                                                                                               | 43.5                                                           |
| t                                                                 | t                                                           | t                                                                  | t                                         | t                                                                  | t                                                                                                  | t                                                              |
| 123                                                               | 123                                                         | 123                                                                | 123                                       | 124                                                                | 123                                                                                                | 122                                                            |
| 28.4                                                              | 30.2                                                        | 32.0                                                               | 30.5                                      | 32.8                                                               | 30.7                                                                                               | 33.7                                                           |
| d                                                                 | d                                                           | d                                                                  | d                                         | d                                                                  | d                                                                                                  | d                                                              |
| a                                                                 | 132                                                         | a                                                                  | 128                                       | a                                                                  | 132                                                                                                | 128                                                            |



|                                                 |                               |          |           |                      |           | Table I  | (Continu | ed)            |                     |                               |                |                 | arene           |      |                 |                 |                 |
|-------------------------------------------------|-------------------------------|----------|-----------|----------------------|-----------|----------|----------|----------------|---------------------|-------------------------------|----------------|-----------------|-----------------|------|-----------------|-----------------|-----------------|
|                                                 | C1                            | $C_2$    | c3        | C4                   | $C_5$     | $C_6$    | $C_7$    | C <sub>8</sub> | C <sub>9</sub>      | C <sub>10</sub>               | с <sub>п</sub> | C <sub>12</sub> | C <sub>13</sub> | C14  | C <sub>15</sub> | C <sub>16</sub> | C <sub>17</sub> |
| I, N <sup>9</sup> <sup>10</sup> NH <sub>2</sub> | 34.6<br>J                     | 43.3     | 31.3<br>+ | 61.4<br>L            | 57.7<br>1 | 30.8     | 29.1     | 39.6           | 118.6               | р <i>L</i> -6L                |                |                 |                 |      |                 |                 |                 |
| -°,,-,-,-,-,-,-,-,-,-,-,-,-,-,-,-,-,-           | u<br>132                      | t<br>123 | 1<br>124  | a<br>150             | a<br>146  | 1<br>123 | 1<br>125 | t<br>121       | ø                   | a<br>166<br>79.2 <sup>d</sup> |                |                 |                 |      |                 |                 |                 |
| 7<br>20 (243 K)                                 |                               |          |           |                      |           |          |          |                |                     | d<br>164                      |                |                 |                 |      |                 |                 |                 |
| 11                                              | $\simeq 28.9$                 | 43.3     | 30.0      | 67.0                 | 56.4      | 29.7     | 26.7     | 38.4           | 104.0               | 93.2                          | 94.1           | 94.5            |                 |      |                 |                 |                 |
|                                                 | рa                            | t<br>123 | t<br>121  | d<br>154             | d<br>145  | t<br>122 | at       | t<br>121       | ø                   | d<br>168                      | م<br>171       | d<br>171        |                 |      |                 |                 |                 |
|                                                 |                               |          |           |                      |           |          |          |                |                     | 92.5<br>d                     | 93.8<br>d      |                 |                 |      |                 |                 |                 |
|                                                 |                               |          |           |                      |           |          |          |                |                     | 168                           | 171            |                 |                 |      |                 |                 |                 |
|                                                 | ≃28.9                         | 43.2     | 30.0      | 67.0                 | 56.4      | 29.7     | 26.7     | 38.4           | 103.9               | 93.1                          | 92.4           | 94.5            |                 |      |                 |                 |                 |
| )-3 <sup>-</sup>                                | ם סי                          | t<br>123 | t<br>121  | d<br>154             | d<br>145  | t<br>122 | a<br>a   | t<br>121       | s                   | d<br>169                      | d<br>171       | d<br>171        |                 |      |                 |                 |                 |
|                                                 |                               |          |           |                      |           |          |          |                |                     | 94.0<br>d                     | 93.8<br>d      |                 |                 |      |                 |                 |                 |
|                                                 |                               |          |           |                      |           |          |          |                |                     | 169                           | 171            |                 |                 |      |                 |                 |                 |
| <b>2q</b> (193 K)                               |                               |          |           |                      |           |          |          |                |                     |                               |                |                 |                 |      |                 |                 |                 |
| <sup>a</sup> Not determined (signal obscured).  | <sup>b or c</sup> These assig | gnments  | can be re | versed. <sup>d</sup> | Diastered | topic. " | Chemical | shifts in      | ppm. <sup>1</sup> N | Iultiplicity                  | Coupl          | ing const-      | ant in he       | rtz. |                 |                 |                 |

Bönnemann et al.

could be controlled by the allyl group. The results are summarized in Table V.

 $(\eta^5$ -Cyclopentadienyl) $(\eta^1, \eta^3$ -cyclooctenediyl)Co (22) shows the same activity and chemoselectivity as the reference complex  $(\eta^5$ -Cp) $(\eta^2, \eta^2$ -COD)Co (28). Thus the  $\eta^1, \eta^3$ -cyclooctenediyl ligand can be regarded as an isomer of cyclooctadiene. The  $\eta^1, \eta^3$ -cyclooctenediyl ligand is clearly more easily displaced by the alkyne/nitrile under catalytic conditions than the  $\eta^5$ -cyclopentadienyl ligand.

The new allyl–Co complexes **7b**, **11a**, and **11b** all have a low activity similar to that of  $\eta^3$ -cyclooctenyl–Co–COD (1). Just like 1, they direct the catalysis toward the production of carbocyclics and the ratios of isomers (72:28 for the pyridine derivatives and 43:57 for the benzene derivatives) are the same as for 1. Interestingly, the values for  $(\eta^6-C_6Me_6)(\eta^1,\eta^2$ -cyclooctenyl)Co (**2b**) are also similar to those for **7b**, **11a**, and **11b**, so that the major steering factor in all these complexes must be the same. Unlike for R– Cp–Co and R–Ind–Co complexes, no fine control was achieved by the introduction of substituents into the allyl group.

The behavior of the  $(\eta^3$ -cyclopentenyl)cobalt complexes 12b and 12c in the catalysis differs greatly from that of the others. They are much more active and produce more of the heterocyclic products. In addition, the isomer ratios of both the pyridine and the benzene derivatives differ from those obtained with the other allyl-Co systems. The catalytic characteristics suggest that the cyclopentenyl-Co compounds undergo partial dehydrogenation to form Cp-Co catalysts, so that in the reaction mixture the active species from both the original cyclopentenyl complex and [CpCo] are present. Taking the known characteristic values for  $(\eta^5$ -Cp) $(\eta^2,\eta^2$ -COD)Co (28) and the other allyl-Co complexes, then the experimental values for the cyclopentenyl-Co-arene complexes are consistent with the conversion of ca. 60% of this compound to [CpCo]. A test experiment to check this result, using a mixture of 60%  $(\eta^{5}$ -cyclopentadienyl) $(\eta^{4}$ -butadiene)cobalt and 40%  $(\eta^{6}$ benzene)(cyclohexenyl)cobalt (11a) produced data which are in satisfactory agreement with this supposition (see Table VI).

#### **Experimental Section**

All preparations were carried out in an atmosphere of purified argon. The solvents were carefully dried and distilled in an argon atmosphere. The Al<sub>2</sub>O<sub>3</sub> for column chromatography was degassed in vacuum and transferred under argon. <sup>1</sup>H NMR spectra were recorded on a Bruker WP 80 FT spectrometer and <sup>13</sup>C NMR spectra on a Bruker WM 300 spectrometer (75.5 MHz). IR spectra were recorded on a Nicolet 7199 FT-IR spectrometer. Mass spectra were recorded on Varian MAT CH 5 and CH7 spectrometers. Elemental analyses were carried out by Dornis and Kolbe, Mülheim a.d. Ruhr.  $(\eta^3$ -Cyclooctenyl) $(\eta^2, \eta^2$ -cyclooctadiene-1,5)cobalt (1) was prepared as described in the literature.<sup>22</sup>

X-ray Crystallographic Analyses of 22 and 23. Details of data collection are given in Table VII. Intensity data were collected on an Enraf-Nonius CAD4 diffractometer using graphite-monochromated Mo K $\alpha$  X-radiation ( $\lambda = 0.71069$  Å). Lattice parameters were determined by a least-squares fit to the  $\theta$  values of 74 (75 for 23) reflections in the range 9.97 <  $\theta$  < 17.2°  $(13.7 < \theta < 28.3)$ . The structures of 22 and 23 were solved by Patterson methods and refined to convergence. For 22: R = 0.031 $(R_w = 0.036)$  for 2525 unique observed reflections (error of fit = 1.61). For 23: R = 0.033 ( $R_w = 0.049$ ) for 3160 unique observed reflections (error of fit = 2.98). Refinement was by least squares where the quantity minimized was  $\sum w(|F_o| - |F_c|)^2$  with w = $1/\sigma^2(F_o)$ . Hydrogen atoms were included in the refinement at calculated positions (C-H = 0.95 Å) with fixed isotropic thermal parameters ( $U_{\rm H} = 0.06$  Å<sup>2</sup> for 22 and  $U_{\rm H} = 0.05$  Å<sup>2</sup> for 23). The scattering factors were taken from ref 23 and those for Co were

corrected for the effects of anomalous dispersion ( $\Delta f' = 0.299$ ;  $\Delta f'' = 0.0973$ ). Refinement of the enantiomorphic structure in the case of **22** gave  $R_w = 0.044$ , indicating the chosen enantiomorph to be the correct one.

Synthesis of  $(\eta^6$ -Arene) $(1-\eta^1,4,5-\eta^2$ -cyclooctenyl)cobalt Complexes (2).  $(\eta^3$ -Cyclooctenyl) $(\eta^2,\eta^2$ -cyclooctadiene-1,5)cobalt (1) (2.5 g, 9.1 mmol) was dissolved in 50 mL of arene and 3 mL (30 mmol) of piperidine. After the reaction solution had been frozen with liquid nitrogen, the reaction vessel was evacuated and then filled with 230 mL (9.4 mmol) of hydrogen gas at 323 K (reaction time: 4 h). The color of the solution changed from brown to deep red. The solvent was removed under vacuum, and the residue was redissolved in pentane and filtered over Al<sub>2</sub>O<sub>3</sub> (7% H<sub>2</sub>O) at room temperature.

 $(\eta^6$ -Benzene)(1- $\eta^1$ ,4,5- $\eta^2$ -cyclooctenyl)cobalt (2a). The crystallization at 195 K gave 2.0 g (8.1 mmol) (89% of theory) of 2a as red crystals, mp 365 K. Mass spectrum: m/z 246 (98%, [M]<sup>+</sup>), 168 (22%, [C<sub>g</sub>H<sub>13</sub>Co]<sup>+</sup>), 166 (30%, [C<sub>g</sub>H<sub>11</sub>Co]<sup>+</sup>), 164 (61%, [C<sub>g</sub>H<sub>9</sub>Co]<sup>+</sup>), 137 (100%, [C<sub>g</sub>H<sub>6</sub>Co]<sup>+</sup>), 78 (58%, [C<sub>6</sub>H<sub>6</sub>]<sup>+</sup>, 59 (30%, [Co]<sup>+</sup>). Anal. Calcd for C<sub>14</sub>H<sub>19</sub>Co: C, 68.29; H, 7.72; Co, 23.98. Found: C, 68.39; H, 7.76; Co, 23.81.

( $\eta^6$ -Hexamethylbenzene)(1- $\eta^1$ ,4,5- $\eta^2$ -cyclooctenyl)cobalt(I) (2b). ( $\eta^3$ -Cyclooctenyl)( $\eta^2$ , $\eta^2$ -cyclooctadiene-1,5)cobalt (1) (2.5 g, 9.1 mmol) and 2.5 g (15.4 mmol) of hexamethylbenzene were dissolved in 60 mL of hexane and 3 mL (30 mmol) of piperidine. After the reaction solution had been frozen with liquid nitrogen, the reaction vessel was evacuated and then filled with 550 mL (22.4 mmol) of hydrogen gas at 323 K. The solvent was removed under vacuum, and the residue was chromatographed on Al<sub>2</sub>O<sub>3</sub> (7% H<sub>2</sub>O). 2b was eluted with pentane. Crystallization at 243 K gave 2b as red crystals: yield 0.4 g (1.2 mmol) (13% of theory); mp 437 K. Mass spectrum: m/z 300 (65%, [M]<sup>+</sup>), 221 (53%, [C<sub>12</sub>H<sub>18</sub>Co]<sup>+</sup>), 220 (100%, [C<sub>12</sub>H<sub>17</sub>Co]<sup>+</sup>), 162 (30%, [C<sub>12</sub>H<sub>18</sub>]<sup>+</sup>). Anal. Calcd for C<sub>20</sub>H<sub>31</sub>Co: C, 72.73; H, 9.39; Co, 17.88. Found: C, 72.89; H, 9.30; Co, 17.82.

 $(\eta^{6}$ -Mesitylene) $(1-\eta^{1},4,5-\eta^{2}$ -cyclooctenyl)cobalt (2c). Crystallization at 195 K gave 2.1 g (7.3 mmol) (80% of theory) of 2c, mp 375 K. Mass spectrum: m/z 288 (80%, [M]<sup>+</sup>), 179 (100%,  $[C_{9}H_{12}Co]^{+}$ ), 168 (15%,  $[C_{8}H_{13}Co]^{+}$ ), 120 (25%,  $[C_{9}H_{12}]^{+}$ ), 59 (35%,  $[Co]^{+}$ ). Anal. Calcd for  $C_{17}H_{25}Co$ : C, 70.83; H, 8.68; Co, 20.49. Found: C, 70.86; H, 8.53; Co, 20.48.

( $\eta^6$ -Pseudocumene)(1- $\eta^1$ ,4,5- $\eta^2$ -cyclooctenyl)cobalt (2d). Crystallization at 193 K gave 2.0 g (6.9 mmol) (76% of theory) of 2d. 2d is a mixture of two diastereomers in the ratio of 2:1. The same preparation at 273 K gave the two diastereomers in a ratio of 4.5:1. Melting point: liquid at room temperature, decomposition at 413 K. Mass spectrum: m/z 288 (20%, [M]<sup>+</sup>), 179 (20%, [C<sub>9</sub>H<sub>12</sub>Co]<sup>+</sup>), 120 (45%, [C<sub>9</sub>H<sub>12</sub>]<sup>+</sup>), 105 (100%, [C<sub>8</sub>H<sub>9</sub>]<sup>+</sup>). Anal. Calcd for C<sub>17</sub>H<sub>25</sub>Co: C, 70.82; H, 8.74; Co, 20.44. Found: C, 70.92; H, 8.95; Co, 20.08.

 $(\eta^6$ -**Biphenyl**) $(1-\eta^1,4,5-\eta^2$ -cyclooctenyl)cobalt(I) (2e).  $(\eta^3$ -Cyclooctenyl) $(\eta^2,\eta^2$ -cyclooctadiene-1,5)cobalt (1) (2.5 g, 9.1 mmol) and 3.5 g (22.7 mmol) of biphenyl were combined with 3 mL (30 mmol) of piperidine. After the reaction mixture had been frozen with liquid nitrogen, the reaction vessel was evacuated and then filled with 223 mL (9.1 mmol) of hydrogen gas at 323 K. The liquid components were removed under vacuum, and the residual biphenyl was sublimed off in high vacuum at room temperature over 16 h. The residue was dissolved in pentane and filtered over Al<sub>2</sub>O<sub>3</sub> (7% H<sub>2</sub>O). Crystallization in pentane gave 1.9 g (5.9 mmol) (65% of theory) of 2e as dark red crystals, mp 329–331 K. Mass spectrum: m/z 322 (40%, [M]<sup>+</sup>), 213 (50%, [C<sub>12</sub>H<sub>10</sub>Co]<sup>+</sup>), 168 (10%, [C<sub>8</sub>H<sub>13</sub>Co]<sup>+</sup>), 154 (100%, [C<sub>12</sub>H<sub>10</sub>]<sup>+</sup>), 59 (35%, [Co]<sup>+</sup>). Anal. Calcd for C<sub>20</sub>H<sub>23</sub>Co: C, 74.52; H, 7.19; Co, 18.28. Found: C, 74.69; H, 6.96; Co, 18.38.

 $(\eta^6$ -Diphenylmethane) $(1-\eta^1,4,5-\eta^2$ -cyclooctenyl)cobalt(I) (2f).  $(\eta^3$ -Cyclooctenyl) $(\eta^2,\eta^2$ -cyclooctadiene-1,5)cobalt (1) (2.5 g, 9.1 mmol) was dissolved in 6 mL (36.4 mmol) of diphenylmethane and 3 mL (30 mmol) of piperidine. After the reaction mixture had been frozen with liquid nitrogen, the reaction vessel was evacuated and then filled with 223 mL (9.1 mmol) of hydrogen gas at 323 K. All liquid components including unreacted diphenylmethane were removed in high vacuum at room temperature over 16 h. The residue was dissolved in pentane and filtered over Al<sub>2</sub>O<sub>3</sub> (7% H<sub>2</sub>O). Crystallization in pentane at 193 K gave 2.2 g (6.5 mmol) (72% of theory) of **2f** as orange crystals. Melting point: **2f** is liquid at room temperature, decomposition at 393 K. Mass spectrum: m/z 336 (20% [M]<sup>+</sup>), 227 (45%, [C<sub>13</sub>H<sub>14</sub>Co]<sup>+</sup>), 168 (98%, [C<sub>8</sub>H<sub>13</sub>Co]<sup>+</sup> and [C<sub>13</sub>H<sub>12</sub>]<sup>+</sup>), 167 (100%, [C<sub>8</sub>H<sub>12</sub>Co]<sup>+</sup> and [C<sub>13</sub>H<sub>11</sub>]<sup>+</sup>), 59 (25%, [Co]<sup>+</sup>). Anal. Calcd for C<sub>21</sub>H<sub>25</sub>Co: C, 74.99; H, 7.49; Co, 17.52. Found: C, 74.84; H, 7.55; Co, 17.54.

 $(\eta^6-9,10-\text{Dihydroanthracene})(1-\eta^1,4,5-\eta^2-\text{cyclooctenyl})$ co**balt(I) (2g).**  $(\eta^3$ -Cyclooctenyl) $(\eta^2, \eta^2$ -cyclooctadiene-1,5)cobalt (1) (2.5 g, 9.1 mmol) and 3.3 g (18.2 mmol) of 9,10-dihydroanthracene were dissolved in 3 mL (30 mmol) of piperidine and 5 mL of THF. After the reaction solution had been frozen with liquid nitrogen, the reaction vessel was evacuated and then filled with 223 mL (9.1 mmol) of hyrogen gas at 323 K. All liquid components were removed under vacuum, the residual 9,10-dihydroanthracene was sublimed off in high vacuum at 313 K over 16 h. The residue was dissolved in pentane and filtered; crystallization in pentane at 193 K gave 1.1 g (3.2 mmol) (35% of theory) of 2g as orange-red crystals, mp 349-351 K, decomp 423 K. Mass spectrum: m/z $348~(45\%,~[M]^+),~238~(40\%,~[C_{14}H_{11},co]^+),~180~(45\%,~[C_{14}H_{12}]^+),$ 179 (100%,  $[C_{14}H_{11}]^+$ ), 178 (70%,  $[C_{14}H_{10}]^+$ ). Anal. Calcd for C<sub>22</sub>H<sub>25</sub>Co: C, 75.85; H, 7.23; Co, 16.92. Found: C, 75.65; H, 6.99; Co, 19.70.

 $(\eta^{6}$ -Anisole) $(1-\eta^{1},4,5-\eta^{2}$ -cyclooctenyl)cobalt(I) (2h). Crystallization at 243 K gave 2.4 g (8.7 mmol) (96% of theory) of 2h as red crystals, mp 306 K. Mass spectrum: m/z 276 (59%, [M<sup>+</sup>]), 168 (25%, [C<sub>8</sub>H<sub>13</sub>Co]<sup>+</sup>), 167 (12%, [C<sub>8</sub>H<sub>12</sub>Co]<sup>+</sup>), 108 (10%, [C<sub>7</sub>H<sub>8</sub>O]<sup>+</sup>). Anal. Calcd for C<sub>16</sub>H<sub>21</sub>CoO: C, 65.22; H, 7.61; Co, 21.38. Found: C, 65.06; H, 7.64; Co, 21.37.

 $(\eta^6 \cdot p \cdot \text{Anisidine})(1 \cdot \eta^1, 4, 5 \cdot \eta^2 \cdot \text{cyclooctenyl}) \text{cobalt}(I)$  (2i).  $(\eta^3 \cdot \text{Cyclooctenyl})(\eta^2, \eta^2 \cdot \text{cyclooctadiene-1}, 5)$  cobalt (1) (2.5 g, 9.1 mmol) and 2.5 g (20.6 mmol) of p-anisidine were combined with 3 mL (30 mmol) of piperidine. After the reaction mixture had been frozen with liquid nitrogen, the reaction vessel was evacuated and then filled with 223 mL (9.1 mmol) of hydrogen gas at 323 K. The liquid components were removed under vacuum; the unreacted p-anisidine was removed by sublimation in high vacuum at 313 K over 16 h. The residue was dissolved in ether and filtered over Al<sub>2</sub>O<sub>3</sub> (7% H<sub>2</sub>O). Crystallization in ether/heptane at 273-193 K gave 1.9 g (6.6 mmol) (72% of theory) of **2i** as orange crystals, mp 333-335 K. Mass spectrum: m/z 291 (7%, [M]<sup>+</sup>), 182 (5%, [C<sub>7</sub>H<sub>9</sub>CoNO]<sup>+</sup>), 123 (65%, [C<sub>7</sub>H<sub>9</sub>NO]<sup>+</sup>), 108 (100%, [C<sub>8</sub>H<sub>12</sub>]<sup>+</sup> and [C<sub>6</sub>H<sub>6</sub>NO]<sup>+</sup>). Anal. Calcd for C<sub>15</sub>H<sub>22</sub>CoNO: C, 61.85; H, 7.61; Co, 20.23; N, 4.81. Found: C, 61.80; H, 7.66; Co, 20.19; N, 4.76.

 $(\eta^6$ -Hydroquinol dimethyl ether) $(1-\eta^1, 4, 5-\eta^2$ -cyclooctenyl)cobalt(I) (2j).  $(\eta^3$ -Cyclooctenyl) $(\eta^2, \eta^2$ -cyclooctadiene-1,5)cobalt (1) (2.5 g, 9.1 mmol), 5 g (36.3 mmol) of hydroquinol dimethyl ether, and 3 mL (30 mmol) of piperidine were frozen with liquid nitrogen. The reaction vessel was evacuated and then filled with 223 mL (9.1 mmol) of hydrogen gas at 323 K. The liquid components were removed under vacuum; the residual hydroquinol dimethyl ether was sublimed off in high vacuum at room temperature over 12 h. The residue was dissolved in pentane and filtered over Al<sub>2</sub>O<sub>3</sub> (7% H<sub>2</sub>O). Crystallization in pentane at 193 K gave 1.6 g (5.2 mmol) (57% of theory) of **2j** as orange crystals, mp 288 K. Mass spectrum: m/z 306 (100%, [M]<sup>+</sup>), 197 (50%, [C<sub>8</sub>H<sub>10</sub>O<sub>2</sub>Co]<sup>+</sup>), 167 (55%, [C<sub>8</sub>H<sub>12</sub>Co]<sup>+</sup>), 138 (60%, [C<sub>8</sub>H<sub>10</sub>O<sub>2</sub>]<sup>+</sup>), 123 (95%, [C<sub>7</sub>H<sub>7</sub>O<sub>2</sub>]<sup>+</sup>), 59 (40%, [Co]<sup>+</sup>). Anal. Calcd for C<sub>16</sub>H<sub>23</sub>CoO<sub>2</sub>: C, 62.74; H, 7.57; Co, 19.24. Found: C, 62.76; H, 7.49; Co, 19.06.

 $(\eta^6 \cdot p \cdot Carbomethoxyanisole)(1 \cdot \eta^1, 4, 5 \cdot \eta^2 \cdot cyclooctenyl)co$  $balt(I) (2k). <math>(\eta^3 \cdot Cyclooctenyl)(\eta^2, \eta^2 \cdot cyclooctadiene \cdot 1, 5)$  cobalt (1) (2.5 g, 9.1 mmol), 9 g (54 mmol) of *p*-carbomethoxyanisole, and 3 mL (30 mmol) of piperidine were frozen with liquid nitrogen. After the reaction vessel had been evacuated, it was filled with 223 mL (9.1 mmol) of hydrogen gas at 323 K. The liquid components were removed under vacuum; the residual *p*-carbomethoxyanisole was sublimed off in high vacuum at room temperature over 16 h. The residue was dissolved in pentane, filtered over Al<sub>2</sub>O<sub>3</sub> (7% H<sub>2</sub>O), and crystallized at 193 K. Yield: 1.7 g (5.1 mmol) (56% of theory) of dark red crystals of **2k**, mp 344-346 K. Mass spectrum: m/z 334 (3%,  $[M]^+$ ), 224 (3%,  $[M - C_8H_{14}]^+$ ), 166 (25%,  $[C_9H_{10}O_3]^+$ ), 135 (100%,  $[C_8H_7O_2]^+$ ). Anal. Calcd for  $C_{17}H_{23}CoO_3$ : C, 61.08; H, 6.93; Co, 17.63. Found: C, 61.20; H, 6.98; Co, 17.65.

<sup>(23)</sup> International Tables for X-Ray Crystallography; Kynoch Press: Birmingham, 1974; Vol. IV, pp 99–102, 149.

|                                   |                       |     |                                                         | F                | able II.         | I3C N            | MR Da             | ta of Con           | nplexes 18a-       | 18r and 21–30     |                   |                     |                    | 1                  | 0                 | 2  |     |
|-----------------------------------|-----------------------|-----|---------------------------------------------------------|------------------|------------------|------------------|-------------------|---------------------|--------------------|-------------------|-------------------|---------------------|--------------------|--------------------|-------------------|----|-----|
|                                   | no.                   | LMª | ت<br>ت                                                  | $C_2$            | ూ                | ి                | రో                | ບໍ                  | C,                 | ဗီ                | లి                | C <sub>I0</sub>     | C <sup>II</sup>    | C12                | C13               | 1ª | C12 |
|                                   | 18a<br>(213 K)        | Α   | 59.4 <sup>b</sup><br>d <sup>c</sup><br>139 <sup>d</sup> | 47.9<br>t<br>127 | 26.0<br>t<br>130 | 92.4<br>d<br>157 | 87.6<br>d<br>163  | 103.7<br>d<br>178   |                    |                   |                   |                     |                    |                    |                   |    |     |
|                                   | <b>18b</b><br>(313 K) | V   | 64.5<br>d<br>136                                        | 45.9<br>t<br>126 | 27.3<br>t<br>130 | 92.8<br>d<br>158 | 92.7<br>d<br>158  | 113.6<br>s          | 16.5<br>q<br>129   |                   |                   |                     |                    |                    |                   |    |     |
|                                   | 18c<br>(213 K)        | ¥   | 60.9<br>d<br>138                                        | 46.6<br>t<br>127 | 26.2<br>t<br>129 | 92.1<br>d<br>158 | 89.4<br>d<br>162  | 102.7<br>d<br>173   | 116.7<br>s         | 19.0<br>q<br>130  |                   |                     |                    |                    |                   |    |     |
|                                   | 18e<br>(193 K)        | ¥   | 61.0<br>d<br>139                                        | 47.4<br>t<br>127 | 26.2<br>t<br>129 | 93.5<br>d<br>158 | 89.0<br>d<br>162  | 102.2<br>d<br>179   | 103.9<br>d<br>177  | 100.5<br>d<br>174 | 118.5<br>s        | 131.7<br>s          | 129.8°<br>d<br>163 | 127.2°<br>d<br>160 | 131.1<br>d<br>163 |    |     |
|                                   | 18r<br>(193 K)        | V   | 61.1<br>d<br>142                                        | 46.4<br>t<br>127 | 25.7<br>t<br>129 | 94.5<br>d<br>158 | 92.0<br>d<br>162  | 100.9<br>d.d<br>176 | 98.7<br>d<br>176   | 8<br>s            | 126.4<br>d<br>167 | 133.2<br>d.d<br>166 |                    |                    |                   |    |     |
| (cH <sub>3</sub> ch) <sub>3</sub> | <b>21</b><br>(313 K)  | В   | 43.5<br>d<br>144                                        | 42.2<br>t<br>126 | 24.7<br>t<br>128 | 76.9<br>d<br>154 | 105.5<br>d<br>157 | 127.3<br>s          | ວ<br>ດີ <u>ວ</u> ີ |                   |                   |                     |                    |                    |                   |    |     |
|                                   | <b>22</b><br>(313 K)  | C   | 42.3<br>d<br>≃133                                       | 49.1<br>t<br>123 | 29.2<br>t<br>126 | 75.8<br>d<br>152 | 80.4<br>d<br>157  | 84.1<br>d<br>175    |                    |                   |                   |                     |                    |                    |                   |    |     |



14.87 q 126



Table III. Atomic Fractional Coordinates and Equivalent Isotropic Thermal Parameters (Å<sup>2</sup>) with Estimated Standard Deviations in Parentheses

| atom | x           | У           | z           | $U_{\rm eq}$ |
|------|-------------|-------------|-------------|--------------|
|      |             | 22          |             |              |
| Co1  | 0.0405(1)   | 0.2742(1)   | 0.1737(1)   | 0.049        |
| Co2  | 0.4556(1)   | 0.2261(1)   | 0.3414(1)   | 0.044        |
| C1   | 0.1306(4)   | 0.3520(4)   | 0.0814 (8)  | 0.076        |
| C2   | 0.0573(5)   | 0.3951 (4)  | 0.1136 (8)  | 0.081        |
| C3   | -0.0021 (4) | 0.3638(4)   | 0.017(1)    | 0.080        |
| C4   | 0.0323 (6)  | 0.3001(5)   | -0.0747 (7) | 0.094        |
| C5   | 0.1158(4)   | 0.2938 (4)  | -0.0351 (8) | 0.078        |
| C6   | 0.0966(4)   | 0.2399(4)   | 0.3788 (8)  | 0.073        |
| C7   | 0.0927(3)   | 0.1713(3)   | 0.2747 (8)  | 0.067        |
| C8   | 0.0314(4)   | 0.1039(3)   | 0.2806 (8)  | 0.078        |
| C9   | -0.0389(4)  | 0.1227(3)   | 0.1711 (8)  | 0.074        |
| C10  | -0.0613 (3) | 0.2101(3)   | 0.1757 (8)  | 0.063        |
| C11  | -0.1099 (3) | 0.2316(4)   | 0.3306 (9)  | 0.077        |
| C12  | -0.0544(4)  | 0.2421(4)   | 0.4830(8)   | 0.080        |
| C13  | 0.0234(4)   | 0.2830 (4)  | 0.4318(7)   | 0.068        |
| C21  | 0.4636 (5)  | 0.1518(5)   | 0.5565 (9)  | 0.089        |
| C22  | 0.5293(5)   | 0.2053(4)   | 0.5494 (9)  | 0.088        |
| C23  | 0.5724(4)   | 0.1942(4)   | 0.404(1)    | 0.084        |
| C24  | 0.5332(4)   | 0.1306(4)   | 0.3174 (8)  | 0.074        |
| C25  | 0.4662(4)   | 0.1029 (4)  | 0.4092 (9)  | 0.083        |
| C26  | 0.3471(3)   | 0.2672(3)   | 0.3658(8)   | 0.067        |
| C27  | 0.3468(3)   | 0.2292(3)   | 0.2184 (8)  | 0.073        |
| C28  | 0.3554(4)   | 0.2646(4)   | 0.0461(9)   | 0.088        |
| C29  | 0.4413(4)   | 0.2689(4)   | -0.0057 (7) | 0.071        |
| C210 | 0.4946(3)   | 0.2872(3)   | 0.1425(8)   | 0.061        |
| C211 | 0.4973(4)   | 0.3756(3)   | 0.1865(9)   | 0.073        |
| C212 | 0.4245(4)   | 0.3994(3)   | 0.2858 (7)  | 0.076        |
| C213 | 0.3996 (4)  | 0.3308 (3)  | 0.4043 (7)  | 0.071        |
|      |             | 23          |             |              |
| Co   | 0.3109(1)   | 0.1845(1)   | 0.1756(1)   | 0.042        |
| 01   | 0.2439(2)   | 0.1420(2)   | 0.0172(2)   | 0.048        |
| O2   | 0.4002(2)   | -0.0398(2)  | 0.2640(2)   | 0.051        |
| C1   | 0.2519(2)   | 0.0005(2)   | 0.0059(2)   | 0.044        |
| C2   | 0.3116(3)   | -0.1449(2)  | 0.1055(2)   | 0.051        |
| C3   | 0.3847(2)   | -0.1578(2)  | 0.2251(2)   | 0.045        |
| C4   | 0.1947(3)   | -0.0026 (3) | -0.1305(2)  | 0.059        |
| C5   | 0.4572(4)   | -0.3237(3)  | 0.3169(3)   | 0.070        |
| C6   | 0.3759 (3)  | 0.3727(2)   | 0.1782(3)   | 0.057        |
| C7   | 0.3747(3)   | 0.2728(3)   | 0.3267(3)   | 0.059        |
| C8   | 0.2245(3)   | 0.2882(3)   | 0.4669(2)   | 0.067        |
| C9   | 0.1089(3)   | 0.1817(3)   | 0.4777(3)   | 0.064        |
| C10  | 0.0817(3)   | 0.1988 (3)  | 0.3199(2)   | 0.051        |
| C11  | -0.0404(3)  | 0.3553(3)   | 0.2536(3)   | 0.061        |
| C12  | 0.0449(3)   | 0.4951(3)   | 0.1907 (3)  | 0.060        |
| C13  | 0.2334(3)   | 0.4357(2)   | 0.1099(2)   | 0.054        |

 $(\eta^{6}$ -Fluorobenzene) $(1-\eta^{1}, 4, 5-\eta^{2}$ -cyclooctenyl)cobalt(I) (2m). Crystallization at 193 K gave 550 mg (2.1 mmol) (23% of theory) of **2m** as orange crystals, mp 379–381 K. Mass spectrum: m/z 264 (50%, [M]<sup>+</sup>), 164 (50%, [C<sub>8</sub>H<sub>9</sub>Co]<sup>+</sup>), 155 (20%, [C<sub>6</sub>H<sub>5</sub>FCo]<sup>+</sup>), 138 (50%, [C<sub>6</sub>H<sub>7</sub>Co]<sup>+</sup>), 124 (100%, [C<sub>5</sub>H<sub>5</sub>Co]<sup>+</sup>), 96 (30%, [C<sub>6</sub>H<sub>5</sub>F]<sup>+</sup>), 59 (70%, [Co]<sup>+</sup>). Anal. Calcd for C<sub>14</sub>H<sub>18</sub>CoF: C, 63.64; H, 6.87; Co, 22.30; F, 7.19. Found: C, 63.49; H, 6.89; Co, 22.37; F, 7.18.

 $(\eta^6$ -Aniline) $(1-\eta^1,4,5-\eta^2$ -cyclooctenyl)cobalt(I) (2n).  $(\eta^3$ -Cyclooctenyl) $(\eta^2,\eta^2$ -cyclooctadiene-1,5)cobalt (1) (2.5 g, 9.1 mmol) was dissolved in 40 mL of aniline. After the reaction solution had been frozen in liquid nitrogen, the reaction vessel was evacuated and then filled with 446 mL (18.2 mmol) of hydrogen gas at 20 °C (reaction time: 10 h). The solvent was removed; the residue redissolved in ether and filtered over Al<sub>2</sub>O<sub>3</sub> (7% H<sub>2</sub>O). Crystallization in pentane/ether gave 2.3 g (8.8 mmol) (96% of theory) of **2n** as orange-red crystals, mp 321 K. Mass spectrum: m/z 261 (36%,  $[M]^+$ ), 168 (11%,  $[C_8H_{13}Co]^+$ ), 166 (5%,  $[C_8H_{11},co]^+$ ), 164 (13%,  $[C_8H_9Co]^+$ ), 152 (45%,  $[C_6H_7NCo]^+$ ), 93 (100%,  $[C_7H_6N]^+$ ), 59 (14%,  $[Co]^+$ ). Anal. Calcd for  $C_{14}H_{20}CoN$ : C, 64.37; H, 7.66; N, 5.36. Found: C, 64.45; H, 7.80; N, 5.28.  $(\eta^6$ -p-Phenylenediamine)(1- $\eta^1,4,5-\eta^2$ -cyclooctenyl)cobalt(I)

 $(\eta^{6}$ -**p**-Phenylenediamine) $(1-\eta^{1},4,5-\eta^{2}$ -cyclooctenyl)cobalt(I) (2**p**).  $(\eta^{3}$ -Cyclooctenyl) $(\eta^{2},\eta^{2}$ -cyclooctadiene-1,5)cobalt (1) (2.5 g, 9.1 mmol) and 4 g (37 mmol) of *p*-phenylenediamine were dissolved in 5 mL of THF. After the reaction solution had been frozen with liquid nitrogen, the reaction vessel was evacuated and Table IV. Selected Interatomic Distances (Å) and Angles (deg) with Estimated Standard Deviations in Parentheses

| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | molecul                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | e 1                   | molecule                     | 2                      |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|------------------------------|------------------------|
| (a) Distances           Co1-C6         1.969 (6)         Co2-C26         1.934 (6)           Co1-C17         2.076 (6)         Co2-C210         1.994 (6)           Co1-C13         2.089 (5)         Co2-C213         2.034 (6)           C6-C7         1.41 (1)         C26-C27         1.34 (1)           C6-C3         1.47 (1)         C26-C27         1.34 (1)           C3C-C213         1.40 (1)         C26-C27         1.34 (1)           C3C-C213         1.51 (1)         C27-C28         1.51 (1)           C3C-C213         1.51 (1)         C210-C211         1.51 (1)           C10-C11         1.52 (1)         C210-C217         72.3 (2)           C13-C01-C6         85.1 (3)         C213-C02-C26         84.9 (2)           C13-C01-C7         74.3 (2)         C213-C02-C27         72.3 (2)           C13-C01-C6         85.1 (3)         C213-C02-C26         11.3 (2)           C13-C6-C7         73.4 (2)         C213-C26-C27         72.3 (2)           C13-C6-C7         73.4 (2)         C213-C26-C27         72.3 (2)           C13-C6-C7         73.7 (3)         C27-C26-C2         73.1 (3)           C7-C6         73.7 (3)         C27-C26-C2         73.4 (5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | · _ •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                       | 22                           |                        |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (a) D                 | listances                    |                        |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Co1-C6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.969 (6)             | Co2-C26                      | 1.934 (6)              |
| $\begin{array}{c} \text{Col-C10} & 1.996 (b) & \text{Co2-C210} & 1.994 (b) \\ \text{Col-C13} & 2.089 (b) & \text{Co2-C213} & 2.034 (f) \\ \text{Ce-C13} & 1.47 (1) & \text{C2e-C213} & 1.34 (1) \\ \text{C7-C8} & 1.51 (1) & \text{C27-C28} & 1.51 (1) \\ \text{C3-C9} & 1.49 (1) & \text{C28-C29} & 1.49 (1) \\ \text{C3-C10} & 1.52 (1) & \text{C210-C211} & 1.51 (1) \\ \text{C10-C11} & 1.52 (1) & \text{C210-C211} & 1.51 (1) \\ \text{C12-C13} & 1.51 (1) & \text{C211-C212} & 1.50 (1) \\ \text{C12-C13} & 1.51 (1) & \text{C213-Co2-C210} & 84.9 (2) \\ \text{C13-C01-C7} & 74.3 (2) & \text{C213-Co2-C27} & 83.7 (2) \\ \text{C13-C01-C6} & 42.4 (3) & \text{C213-Co2-C26} & 41.3 (2) \\ \text{C10-C01-C6} & 103.8 (2) & \text{C210-Co2-C27} & 83.7 (2) \\ \text{C10-C01-C6} & 103.8 (2) & \text{C210-Co2-C26} & 101.7 (2) \\ \text{C7-C01-C6} & 103.8 (2) & \text{C213-Co2-C26} & 101.7 (2) \\ \text{C7-C01-C6} & 103.8 (2) & \text{C213-C26-C27} & 123.4 (5) \\ \text{C13-C6-C01} & 73.2 (3) & \text{C213-C26-C27} & 123.4 (5) \\ \text{C13-C6-C01} & 73.2 (3) & \text{C213-C26-C27} & 123.4 (5) \\ \text{C3-C7-C0-1} & 109.9 (4) & \text{C28-C27-C26} & 128.6 (5) \\ \text{C8-C7-C01} & 109.9 (4) & \text{C28-C27-C26} & 111.4 (4) \\ \text{C6-C7-C01} & 65.5 (3) & \text{C26-C27} & 123.4 (5) \\ \text{C11-C10-C9} & 112.3 (5) & \text{C211-C210-C29} & 113.3 (5) \\ \text{C11-C10-C9} & 112.3 (5) & \text{C211-C210-C22} & 103.5 (4) \\ \text{C12-C11-C10} & 100.8 (4) & \text{C212-C211} & 110.4 (4) \\ \text{C29-C10-C01} & 107.8 (4) & \text{C29-C210-C02} & 109.5 (4) \\ \text{C12-C11-C10} & 110.8 (5) & \text{C212-C21} & 110.4 (5) \\ \text{C12-C13-C6} & 124.3 (5) & \text{C212-C212-C11} & 110.4 (5) \\ \text{C12-C13-C6} & 124.3 (5) & \text{C212-C213-C26} & 110.4 (5) \\ \text{C12-C13-C6} & 124.3 (5) & \text{C212-C213-C26} & 110.4 (5) \\ \text{C12-C13-C6} & 124.3 (5) & \text{C212-C213-C26} & 126.0 (5) \\ \text{C12-C13-C01} & 10.6 (4) & \text{C212-C213-C26} & 15.3 (3) \\ \text{C6-C7} & 1.497 (2) & \text{Co-C7} & 2.083 (2) \\ \text{C0-C10} & 1.979 (2) & \text{Co-C7} & 2.083 (2) \\ \text{C0-C10} & 1.974 (1) & \text{C0-O2} & 1.915 (1) \\ \text{C0-C6} & 1.947 (2) & \text{Co-C7} & 2.083 (2) \\ \text{C13-C1-C1} & 1.281 (3) & \text{C2-C3} & 1.273 (2) \\ \text{C1-C1} & 1.281 (3) & \text{C2-C3} & 1.273 (2) \\ \text{C1-C2} & 1.394 (3) & \text{C1-C4} & 1.509 (3) \\ \text{C6-C7} & 1.494 (3) & \text{C7-C} & 02 & 93.3 (1) \\ \text{C1-O-C-O1} & 9$           | Co1-C7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2.076 (6)             | Co2-C27                      | 2.057 (6)              |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $C_{01}$ - $C_{10}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.996 (5)             | Co2-C210                     | 1.994 (6)              |
| $\begin{array}{c} \text{Ce-C1} & 1.47 (1) & \text{C26-C21} & 1.49 (1) \\ \text{C7-C8} & 1.51 (1) & \text{C27-C28} & 1.51 (1) \\ \text{C3-C10} & 1.50 (1) & \text{C29-C210} & 1.51 (1) \\ \text{C10-C11} & 1.52 (1) & \text{C210-C211} & 1.51 (1) \\ \text{C11-C12} & 1.54 (1) & \text{C211-C212} & 1.56 (1) \\ \text{C12-C13} & 1.51 (1) & \text{C211-C212} & 1.54 (1) \\ \hline \text{C12-C13} & 1.51 (1) & \text{C211-C212} & 1.54 (1) \\ \hline \text{C13-C01-C7} & 74.3 (2) & \text{C213-C02-C27} & 72.3 (2) \\ \text{C13-C01-C6} & 42.4 (3) & \text{C213-C02-C26} & 41.3 (2) \\ \text{C13-C01-C7} & 84.9 (2) & \text{C210-C02-C26} & 41.3 (2) \\ \text{C10-C01-C6} & 40.4 (3) & \text{C213-C02-C27} & 83.7 (2) \\ \text{C10-C01-C6} & 40.4 (3) & \text{C213-C02-C26} & 41.3 (2) \\ \text{C13-C6-C1} & 73.2 (3) & \text{C213-C26-C27} & 123.4 (5) \\ \text{C13-C6-C6} & 127.6 (5) & \text{C213-C26-C27} & 123.4 (5) \\ \text{C13-C6-C7} & 121.6 (5) & \text{C213-C26-C2} & 73.1 (3) \\ \text{C7-C6-C01} & 73.2 (3) & \text{C27-C26-C2} & 73.1 (3) \\ \text{C7-C6-C6} & 127.5 (5) & \text{C28-C27-C26} & 113.4 (5) \\ \text{C3-C7-C6} & 127.5 (5) & \text{C28-C27-C26} & 111.4 (4) \\ \text{C8-C7-C6} & 127.5 (5) & \text{C29-C28-C27} & 111.4 (5) \\ \text{C10-C9-C8} & 112.4 (5) & \text{C210-C29-C28} & 110.7 (5) \\ \text{C11-C10-C9} & 112.3 (5) & \text{C211-C210-C29} & 113.3 (5) \\ \text{C11-C10-C01} & 109.3 (4) & \text{C211-C210-C29} & 113.3 (5) \\ \text{C11-C10-C01} & 109.3 (4) & \text{C212-C211-C20} & 108.5 (4) \\ \text{C9-C10-C01} & 107.8 (4) & \text{C29-C213-C02} & 111.0 (4) \\ \text{C8-C13-C01} & 10.6 (4) & \text{C212-C213-C02} & 111.0 (4) \\ \text{C9-C10-C01} & 109.3 (3) & \text{C212-C213-C02} & 111.0 (4) \\ \text{C9-C10-C01} & 1.974 (1) & \text{C0-C7} & 2.083 (2) \\ \text{C0-C10} & 1.974 (2) & \text{C0-C7} & 2.083 (2) \\ \text{C0-C10} & 1.979 (2) & \text{C0-C7} & 2.083 (2) \\ \text{C0-C10} & 1.974 (3) & \text{C21-C213-C02} & 111.0 (4) \\ \text{C9-C10} & 1.524 (3) & \text{C26-C213-C02} & 1.539 (4) \\ \text{C9-C10} & 1.524 (3) & \text{C3-C9} & 1.539 (4) \\ \text{C9-C10} & 1.524 (3) & \text{C3-C9} & 1.539 (4) \\ \text{C9-C10} & 1.524 (3) & \text{C3-C9} & 1.539 (4) \\ \text{C13-C0-C10} & 94.8 (1) & \text{C1-C0-C7} & 94.6 (1) \\ \text{C1-O-C6} & 194.7 (1) & \text{C3-C0-C} & 124.6 (1) \\ \text{C1-O-C6} & 194.8 (1) & \text{C1-C0-C7} & 124.6 (1) \\ \text{C1-O-C6} & 194.8 (1) & \text{C1-CO-C7} & 124.6 (1) \\ \text{C1-C1-C0} & 115.02$ | C6-C7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2.069(3)<br>1 41(1)   | C02 = C213<br>C26 = C27      | 2.034(0)<br>1 34(1)    |
| $\begin{array}{ccccccc} C7-C8 & 1.51 (1) & C27-C28 & 1.51 (1) \\ C8-C9 & 1.49 (1) & C28-C29 & 1.49 (1) \\ C9-C10 & 1.50 (1) & C29-C210 & 1.51 (1) \\ C10-C11 & 1.52 (1) & C210-C211 & 1.51 (1) \\ C11-C12 & 1.54 (1) & C211-C212 & 1.50 (1) \\ C12-C13 & 1.51 (1) & C212-C213 & 1.54 (1) \\ \hline \\ $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | C6-C13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.41(1)<br>1.47(1)    | C26-C213                     | 1.40(1)                |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | C7-C8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.51 (1)              | C27-C28                      | 1.51 (1)               |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | C8-C9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.49 (1)              | C28-C29                      | 1.49 (1)               |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | C9-C10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.50 (1)              | C29-C210                     | 1.51(1)                |
| $\begin{array}{cccccc} 1.50 & (1) & C211-C212 & 1.50 & (1) \\ C12-C13 & 1.51 & (1) & C212-C213 & 1.54 & (1) \\ \hline & & & & & & & & & & & & & & & & & &$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | C10-C11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.52(1)               | C210-C211                    | 1.51(1)                |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | C11-C12<br>C12-C13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.54(1)<br>1.51(1)    | C211 - C212<br>C212 - C213   | 1.50(1)<br>1.54(1)     |
| $(b) Angles \\ C13-Co1-C10 85.1 (3) C213-Co2-C210 84.9 (2) \\ C13-Co1-C7 74.3 (2) C213-Co2-C27 72.3 (2) \\ C13-Co1-C6 42.4 (3) C213-Co2-C26 41.3 (2) \\ C10-Co1-C7 84.9 (2) C210-Co2-C27 83.7 (2) \\ C10-Co1-C6 103.8 (2) C210-Co2-C26 101.7 (2) \\ C7-Co1-C6 40.7 (2) C27-Co2-C26 39.0 (2) \\ C13-C6-C7 121.6 (5) C213-C26-Co2 73.1 (3) \\ C7-C6-Co1 73.2 (3) C213-C26-Co2 73.5 (4) \\ C8-C7-C6 127.5 (5) C28-C27-C26 128.6 (5) \\ C8-C7-Co1 109.9 (4) C28-C27-Co2 111.4 (4) \\ C6-C7-Co1 65.5 (3) C26-C27-Co2 111.4 (4) \\ C6-C7-Co1 65.5 (3) C26-C27-Co2 111.4 (4) \\ C6-C7-Co1 65.5 (3) C29-C28-C27 111.4 (5) \\ C10-C9-C8 112.4 (5) C210-C29-C28 110.7 (5) \\ C11-C10-C9 112.3 (5) C211-C210-Co2 108.5 (4) \\ C9-C10-C01 109.3 (4) C29-C210-Co2 108.5 (4) \\ C9-C10-C01 109.8 (4) C29-C210-Co2 108.5 (4) \\ C9-C10-C01 109.8 (4) C212-C211-C210 110.8 (5) \\ C12-C11-C10 110.8 (5) C212-C21-C21 110.4 (5) \\ C12-C13-C01 107.8 (4) C212-C213-C02 111.0 (4) \\ C6-C13-C01 64.5 (3) C26-C213-C02 111.0 (4) \\ C6-C13-C01 64.5 (3) C26-C213-C02 111.0 (4) \\ C6-C13-C01 64.5 (3) C26-C213-C02 111.0 (4) \\ C6-C13-C01 64.5 (3) C26-C13 1.07 (2) \\ C12-C13-C01 10.97 (2) Co-C13 2.074 (2) \\ C1-C1 1.281 (3) O2-C3 1.273 (2) \\ C1-C2 1.394 (3) C1-C4 1.509 (3) \\ C2-C3 1.395 (3) C3-C5 1.508 (3) \\ C6-C7 1.412 (3) C6-C13 1.404 (3) \\ C7-C8 1.524 (3) C3-C5 1.508 (3) \\ C6-C7 1.412 (3) C6-C13 1.404 (3) \\ C7-C8 1.524 (3) C3-C5 1.508 (3) \\ C6-C7 1.412 (3) C6-C13 1.404 (3) \\ C7-C6 1.944 (1) C10-C0-2 93.3 (1) \\ C10-C0-C1 98.4 (1) C10-C0-7 86.4 (1) \\ C11-C12 1.527 (4) C12-C13 1.523 (4) \\ (11-C12 1.527 (4) C12-C13 1.523 (4) \\ (11-C12 1.527 (4) C12-C13 1.523 (4) \\ C7-C6-C1 99.4 (1) C10-C0-2 99.3 (1) \\ C13-C0-O1 94.8 (1) C7-C0-2 99.3 (1) \\ C10-C0-C6 104.6 (1) C10-C0-C7 86.4 (1) \\ C10-C0-C6 104.6 (1) C10-C0-C9 193.3 (1) \\ C10-C0-C6 1094.8 (1) C7-C0-2 99.3 (1) \\ C10-C0-C6 1094.8 $                                                                                                                                                                                                                                                                                                                               | 012-013                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.01 (1)              | 0212-0213                    | 1.54 (1)               |
| $\begin{array}{c} C13-C01-C10 & 85.1 (3) & C213-C02-C210 & 64.3 (2) \\ C13-C01-C6 & 42.4 (3) & C213-C02-C27 & 72.3 (2) \\ C10-C01-C6 & 103.8 (2) & C210-C02-C26 & 101.7 (2) \\ C10-C01-C6 & 103.8 (2) & C210-C02-C26 & 101.7 (2) \\ C7-C01-C6 & 107.2 (3) & C213-C26-C02 & 73.1 (3) \\ C13-C6-C7 & 121.6 (5) & C213-C26-C02 & 73.1 (3) \\ C7-C6-C01 & 73.2 (3) & C213-C26-C02 & 75.5 (4) \\ C8-C7-C6 & 127.5 (5) & C28-C27-C26 & 128.6 (5) \\ C8-C7-C01 & 65.5 (3) & C26-C27-C02 & 65.5 (3) \\ C9-C8-C7 & 110.7 (5) & C29-C28-C27 & 111.4 (4) \\ C6-C7-C01 & 65.5 (3) & C26-C27-C02 & 65.5 (3) \\ C9-C8-C7 & 110.7 (5) & C210-C29-C28 & 110.7 (5) \\ C11-C10-C9 & 112.3 (5) & C211-C210-C02 & 108.5 (4) \\ C9-C10-C01 & 107.8 (4) & C21-C210-C02 & 109.5 (4) \\ C12-C11-C10 & 107.8 (4) & C212-C211-C210 & 110.8 (5) \\ C13-C12-C11 & 110.3 (5) & C212-C21-C21 & 110.4 (5) \\ C12-C13-C6 & 124.3 (5) & C212-C213-C02 & 111.0 (4) \\ C6-C13-C01 & 107.8 (4) & C212-C213-C02 & 111.0 (4) \\ C6-C13-C01 & 107.8 (4) & C212-C213-C02 & 111.0 (4) \\ C6-C13-C01 & 107.8 (3) & C26-C213-C02 & 111.0 (4) \\ C6-C13-C01 & 107.8 (3) & C26-C213-C02 & 111.0 (4) \\ C6-C13-C01 & 107.8 (3) & C26-C213-C02 & 111.0 (4) \\ C6-C13-C01 & 107.8 (3) & C26-C13 & 2.074 (2) \\ O1-C1 & 1.281 (3) & O2-C3 & 1.273 (2) \\ C1-C2 & 1.394 (3) & C1-C4 & 1.509 (3) \\ C2-C3 & 1.395 (3) & C3-C5 & 1.508 (3) \\ C6-C7 & 1.412 (3) & C6-C13 & 1.404 (3) \\ C7-C8 & 1.524 (3) & C3-C5 & 1.508 (3) \\ C6-C7 & 1.412 (3) & C6-C13 & 1.404 (3) \\ C7-C8 & 1.524 (3) & C3-C5 & 1.508 (3) \\ C6-C7 & 1.412 (3) & C6-C13 & 1.404 (3) \\ C7-C6 & 1.948 (1) & C7-C-02 & 95.3 (1) \\ C10-C0-C10 & 97.0 (1) & C13-C0-O2 & 193.3 (1) \\ C10-C0-C10 & 97.0 (1) & C13-C0-O2 & 193.4 (1) \\ C10-C0-C10 & 196.4 (1) & C10-C0-C7 & 86.4 (1) \\ C10-C0-C6 & 104.6 (1) & C10-C0-C7 & 86.4 (1) \\ C10-C0-C10 & 94.8 (1) & C7-C0-O2 & 95.3 (1) \\ C7-C6-O1 & 94.8 (1) & C7-C0-O2 & 95.3 (1) \\ C7-C6-O1 & 94.8 (1) & C7-C0-O2 & 95.3 (1) \\ C7-C0-O1 & 170.0 (1) & O2-C0-O1 & 94.6 (1) \\ C10-C0-C6 & 104.6 (1) & C10-C0-C7 & 86.4 (1) \\ C10-C0-C6 & 104.6 (1) & C10-C0-C7 & 124.8 (2) \\ C2-C1-O1 & 125.3 (2) & C3-C2-C1 & 12$                                                                                                                                                                                                                                                                                                                           | C12 Cal C10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (b)                   | Angles                       | 84.0 (9)               |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | C13-C01-C10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 85.1 (3)              | C213 - C02 - C210            | 84.9 (2)               |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $C_{13} = C_{01} = C_{13}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (4.3(2))              | $C_{213} - C_{02} - C_{27}$  | (2.3(2))               |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | C13-C01-C0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 42.4 (3)<br>84 9 (2)  | C213-C02-C20<br>C210-C02-C27 | $\frac{41.3}{837}$ (2) |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | C10-Co1-C6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 103.8(2)              | C210-Co2-C26                 | 101.7(2)               |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | C7-Co1-C6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 40.7 (2)              | C27-Co2-C26                  | 39.0 (2)               |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | C13-C6-C7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 121.6 (5)             | C213-C26-C27                 | 123.4 (5)              |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | C13-C6-Co1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 73.2 (3)              | C213-C26-Co2                 | 73.1 (3)               |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | C7-C6-Co1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 73.7 (3)              | C27-C26-Co2                  | 75.5 (4)               |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | C8-C7-C6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 127.5 (5)             | C28-C27-C26                  | 128.6(5)               |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | C8 - C7 - Co1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 109.9(4)              | C28-C27-C02                  | 111.4(4)               |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $C_{0}^{-}C_{0}^{-}C_{0}^{-}C_{0}^{-}C_{0}^{-}C_{0}^{-}C_{0}^{-}C_{0}^{-}C_{0}^{-}C_{0}^{-}C_{0}^{-}C_{0}^{-}C_{0}^{-}C_{0}^{-}C_{0}^{-}C_{0}^{-}C_{0}^{-}C_{0}^{-}C_{0}^{-}C_{0}^{-}C_{0}^{-}C_{0}^{-}C_{0}^{-}C_{0}^{-}C_{0}^{-}C_{0}^{-}C_{0}^{-}C_{0}^{-}C_{0}^{-}C_{0}^{-}C_{0}^{-}C_{0}^{-}C_{0}^{-}C_{0}^{-}C_{0}^{-}C_{0}^{-}C_{0}^{-}C_{0}^{-}C_{0}^{-}C_{0}^{-}C_{0}^{-}C_{0}^{-}C_{0}^{-}C_{0}^{-}C_{0}^{-}C_{0}^{-}C_{0}^{-}C_{0}^{-}C_{0}^{-}C_{0}^{-}C_{0}^{-}C_{0}^{-}C_{0}^{-}C_{0}^{-}C_{0}^{-}C_{0}^{-}C_{0}^{-}C_{0}^{-}C_{0}^{-}C_{0}^{-}C_{0}^{-}C_{0}^{-}C_{0}^{-}C_{0}^{-}C_{0}^{-}C_{0}^{-}C_{0}^{-}C_{0}^{-}C_{0}^{-}C_{0}^{-}C_{0}^{-}C_{0}^{-}C_{0}^{-}C_{0}^{-}C_{0}^{-}C_{0}^{-}C_{0}^{-}C_{0}^{-}C_{0}^{-}C_{0}^{-}C_{0}^{-}C_{0}^{-}C_{0}^{-}C_{0}^{-}C_{0}^{-}C_{0}^{-}C_{0}^{-}C_{0}^{-}C_{0}^{-}C_{0}^{-}C_{0}^{-}C_{0}^{-}C_{0}^{-}C_{0}^{-}C_{0}^{-}C_{0}^{-}C_{0}^{-}C_{0}^{-}C_{0}^{-}C_{0}^{-}C_{0}^{-}C_{0}^{-}C_{0}^{-}C_{0}^{-}C_{0}^{-}C_{0}^{-}C_{0}^{-}C_{0}^{-}C_{0}^{-}C_{0}^{-}C_{0}^{-}C_{0}^{-}C_{0}^{-}C_{0}^{-}C_{0}^{-}C_{0}^{-}C_{0}^{-}C_{0}^{-}C_{0}^{-}C_{0}^{-}C_{0}^{-}C_{0}^{-}C_{0}^{-}C_{0}^{-}C_{0}^{-}C_{0}^{-}C_{0}^{-}C_{0}^{-}C_{0}^{-}C_{0}^{-}C_{0}^{-}C_{0}^{-}C_{0}^{-}C_{0}^{-}C_{0}^{-}C_{0}^{-}C_{0}^{-}C_{0}^{-}C_{0}^{-}C_{0}^{-}C_{0}^{-}C_{0}^{-}C_{0}^{-}C_{0}^{-}C_{0}^{-}C_{0}^{-}C_{0}^{-}C_{0}^{-}C_{0}^{-}C_{0}^{-}C_{0}^{-}C_{0}^{-}C_{0}^{-}C_{0}^{-}C_{0}^{-}C_{0}^{-}C_{0}^{-}C_{0}^{-}C_{0}^{-}C_{0}^{-}C_{0}^{-}C_{0}^{-}C_{0}^{-}C_{0}^{-}C_{0}^{-}C_{0}^{-}C_{0}^{-}C_{0}^{-}C_{0}^{-}C_{0}^{-}C_{0}^{-}C_{0}^{-}C_{0}^{-}C_{0}^{-}C_{0}^{-}C_{0}^{-}C_{0}^{-}C_{0}^{-}C_{0}^{-}C_{0}^{-}C_{0}^{-}C_{0}^{-}C_{0}^{-}C_{0}^{-}C_{0}^{-}C_{0}^{-}C_{0}^{-}C_{0}^{-}C_{0}^{-}C_{0}^{-}C_{0}^{-}C_{0}^{-}C_{0}^{-}C_{0}^{-}C_{0}^{-}C_{0}^{-}C_{0}^{-}C_{0}^{-}C_{0}^{-}C_{0}^{-}C_{0}^{-}C_{0}^{-}C_{0}^{-}C_{0}^{-}C_{0}^{-}C_{0}^{-}C_{0}^{-}C_{0}^{-}C_{0}^{-}C_{0}^{-}C_{0}^{-}C_{0}^{-}C_{0}^{-}C_{0}^{-}C_{0}^{-}C_{0}^{-}C_{0}^{-}C_{0}^{-}C_{0}^{-}C_{0}^{-}C_{0}^{-}C_{0}^{-}C_{0}^{-}C_{0}^{-}C_{0}^{-}C_{0}^{-}C_{0}^{-}C$ | 60.0 (3)<br>110 7 (5) | $C_{20} - C_{27} - C_{02}$   | 111 A (5)              |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | C10-C9-C8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 112.4(5)              | C210-C29-C28                 | 110.7(5)               |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | C11-C10-C9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 112.3(5)              | C211-C210-C29                | 113.3 (5)              |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | C11-C10-Co1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 109.3 (4)             | C211-C210-Co2                | 108.5 (4)              |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | C9-C10-Co1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 107.8 (4)             | C29-C210-Co2                 | 109.5 (4)              |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | C12-C11-C10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 110.8 (5)             | C212-C211-C210               | 110.8 (5)              |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | C13-C12-C11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 110.3 (5)             | C213-C212-C211               | 110.4 (5)              |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | C12-C13-C6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 124.3 (5)             | C212-C213-C26                | 126.0 (5)              |
| $\begin{array}{c} 23 \\ (a) \ Distances \\ Co-C1 & 1.914 (1)  Co-O2 & 1.915 (1) \\ Co-C6 & 1.947 (2)  Co-C7 & 2.083 (2) \\ Co-C10 & 1.979 (2)  Co-C13 & 2.074 (2) \\ O1-C1 & 1.281 (3)  O2-C3 & 1.273 (2) \\ C1-C2 & 1.394 (3)  C1-C4 & 1.509 (3) \\ C2-C3 & 1.395 (3)  C3-C5 & 1.508 (3) \\ C6-C7 & 1.412 (3)  C6-C13 & 1.404 (3) \\ C7-C8 & 1.524 (3)  C8-C9 & 1.539 (4) \\ C9-C10 & 1.521 (3)  C10-C11 & 1.522 (4) \\ C11-C12 & 1.527 (4)  C12-C13 & 1.523 (4) \\ \hline \\ C13-Co-C10 & 87.0 (1)  C13-Co-O2 & 169.0 (1) \\ C13-Co-C1 & 96.4 (1)  C10-Co-C7 & 86.4 (1) \\ C10-Co-C6 & 104.6 (1)  C10-Co-O2 & 93.3 (1) \\ C10-Co-C1 & 170.0 (1)  O2-Co-O1 & 94.6 (1) \\ C1-O1-Co & 124.7 (1)  C3-O2-Co & 124.6 (1) \\ C4-C1-C2 & 119.6 (2)  C4-C1-O1 & 115.0 (2) \\ C2-C3-O2 & 125.7 (2)  C13-C6-C7 & 124.8 (2) \\ C3-C3-C2 & 119.3 (2)  C5-C3-O2 & 115.1 (2) \\ C2-C3-O2 & 125.7 (2)  C13-C6-C7 & 124.8 (2) \\ C3-C3-C6 & 103.6 (2) \\ C10-C9-C8 & 110.3 (2)  C11-C10-C9 & 117.5 (2) \\ C12-C11-C10 & 111.7 (2)  C13-C12-C11 & 110.5 (2) \\ C12-C13-C6 & 126.3 (2) \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | C12-C13-Co1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 110.6(4)              | C212-C213-Co2                | 111.0(4)               |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 05-013-001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 64.5 (3)              | 026-0213-002                 | 65.5 (3)               |
| (a) Distances<br>(b) Angles<br>(c) $-01$ 1.914 (1) Co-O2 1.915 (1)<br>Co-C6 1.947 (2) Co-C7 2.083 (2)<br>Co-C10 1.979 (2) Co-C13 2.074 (2)<br>O1-C1 1.281 (3) O2-C3 1.273 (2)<br>C1-C2 1.394 (3) C1-C4 1.509 (3)<br>C2-C3 1.395 (3) C3-C5 1.508 (3)<br>C6-C7 1.412 (3) C6-C13 1.404 (3)<br>C7-C8 1.524 (3) C8-C9 1.539 (4)<br>C9-C10 1.521 (3) C10-C11 1.522 (4)<br>C11-C12 1.527 (4) C12-C13 1.523 (4)<br>(b) Angles<br>C13-Co-C10 87.0 (1) C13-Co-O2 169.0 (1)<br>C13-Co-O1 96.4 (1) C10-Co-C7 86.4 (1)<br>C10-Co-C6 104.6 (1) C10-Co-O2 93.3 (1)<br>C10-Co-O1 94.8 (1) C7-Co-O2 95.3 (1)<br>C7-Co-O1 170.0 (1) O2-Co-O1 94.6 (1)<br>C1-O1-Co 124.7 (1) C3-O2-Co 124.6 (1)<br>C4-C1-C2 119.6 (2) C4-C1-O1 115.0 (2)<br>C2-C3-O2 125.7 (2) C13-C6-C7 124.8 (2)<br>C3-C3-C2 125.7 (2) C13-C6-C7 124.8 (2)<br>C3-C1-C10 111.7 (2) C13-C12-C11 110.5 (2)<br>C12-C13-C6 126.3 (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       | 23                           |                        |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <b>A A I</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | (a) I                 | Distances                    |                        |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Co-01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.914 (1)             | Co-O2                        | 1.915 (1)              |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $C_0 - C_0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.947 (2)             | $C_0 - C_1^2$                | 2.083 (2)              |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 01-C1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.979 (2)             | 02-013                       | 2.074 (2)              |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | C1-C2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.394(3)              | C1-C4                        | 1.509 (3)              |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | C2-C3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.395 (3)             | C3-C5                        | 1.508 (3)              |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | C6-C7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.412 (3)             | C6-C13                       | 1.404 (3)              |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | C7-C8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.524 (3)             | C8-C9                        | 1.539 (4)              |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | C9-C10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.521(3)              | C10-C11                      | 1.522 (4)              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | C11-C12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.527 (4)             | C12-C13                      | 1.523 (4)              |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (b)                   | Angles                       |                        |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | C13-Co-C10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 87.0 (1)              | C13-Co-O2                    | 169.0 (1)              |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | C13-Co-O1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 96.4 (1)              | C10-Co-C7                    | 86.4 (1)               |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | C10-Co-C6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 104.6(1)              | C10-Co-O2                    | 93.3 (1)               |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | C10-C0-O1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 94.8 (1)              | $0^{-}$                      | 95.3(1)                |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $C_{1-01-01}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 170.0(1)<br>1947(1)   | $C_{2} = C_{0} = C_{0}$      | 124.6(1)               |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | C4-C1-C2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 119.6 (2)             | C4-C1-O1                     | 115.0 (2)              |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | C2-C1-O1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 125.3 (2)             | C3-C2-C1                     | 124.4 (2)              |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | C5-C3-C2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 119.3 (2)             | C5-C3-O2                     | 115.1 (2)              |
| C8-C7-C6         125.9         (2)         C9-C8-C7         109.6         (2)           C10-C9-C8         110.3         (2)         C11-C10-C9         117.5         (2)           C12-C11-C10         111.7         (2)         C13-C12-C11         110.5         (2)           C12-C13-C6         126.3         (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | C2-C3-O2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 125.7 (2)             | C13-C6-C7                    | 124.8 (2)              |
| C10-C9-C8 110.3 (2) C11-C10-C9 117.5 (2)<br>C12-C11-C10 111.7 (2) C13-C12-C11 110.5 (2)<br>C12-C13-C6 126.3 (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | C8-C7-C6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 125.9 (2)             | C9-C8-C7                     | 109.6 (2)              |
| C12-C13-C6 126.3 (2) $C13-C12-C11$ 110.5 (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | C10-C9-C8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 110.3(2)              | C11-C10-C9                   | 117.5(2)               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | C12-C11-C10<br>C12-C13-C6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 111.7(2)<br>126.3(2)  | 013-012-011                  | 110.0 (2)              |

then filled with 446 mL (18.2 mmol) of hydrogen gas at 323 K. The solvent was removed under vacuum; the residual *p*phenylenediamine was sublimed off at 313 K in high vacuum over 24 h. The residue was dissolved in ether and filtered over  $Al_2O_3$ (7% H<sub>2</sub>O). Crystallization in heptane/ether gave 1.9 g (6.9 mmol) (76% of theory) of **2p** as red crystals, mp 430 K. Mass spectrum: Table V

|                                                                                |                   |              |       | regios | select. |        |
|--------------------------------------------------------------------------------|-------------------|--------------|-------|--------|---------|--------|
|                                                                                | reaction temp. °C | chemoselect. | 1     | Py     | 1       | Be     |
| complex                                                                        | (65% unsat)       | Py/Be        | % sym | % asym | % sym   | % asym |
| $\eta^{5}$ -CpCo- $\eta^{2}, \eta^{2}$ -COD (27)                               | 147               | 1.8          | 63.1  | 36.9   | 27.2    | 72.8   |
| $\eta^{5}$ -CpCo- $\eta^{1}, \eta^{3}$ -COD (22)                               | 147               | 2.3          | 62.5  | 37.5   | 26.6    | 73.4   |
| $\eta^{3}$ -C <sub>8</sub> H <sub>13</sub> Co- $\eta^{2}, \eta^{2}$ -COD (1)   | 130 (15%)         | 0.5          | 69.9  | 30.1   | 41.0    | 59.0   |
| $\eta^1, \eta^2$ -cycloctenyl-Co-C <sub>6</sub> Me <sub>6</sub> (26)           | 165 (28.6%)       | 0.45         | 72.0  | 28.0   | 42.6    | 57.4   |
| $\eta^3$ -cyclohexenyl-Co-C <sub>6</sub> H <sub>6</sub> (11a)                  | 155 (31.5%)       | 0.43         | 71.5  | 28.5   | 42.4    | 57.6   |
| $\eta^3$ -cyclohexenyl-Co-C <sub>6</sub> Me <sub>6</sub> (11b)                 | 162 (28%)         | 0.47         | 72.1  | 27.9   | 42.7    | 57.3   |
| $\eta^3$ -crotyl-Co-C <sub>6</sub> Me <sub>6</sub> (7b)                        | 169 (34%)         | 0.76         | 72.1  | 27.9   | 42.6    | 57.4   |
| $\eta^3$ -cyclopentenyl-Co-C <sub>6</sub> H <sub>3</sub> Me <sub>3</sub> (12c) | 158               | 1.54         | 65.8  | 34.2   | 32.7    | 67.3   |
| $\eta^3$ -cyclopentenyl-Co-C <sub>6</sub> Me <sub>6</sub> (12b)                | 160               | 1.38         | 67.5  | 32.5   | 33.3    | 66.7   |

|                                                    | 1     | Table VI           |                     |                    |                     |
|----------------------------------------------------|-------|--------------------|---------------------|--------------------|---------------------|
|                                                    | Py/Be | % P <sub>sym</sub> | % P <sub>asym</sub> | % B <sub>sym</sub> | % B <sub>asym</sub> |
| CpCo-butadiene<br>cyclohexenyl-Co-<br>henzol (11a) | 1.45  | 67                 | 33                  | 27                 | 73                  |
| theor (3:2)                                        | 1.26  | 67                 | 33                  | 32                 | 68                  |

## Table VII. Crystal Data and Details of Data Collection

|                                          | 22                                 | 23                                                |
|------------------------------------------|------------------------------------|---------------------------------------------------|
| empirical formula                        | C <sub>13</sub> H <sub>17</sub> Co | C <sub>13</sub> H <sub>19</sub> O <sub>2</sub> Co |
| mol wt                                   | 232.2                              | 266.2                                             |
| crystal color                            | brown-red                          | black                                             |
| a, Å                                     | 16.583 (2)                         | 8.4165 (8)                                        |
| b, Å                                     | 16.583 (2)                         | 8.9539 (9)                                        |
| c, Å                                     | 7.995 (1)                          | 9.3770 (5)                                        |
| $\alpha$ , deg                           | 90.0                               | 72.588 (5)                                        |
| $\beta$ , deg                            | 90.0                               | 72.224 (5)                                        |
| $\gamma$ , deg                           | 90.0                               | 70.521 (8)                                        |
| V, Å <sup>3</sup>                        | 2198.4                             | 618.9                                             |
| Ζ                                        | 8                                  | 2                                                 |
| cryst size, mm                           | $0.30 \times 0.28 \times 0.28$     | $0.36\times0.54\times0.54$                        |
| space group                              | P4                                 | $P\bar{1}$                                        |
| $\mu$ (Mo K $\alpha$ ), cm <sup>-1</sup> | 15.15                              | 13.66                                             |
| absorptn correctn                        | empirical                          |                                                   |
| correctn factors                         | 1.11-0.75                          |                                                   |
| scan type                                | $\omega - 2\theta$                 | $\omega - 2\theta$                                |
| $2\theta_{\max}, \deg$                   | 24.9                               | 29.9                                              |
| data collected                           | $\pm h, \pm k, \pm l$              | $\pm h, \pm k, \pm l$                             |
| reflctns measd                           | 9006                               | 3564                                              |
| independent reflctns                     | 3824                               | 3563                                              |
| R <sub>av</sub>                          | 0.020                              |                                                   |
| reflctns with $I > 2.0\sigma(I)$         | 2525                               | 3160                                              |
| R                                        | 0.031                              | 0.033                                             |
| R <sub>w</sub>                           | 0.036                              | 0.049                                             |
| error of fit                             | 1.61                               | 2.98                                              |
| $\max \Delta / \sigma$                   | 0.01                               | 0.002                                             |
| residual density, e/Å <sup>3</sup>       | 0.45                               | 0.65                                              |

m/z 276 (20%, [M]<sup>+</sup>), 168 (20%, [C<sub>8</sub>H<sub>13</sub>Co]<sup>+</sup>), 167 (19%, [C<sub>6</sub>H<sub>8</sub>N<sub>2</sub>Co]<sup>+</sup>), 108 (100%, [C<sub>6</sub>H<sub>8</sub>N<sub>2</sub>]<sup>+</sup>). Anal. Calcd for C<sub>14</sub>H<sub>21</sub>CoN<sub>2</sub>: C, 60.87; H, 7.66; Co, 21.33; N, 10.14. Found: C, 60.89; H, 7.66; Co, 21.27; N, 10.10.

 $(\mu$ -Biphenyl)bis[ $(1-\eta^1, 4, 5-\eta^2$ -cyclooctenyl)cobalt(I)] (2q). Biphenyl (3 g, 19.5 mmol) and 12.4 g (45 mmol) of  $(\eta^3$ -cyclooctenyl) $(\eta^2, \eta^2$ -cyclooctadiene-1,5)cobalt (1) were dissolved in 15 mL (150 mmol) of piperidine. After the reaction mixture had been frozen with liquid nitrogen, the reaction vessel was evacuated and then filled with 1225 mL (50 mmol) of hydrogen gas at 323 K. All liquid components were removed under vacuum. The residue was dissolved in ether and filtered; the solvent was again removed under vacuum. The residue was washed three times with pentane. The binuclear complex 2q remained as a deep red, nearly black powder: yield, 750 mg (1.5 mmol) (7.8% of theory); mp 328-330 K, decomp 338-343 K. Mass spectrum: m/z 322 (1%,  $[C_{20}H_{23}Co]^+$ ), 213 (2.5%,  $[C_{12}H_{10}Co]^+$ ), 154 (100%,  $[C_{12}H_{10}]^+$ ). Anal. Calcd for  $C_{28}H_{36}Co_2$ : C, 68.57; H, 7.40; Co, 24.03. Found: C, 68.40; H, 7.53; Co, 23.89.

Synthesis of  $[(\eta^6-\text{Arene})(\text{diene})\text{Co}]\text{BF}_4$  Complexes (5, 6, 8, 10).  $(\eta^6-\text{Benzene})(\eta^2,\eta^2-\text{cyclooctadiene}-1,5)$ cobalt Tetra-fluoroborate (5a).  $(\eta^6-\text{Benzene})(\eta^1,\eta^2-\text{cyclooctenyl})$ cobalt(I) (2a)

(5 g, 20.37 mmol) was dissolved in 25 mL of diethyl ether and 20 mL of cyclooctadiene at room temperature. After the reaction solution had been cooled to 243 K, 2.75 mL (20.3 mmol) of HBF<sub>4</sub>·Et<sub>2</sub>O was added dropwise to the solution with vigorous stirring. The reaction solution was removed, and the orange residue was solved in cold CH<sub>2</sub>Cl<sub>2</sub> (195 K). The deep red solution was filtered under cooling (195 K). Ether was added, and orange crystals precipitated from the solution kept at 195 K overnight. [In CH<sub>2</sub>Cl<sub>2</sub> 5a decomposes above 223 K]. Yield: 4.5 g (13.6 mmol) (67% of theory) of 5a, mp 332 K. <sup>13</sup>C NMR (CD<sub>2</sub>Cl<sub>2</sub>, 193 K): 100.6 (d, <sup>1</sup>J<sub>CH</sub> = 177 Hz), 78.9 (d, <sup>1</sup>J<sub>CH</sub> = 158 Hz), 30.1 ppm (t, <sup>1</sup>J<sub>CH</sub> = 130 Hz). Anal. Calcd for C<sub>14</sub>H<sub>18</sub>CoBF<sub>4</sub>: C, 50.60; H, 5.42; F, 22.89. Found: C, 50.53; H, 5.54; F, 22.72.

 $(\eta^{6}$ -Hexamethylbenzene) $(\eta^{2},\eta^{2}$ -cyclooctadiene-1,5)cobalt Tetrafluoroborate (5b).<sup>14</sup> 5b was synthesized from 2b as described for 5a from 2a. Yield: 63% of theory. <sup>13</sup>C NMR (CD<sub>2</sub>Cl<sub>2</sub>, 193 K): 110.0 (s), 81.7 (d, <sup>1</sup>J<sub>CH</sub> = 155 Hz), 30.0 (t, <sup>1</sup>J<sub>CH</sub> = 130 Hz); 15.5 ppm (q, <sup>1</sup>J<sub>CH</sub> = 129 Hz). Anal. Calcd for C<sub>20</sub>H<sub>30</sub>CoBF<sub>4</sub>: C, 57.69; H, 7.21; F, 18.27. Found: C, 57.75; H, 7.35; F, 18.10.  $(\eta^{6}$ -Mesitylene) $(\eta^{2},\eta^{2}$ -cyclooctadiene-1,5)cobalt Tetra-

 $(\eta^{6}\text{-Mesitylene})(\eta^{2},\eta^{2}\text{-cyclooctadiene-1,5})$ cobalt Tetrafluoroborate (5c). 5c was prepared from 2c in the same way as 5a from 2a; yield, 74% of theory. <sup>13</sup>C NMR (CD<sub>2</sub>Cl<sub>2</sub>, 243 K): 114.3 (s), 101.0 (d, <sup>1</sup>J<sub>CH</sub> = 172 Hz); 80.8 (d, <sup>1</sup>J<sub>CH</sub> = 156 Hz), 30.5 (t, <sup>1</sup>J<sub>CH</sub> = 130 Hz), 18.8 ppm (q, <sup>1</sup>J<sub>CH</sub> = 130 Hz). Anal. Calcd for C<sub>17</sub>H<sub>24</sub>CoBF<sub>4</sub>: C, 54.55; H, 6.42; F, 20.32. Found: C, 54.42; H, 6.51; F, 20.15.

 $(\eta^{6}\text{-Biphenyl})(\eta^{2},\eta^{2}\text{-cyclooctadiene-1,5})$ cobalt Tetrafluoroborate (5e). 5e was prepared from 2e in the same way as 5a from 2a; yield 82% of theory. <sup>13</sup>C NMR (CD<sub>2</sub>Cl<sub>2</sub>, 193 K): 132.8 (s); 130.4 (d, <sup>1</sup>J<sub>CH</sub> = 162 Hz), 129.3 (d, <sup>1</sup>J<sub>CH</sub> = 160 Hz), 127.5 (d, <sup>1</sup>J<sub>CH</sub> = 158 Hz), 118.5 (s), 102.7 (d, <sup>1</sup>J<sub>CH</sub> = 178 Hz), 98.8 (d, <sup>1</sup>J<sub>CH</sub> = 174 Hz), 96.7 (d, <sup>1</sup>J<sub>CH</sub> = 174 Hz), 80.6 (d, <sup>1</sup>J<sub>CH</sub> = 158 Hz), 29.9 ppm (t, <sup>1</sup>J<sub>CH</sub> = 129 Hz). Anal. Calcd for C<sub>20</sub>H<sub>22</sub>BCoF<sub>4</sub>: C, 58.86; H, 5.43; Co, 14.44; F, 18.62. Found: C, 58.76; H, 5.38; Co, 14.31; F, 18.43.

 $(\eta^{6}\text{-Anisole})(\eta^{2},\eta^{2}\text{-cyclooctadiene-1,5})$ cobalt Tetrafluoroborate (5h). 5h was prepared from 2h in the same way as 5a from 2a: yield, 41% of theory; mp 360 K dec. <sup>13</sup>C NMR (CD<sub>2</sub>Cl<sub>2</sub>, 243 K): 141.1 (s), 99.8 (d, <sup>1</sup>J<sub>CH</sub> = 179 Hz), 95.0 (d, <sup>1</sup>J<sub>CH</sub> = 178 Hz), 87.9 (d, <sup>1</sup>J<sub>CH</sub> = 176 Hz), 80.4 (d, <sup>1</sup>J<sub>CH</sub> = 156 Hz), 57.5 (q, <sup>1</sup>J<sub>CH</sub> = 148 Hz), 30.8 ppm (t, <sup>1</sup>J<sub>CH</sub> = 130 Hz). Anal. Calcd for C<sub>15</sub>H<sub>20</sub>CoBF<sub>4</sub>O: C, 49.72; H, 5.52; F, 20.99. Found: C, 49.65; H, 5.61; F, 20.85.

 $(\eta^{6}\text{-Benzene})(\eta^{4}\text{-cyclohexadiene-1,3})$ cobalt Tetrafluoroborate (6a). 6a was prepared from 2a as mentioned above; yield, 71% of theory. 6a decomposes above 373 K. <sup>13</sup>C NMR (CD<sub>2</sub>Cl<sub>2</sub>, 243 K): 98.7 (d, <sup>1</sup>J<sub>CH</sub> = 178 Hz), 86.2 (d, <sup>1</sup>J<sub>CH</sub> = 174 Hz), 71.5 (d, <sup>1</sup>J<sub>CH</sub> = 162 Hz), 23.6 ppm (t, <sup>1</sup>J<sub>CH</sub> = 132 Hz). Anal. Calcd for C<sub>12</sub>H<sub>14</sub>CoBF<sub>4</sub>: C, 47.37; H, 4.61; Co, 19.41; F, 25.00. Found: C, 47.53; H, 4.48; Co, 19.35; F, 24.97.

 $(\eta^{6}$ -Hexamethylbenzene) $(\eta^{4}$ -cyclohexadiene-1,3)cobalt Tetrafluoroborate (6b). 6b was prepared from 7b as above; yield, 64.8% of theory. <sup>1</sup>H NMR (CD<sub>2</sub>Cl<sub>2</sub>, 213 K): 5.11 (m, 2 H), 3.05 (m, 2 H), 2.25 (s, 18 H), 1.36 (m, 2 H), 0.56 ppm (m, 2 H). Anal. Calcd for C<sub>18</sub>H<sub>26</sub>BCoF<sub>4</sub>: C, 55.70; H, 6.75; Co, 15.18; F, 19.58. Found: C, 55.67; H, 6.66; Co, 15.11; F, 19.74.

 $(\eta^6$ -Benzene) $(\eta^4$ -cyclopentadiene-1,3)cobalt Tetrafluoroborate (8a). 8a was prepared from 2a as mentioned above, but with only a 10% excess of cyclopentadiene; yield, 25.5% of theory, unpurified with about 30% of [Cp<sub>2</sub>Co]BF<sub>4</sub>. Nevertheless, it is a suitable starting material for the preparation of 12a. <sup>1</sup>H NMR  $(CD_2Cl_2,\,193~K);\,\,6.50$  (s, 6 H), 6.16 (m, 2 H), 3.86 (m, 2 H), 2.75 (m, 1 H), 1.81 ppm (m, 1 H).

 $(\eta^{6}$ -Hexamethylbenzene) $(\eta^{4}$ -cyclopentadiene-1,3)cobalt Tetrafluoroborate (8b). (a) From 2b. 8b was prepared from 2b as above, except that a fourfold excess of cyclopentadiene was taken; yield, 52.8% of theory. <sup>1</sup>H NMR (CD<sub>2</sub>Cl<sub>2</sub>, 193 K): 5.67 (t, J = 2 Hz, 2 H), 2.96 (p, J = 2 Hz, 2 H), 2.44 (m, 1 H), 2.20 (s, 18 H), 1.69 ppm (m, 1 H). <sup>13</sup>C NMR (CD<sub>2</sub>Cl<sub>2</sub>, 193 K): 107.5 (s), 86.8 (d, <sup>1</sup> $J_{CH} = 180$  Hz), 57.4 (d, <sup>1</sup> $J_{CH} = 176$  Hz), 39.9 (t, <sup>1</sup> $J_{CH} = 134$  Hz, 140 Hz), 16.5 ppm (q, <sup>1</sup> $J_{CH} = 129$  Hz). Anal. Calcd for C<sub>17</sub>H<sub>24</sub>BCoF<sub>4</sub>: C, 54.58; H, 6.47; Co, 15.75. Found: C, 54.70; H, 6.56; Co, 15.65.

(b) From 7b. 8b was also prepared from 7b as above, except that a fourfold excess of cyclopentadiene was taken; yield 82.4% of theory. <sup>1</sup>H NMR: see above. Anal. Calcd for  $C_{17}H_{24}BCoF_4$ : C, 54.58; H, 6.47; Co, 15.75; F, 20.31. Found: C, 54.41; H, 6.48; Co, 15.91; F, 20.19.

 $(\eta^{6}$ -Mesitylene) $(\eta^{4}$ -cyclopentadiene-1,3)cobalt Tetrafluoroborate (8c). Sc was prepared from 2c as above, but with only a 10% excess of cyclopentadiene; yield, 53.3% of theory. <sup>1</sup>H NMR (CD<sub>2</sub>Cl<sub>2</sub>, 253 K): 6.19 (s, 3 H), 6.09 (m, 2 H), 3.56 (m, 2 H), 2.74 (m, 1 H), 2.33 (s, 9 H), 1.88 ppm (m, 1 H). Anal. Calcd for C<sub>14</sub>H<sub>18</sub>BCoF<sub>4</sub>: C, 50.64; H, 5.46; Co, 17.75; F, 22.89. Found: C, 50.56; H, 5.36; Co, 17.72; F, 22.69.

(η<sup>6</sup>-Benzene)(η<sup>4</sup>-butadiene-1,3)cobalt Tetrafluoroborate (10a). (5-Methylheptadienyl)(η<sup>4</sup>-butadiene)cobalt (9)<sup>11</sup> (2.5 g, 11.3 mmol) was dissolved in 20 mL of benzene and 30 mL of ether at 273 K. After the mixture was cooled to 243 K, 1.57 mL (11.5 mmol) HBF<sub>4</sub>-Et<sub>2</sub>O was added dropwise to the reaction solution with vigorous stirring. The reaction solution was removed and the brown residue washed twice with cold ether (243 K). The residue was redissolved in CH<sub>2</sub>Cl<sub>2</sub> (195 K), filtered, and precipitated with cold ether at 195 K. 10a crystallized from CH<sub>2</sub>Cl<sub>2</sub>/Et<sub>2</sub>O as red crystals at 195 K: mp 351 K dec; yield, 1.2 g (4.3 mmol) (38% of theory). <sup>13</sup>C NMR (CD<sub>2</sub>Cl<sub>2</sub>, 193 K): 98.8 (d, <sup>1</sup>J<sub>CH</sub> = 179 Hz), 88.4 (d, <sup>1</sup>J<sub>CH</sub> = 173 Hz), 46.1 ppm (t, <sup>1</sup>J<sub>CH</sub> = 164 Hz). Anal. Calcd for C<sub>10</sub>H<sub>12</sub>CoBF<sub>4</sub>: C, 43.17; H, 4.32; Co, 21.22; F, 27.34. Found: C, 43.18; H, 4.35; Co, 21.24; F, 27.26%.

( $\eta^6$ -Hexamethylbenzene)( $\eta^4$ -butadiene-1,3)cobalt Tetrafluoroborate (10b). (5-Methylheptadienyl)( $\eta^4$ -butadiene)cobalt (9) (2.5 g, 11.3 mmol) and 2.2 g (13.6 mmol) of hexamethylbenzene were dissolved in ether at 243 K. HBF<sub>4</sub>-Et<sub>2</sub>O (1.47 mL, 11.5 mmol) was added dropwise to the cooled reaction solution with vigorous stirring. After being stirred for another hour at room temperature, the reaction solution was removed and the red residue washed three times with ether. The residue was dissolved with CH<sub>2</sub>Cl<sub>2</sub> (193 K), filtered, and precipitated with cold ether at 193 K. 10b crystallizes from CH<sub>2</sub>Cl<sub>2</sub>/ether as red crystals at 193 K; yield, 55% of theory. <sup>1</sup>H NMR (CD<sub>2</sub>Cl<sub>2</sub>, 213 K): 5.33 (m, 2 H), 2.30 (s, 18 H), 1.96 (m, 2 H), 0.63 ppm (m, 2 H). <sup>13</sup>C NMR (CD<sub>2</sub>Cl<sub>2</sub>, 213 K): 108.9 (s), 88.4 (d, <sup>1</sup>J<sub>CH</sub> = 171 Hz), 47.9 (t, <sup>1</sup>J<sub>CH</sub> = 161 Hz); 17.0 ppm (q, <sup>1</sup>J<sub>CH</sub> = 129 Hz). Anal. Calcd for C<sub>16</sub>H<sub>24</sub>BCoF<sub>4</sub>: C, 53.07; H, 6.68; Co, 16.28. Found: C, 53.34; H, 6.66; Co, 16.15.

 $(\eta^{6}$ -Mesitylene) $(\eta^{4}$ -butadiene-1,3)cobalt Tetrafluoroborate (10c). 10c was prepared analogously to 10a: yield, 47% of theory; mp 370 K dec. <sup>13</sup>C NMR (CD<sub>2</sub>Cl<sub>2</sub>, 243 K): 114.1 (s), 98.0 (d, <sup>1</sup>J<sub>CH</sub> = 174 Hz), 88.6 (d, <sup>1</sup>J<sub>CH</sub> = 173 Hz), 47.8 (t, <sup>1</sup>J<sub>CH</sub> = 161 Hz), 20.1 ppm (q, <sup>1</sup>J<sub>CH</sub> = 129 Hz). Anal. Calcd for C<sub>13</sub>H<sub>18</sub>CoBF<sub>4</sub>: C, 48.75; H, 5.63; F, 23.75. Found: C, 48.90; H, 5.56; F, 23.96.

Synthesis of Substituted ( $\eta^6$ -Arene)( $\eta^3$ -allyl)cobalt Complexes. ( $\eta^6$ -Benzene)( $\eta^3$ -crotyl)cobalt(I) (7a) and ( $\eta^5$ -Cyclohexadienyl)( $\eta^4$ -butadiene)cobalt(I) (17). [( $\eta^6$ -Benzene)( $\eta^4$ -butadiene-1,3)Co]BF<sub>4</sub> (9.2 g, 33.1 mmol) (10a) and 200 mL of ether were combined and cooled down to 243 K. NaHBEt<sub>3</sub> in ether (33.1 mL of a 1 M solution) was added with vigorous stirring. The solvent was removed at 243 K under reduced pressure, and the residue was dissolved in pentane at 243 K and filtered. Crystallization at 193 K gave 650 mg (3.4 mmol, 10.3% of theory) of a deep red substance, which was liquid at room temperature and contained the two isomers 7a and 17 in a 2:1 ratio. Mass spectrum: m/z 192 (60%, [M]<sup>+</sup>), 164 (15%, [C<sub>6</sub>H<sub>6</sub>CoC<sub>2</sub>H<sub>3</sub>]<sup>+</sup>), 137 (100%, [C<sub>6</sub>H<sub>6</sub>Co]<sup>+</sup>), 114 (12%, [C<sub>4</sub>H<sub>7</sub>Co]<sup>+</sup>), 78 (89%, [C<sub>6</sub>H<sub>6</sub>]<sup>+</sup>), 59 (39%, [Co]<sup>+</sup>). <sup>13</sup>C NMR (THF-d<sub>8</sub>, 173 K): for 7a, 30.4 (t, <sup>1</sup>J<sub>CH</sub> = 154 Hz), 79.2 (d, <sup>1</sup>J<sub>CH</sub> = 162 Hz); 46.6 (d, <sup>1</sup>J<sub>CH</sub> = 147 Hz), 17.2 (q, <sup>1</sup>J<sub>CH</sub> = 125 Hz), 87.5 ppm (d, <sup>1</sup>J<sub>CH</sub> = 170 Hz); for 17, 35.0 (t, <sup>1</sup>J<sub>CH</sub> = 155 Hz), 80.4 (d, <sup>1</sup>J<sub>CH</sub> = 163 Hz), 84.7

 $\begin{array}{l} ({\rm d},\,{}^1\!J_{\rm CH}=166~{\rm Hz}),\,81.1~({\rm d},\,{}^1\!J_{\rm CH}=170~{\rm Hz}),\,93.0~({\rm d},\,{}^1\!J_{\rm CH}=164~{\rm Hz}),\,95.7~({\rm d},\,{}^1\!J_{\rm CH}=166~{\rm Hz}),\,40.5~({\rm d},\,{}^1\!J_{\rm CH}=162~{\rm Hz}),\,50.7~({\rm d},\,{}^1\!J_{\rm CH}=168~{\rm Hz}),\,26.5~{\rm ppm}~({\rm t},\,{}^1\!J_{\rm CH};\,{\rm obscured}). \end{array}$ 

 $(\eta^{6}$ -Hexamethylbenzene) $(\eta^{3}$ -crotyl)cobalt(I) (7b). 7b was prepared from 10b in the same way as 12b except that the reaction was carried out at room temperature instead of at 243 K. Fractional crystallization between 273 K and 193 K gave 7b in form of deep red crystals: yield, 62% of theory; mp 366–368 K; decomp >428 K. Spectra: see above. Anal. Calcd for C<sub>16</sub>H<sub>25</sub>Co: C, 69.55; H, 9.12; Co, 21.33. Found: C, 69.49; H, 9.23; Co, 21.18.

 $(\eta^6$ -Hexamethylbenzene) $(\eta^3$ -crotyl)cobalt(I) (7b) and  $(\eta^6$ -Hexamethylbenzene) $(1-\eta^1, 3, 4-\eta^2$ -butenyl)cobalt(I) (16). 10b was treated with NaHBEt<sub>3</sub> in the same way as described for preparation of 12b. After crystallization in pentane at 193 K, the two isomers 7b and 16 were isolated in a 3:2 ratio as deep red crystals: yield, 35% of theory for both isomers; mp 365-366 K; decomp > 428 K. Mass spectrum: m/z 276 (32%, [M]<sup>+</sup>), 221 (30%, [C<sub>12</sub>H<sub>18</sub>Co]<sup>+</sup>), 220 (34%, [C<sub>12</sub>H<sub>17</sub>Co]<sup>+</sup>), 162 (49%, [C<sub>12</sub>H<sub>18</sub>]<sup>+</sup>), 147 (100%, [C<sub>11</sub>H<sub>15</sub>]<sup>+</sup>). <sup>13</sup>C NMR (THF-d<sub>8</sub>, 193 K): for isomer 7b, 96.3 (s), 78.6 (d, <sup>1</sup>J<sub>CH</sub> = 162 Hz), 45.7 (d, <sup>1</sup>J<sub>CH</sub> = 146 Hz), 30.7 (t, <sup>1</sup>J<sub>CH</sub> = 151 Hz), 17.0 (q, <sup>1</sup>J<sub>CH</sub> = 127 Hz), 14.8 ppm (q, <sup>1</sup>J<sub>CH</sub> = 124 Hz); for isomer 16, 101.1 (s), 46.1 (t, <sup>1</sup>J<sub>CH</sub> = 151 Hz), 34.7 (d, <sup>1</sup>J<sub>CH</sub> = 156 Hz), 29.8 (t, <sup>1</sup>J<sub>CH</sub> = 128 Hz), 16.3 (q, <sup>1</sup>J<sub>CH</sub> = 127 Hz), -16.5 ppm (t, <sup>1</sup>J<sub>CH</sub> = 139 Hz). Anal. Calcd for C<sub>16</sub>H<sub>25</sub>Co: C, 69.55; H, 9.12; Co, 21.33. Found: C, 69.46; H, 9.23; Co, 21.28.

 $(\eta^6$ -Benzene) $(\eta^3$ -cyclohexenyl)cobalt(I) (11a)<sup>12</sup> was prepared as described in the literature.<sup>12</sup>

(η<sup>6</sup>-Hexamethylbenzene)(η<sup>3</sup>-cyclohexenyl)cobalt(I) (11b). 11b was prepared from 6b in the same way as 12b. Fractional crystallization in pentane between 273 K and 193 K gave 11b as red crystals: Yield, 20% of theory; mp 351 K; decomp 403 K. Mass spectrum: m/z 302 (97%, [M]<sup>+</sup>), 220 (100%, [C<sub>12</sub>H<sub>17</sub>Co]<sup>+</sup>), 162 (25%, [C<sub>12</sub>H<sub>18</sub>Co]<sup>+</sup>), 147 (62%, [C<sub>11</sub>H<sub>15</sub>]<sup>+</sup>). <sup>1</sup>H NMR (THF-d<sub>8</sub>, 203 K): 4.64 (t, J = 5.5 Hz, 1 H), 2.1 (s, 18 H), 1.68 (m, 2 H), 1.34–0.58 ppm (m, 6 H). <sup>13</sup>C NMR (THF-d<sub>8</sub>, 193 K): 97.1 (s), 74.0 (d, <sup>1</sup>J<sub>CH</sub> = 164 Hz), 49.3 (d, <sup>1</sup>J<sub>CH</sub> = 149 Hz), 25.8 (t, <sup>1</sup>J<sub>CH</sub> = 123 Hz); 25.2 (t, <sup>1</sup>J<sub>CH</sub> = 123 Hz); 17.0 ppm (q, <sup>1</sup>J<sub>CH</sub> = 127 Hz). Anal. Calcd for C<sub>18</sub>H<sub>27</sub>Co: C, 71.51; H, 9.00; Co, 19.49. Found: C, 71.61; H, 9.00; Co, 19.43.

 $(\eta^{6}\text{-Mesitylene})(\eta^{3}\text{-cyclopentenyl})$ cobalt(I) (12c). 12c was prepared from 8c in the same way as 12b: yield, 92% of theory; mp 300 K; decomp >408 K. Mass spectrum: m/z 246 (87%, [M]<sup>+</sup>), 244 (100%, [C<sub>14</sub>H<sub>17</sub>Co]<sup>+</sup>), 179 (92%, [C<sub>9</sub>H<sub>12</sub>Co]<sup>+</sup>), 178 (61%, [C<sub>3</sub>H<sub>11</sub>Co]<sup>+</sup>), 124 (58%, [C<sub>8</sub>H<sub>6</sub>Co]<sup>+</sup>), 119 (17%, [C<sub>9</sub>H<sub>11</sub>]<sup>+</sup>), 105 (46%, [C<sub>8</sub>H<sub>9</sub>]<sup>+</sup>), 59 (55%, [Co]<sup>+</sup>). <sup>1</sup>H NMR (THF-d<sub>8</sub>, 213 K): 5.15 (s, 3 H), 4.51 (t, J = 3 Hz, 1 H), 2.34 (m, 2 H); 2.10 (s, 9 H), 1.08 ppm (m, 4 H). <sup>13</sup>C NMR (THF-d<sub>8</sub>, 193 K): 100.4 (s), 88.7 (d, <sup>1</sup>J<sub>CH</sub> = 167 Hz), 73.8 (d, <sup>1</sup>J<sub>CH</sub> = 174 Hz), 51.5 (d, <sup>1</sup>J<sub>CH</sub> = 158 Hz), 31.8 (t, <sup>1</sup>J<sub>CH</sub> = 129 Hz), 20.9 ppm (q, <sup>1</sup>J<sub>CH</sub> = 127 Hz). Anal. Calcd for C<sub>14</sub>H<sub>19</sub>Co: C, 68.29; H, 7.78; Co, 23.93. Found: C, 68.15; H, 7.78; Co, 23.67.

 $(\eta^{6}\text{-}Benzene)(\eta^{3}\text{-}cyclopentenyl)cobalt(I)$  (12a). 12a was prepared from 8a in the same way as 12b. The product still contained  $(\eta^{5}\text{-}Cp)(\eta^{5}\text{-}C_{5}\text{H}_{6})$ Co. Sublimation of  $(\eta^{4}\text{-}Cp)(\eta^{4}\text{-}C_{5}\text{H}_{6})$ Co in high vacuum at room temperature gave pure 12a in a yield of 48%: mp 244-346 K; decomp > 373 K. Mass spectrum: m/z 204 (38%, [M]<sup>+</sup>), 202 (36%, [C<sub>11</sub>H<sub>11</sub>Co]<sup>+</sup>), 137 (40%, [C<sub>6</sub>H<sub>6</sub>Co]<sup>+</sup>), 124 (100%, [C<sub>5</sub>H<sub>5</sub>Co]<sup>+</sup>), 78 (16%, [C<sub>6</sub>H<sub>6</sub>]<sup>+</sup>), 59 (55%, [Co]<sup>+</sup>). <sup>1</sup>H NMR (THF-d<sub>8</sub>, 193 K): 5.06 (s, 6 H), 4.64 (t, J = 3 Hz, 1 H), 2.65 (m, 2 H), 1.13 (m, 2 H), 0.96 ppm (m, 2 H). <sup>13</sup>C NMR (THF-d<sub>8</sub>, 193 K): 88.1 (d, <sup>1</sup>J<sub>CH</sub> = 170 Hz), 73.0 (d, <sup>1</sup>J<sub>CH</sub> = 174 Hz), 51.9 (d, <sup>1</sup>J<sub>CH</sub> = 159 Hz), 32.4 ppm (t, <sup>1</sup>J<sub>CH</sub> = 130 Hz). Anal. Calcd for C<sub>11</sub>H<sub>13</sub>Co: C, 64.72; H, 6.42; Co, 28.87. Found: C, 64.63; H, 6.43; Co, 28.97.

(η<sup>6</sup>-Hexamethylbenzene)(η<sup>3</sup>-cyclopentenyl)cobalt(I) (12b). 34 (2.5 g, 6.7 mmol) and 200 mL of ether were combined and cooled to 243 K. NaHBEt<sub>3</sub> (6.7 mL of a 1 M solution) in ether was added with vigorous stirring. The solvent was removed at 243 K; the residue was dissolved at room temperature in pentane and filtered. Crystallization at 193 K gave 1.4 g (4.86 mmol) (72.5% of theory) of 12b as red crystals: mp 412-414 K; decomp >431 K. Mass spectrum: m/z 288 (93% [M]<sup>+</sup>), 286 (69%, [C<sub>17</sub>H<sub>23</sub>Co]<sup>+</sup>), 221 (57%, [C<sub>12</sub>H<sub>18</sub>Co]<sup>+</sup>), 220 (100%, [C<sub>12</sub>H<sub>17</sub>Co]<sup>+</sup>), 161 (24%, [C<sub>12</sub>H<sub>17</sub>]<sup>+</sup>), 147 (28%, [C<sub>11</sub>H<sub>15</sub>]<sup>+</sup>). <sup>1</sup>H NMR (THF-d<sub>8</sub>, 243 K) 4.28 (t, J = 3 Hz, 1 H), 2.08 (s, 18 H), 1.86 (m, 2 H), 0.95 ppm (m, 4 H). <sup>13</sup>C NMR (THF-d<sub>8</sub>, 193 K): 97.1 (s), 71.7 (d, <sup>1</sup>J<sub>CH</sub> = 173 Hz), 50.1 (d, <sup>1</sup>J<sub>CH</sub> = 156 Hz), 30.4 (t, <sup>1</sup>J<sub>CH</sub> = 128 Hz), 16.9 ppm (q,  ${}^{1}J_{CH} = 127$  Hz). Anal. Calcd for  $C_{17}H_{25}Co: C, 70.82;$ H, 8.74; Co, 20.44. Found: C, 70.88; H, 8.76; Co, 20.28.

 $(\eta^6$ -Hexamethylbenzene) $(1-\eta^1,3,4-\eta^2$ -cyclohexenyl)rhodium (14).  $(\eta^6$ -Hexamethylbenzene) $(\eta^2, \eta^2$ -cyclohexadiene-1,3)rhodium tetrafluoroborate (13)<sup>14</sup> (775 mg, 1.78 mmol) were combined with 25 mL of ether, and the mixture was cooled to 243 K. Under vigorous stirring 1.78 mL of a 1 M solution of NaHBEt<sub>3</sub> in ether was added. The solvent was removed at 243 K; the residue was dissolved at 243 K in pentane, filtered, and crystallized at 193 K. Yield: 375 mg (1.08 mmol) (60.7% of theory) of 14. Mass spectrum: m/z 346 (68%, [M]<sup>+</sup>), 264 (98%, [C<sub>12</sub>H<sub>17</sub>Rh]<sup>+</sup>), 162  $(42\%, [C_{12}H_{18}]^+), 147 (100\%, [C_{11}H_{15}]^+).$  <sup>1</sup>H NMR (THF- $d_8, 223$ K): 2.71 (m, 1 H, H on C-4), 2.68 (m, 1 H, H on C-3), 2.51 (m, 1 H, H<sub>exo</sub> on C-2), 2.39 (m, 1 H, H<sub>endo</sub> on C-2), 2.18 (s, 18 H, CH<sub>3</sub>), 1.91 (m, 1 H, H<sub>endo</sub> on C-5), 1.76 (m, 1 H, H<sub>exo</sub> on C-5), 1.28 (m, 1.91 (III, 1 H, H<sub>endo</sub> on C-5), 1.76 (III, 1 H, H<sub>exo</sub> on C-5), 1.26 (III, 1 H, H<sub>endo</sub> on C-6), 1.02 (m, 1 H, H<sub>exo</sub> on C-6), 0.75 (m, 1 H, H on C-1). <sup>13</sup>C NMR (THF- $d_8$ , 193 K): 14.2 (d, <sup>1</sup> $J_{CH}$  = 145 Hz,  $J_{RhC}$ = 21.1 Hz), 38.7 (t, <sup>1</sup> $J_{CH}$  = 128 Hz,  $J_{RhC}$  = 6.1 Hz), 36.1 (d, <sup>1</sup> $J_{CH}$ = 162 Hz,  $J_{RhC}$  = 10.7 Hz), 65.2 (d, <sup>1</sup> $J_{CH}$  = 151 Hz,  $J_{RhC}$  = 20.4 Hz), 28.2 (t, <sup>1</sup> $J_{CH}$  = 124 Hz,  $J_{RhC}$  = 1.9 Hz), 37.4 (t, <sup>1</sup> $J_{CH}$  = 124 Hz), 105.5 (s,  $J_{RhC}$  = 2.7 Hz), 16.8 ppm (q, <sup>1</sup> $J_{CH}$  = 127 Hz). Anal. Celed for C. H\_REP: C. 62.43; H 7.86; Rb 29.71 Found: C. 62.51; Calcd for C<sub>18</sub>H<sub>27</sub>Rh: C, 62.43; H, 7.86; Rh, 29.71. Found: C, 62.51; H, 7.78; Rh, 29.10.

 $(\eta^6$ -Hexamethylbenzene) $(\eta^3$ -cyclohexenyl)rhodium (15).  $(\eta^6$ -Hexamethylbenzene) $(\eta^4$ -cyclohexadiene-1,3)rhodium tetrafluoroborate (13)<sup>14</sup> (1.32 g, 3.06 mmol) was combined with 100 mL of THF. Under vigorous stirring 3.06 mL of a 1 M solution of NaHBEt<sub>3</sub> in ether was added dropwise. The solution was stirred for another 4 h at room temperature, the solvent was removed, and the residue was dissolved in pentane, filtered, and crystallized at 193 K: yield, 700 mg (2.02 mmol) (66% of theory) of 15. <sup>1</sup>H NMR (THF-d<sub>8</sub>, 213 K): 4.30 (t(d), <sup>3</sup>J = 5.5 Hz, J<sub>HRh</sub> = 2 Hz, 1 H), 2.56 (m, 2 H), 1.09 (m, 6 H), 2.23 ppm (s, 18 H). Anal. Calcd for C<sub>18</sub>H<sub>27</sub>Rh: C, 62.43; H, 7.86; Rh, 29.71. Found: C, 62.50; H, 8.01; Rh, 29.54.

Synthesis of  $(\eta^6$ -Arene) $(1-\eta^1,4-6-\eta^3$ -cyclooctenediyl)cobalt(III) Tetrafluoroborate Complexes.  $(\eta^6$ -Benzene) $(1-\eta^1,4-6-\eta^3$ -cyclooctenediyl)cobalt(III) Tetrafluoroborate (18a).  $(\eta^3$ -Cyclooctenyl) $(\eta^2,\eta^2$ -cyclooctadiene-1,5)cobalt (1) (5 g, 18.1 mmol) was dissolved in 100 mL of benzene and 100 mL of diethyl ether at room temperature. HBF<sub>4</sub>·Et<sub>2</sub>O (26 mL, 19.0 mmol) was added dropwise to the reaction solution with vigorous stirring. The reaction solution was removed from the orange precipitate. The orange residue was dissolved in acetone (195 K) and filtered over Al<sub>2</sub>O<sub>3</sub> (7% H<sub>2</sub>O) at 196 K. 18a was precipitated by addition of cold ether (243 K) to the filtrate. Recrystallization from CH<sub>2</sub>Cl<sub>2</sub>/Et<sub>2</sub>O gave 18a as red crystals: mp 394 K dec; yield, 4.4 g (13.3 mmol) (74% of theory). Anal. Calcd for C1<sub>4</sub>H<sub>18</sub>CoBF<sub>4</sub>: C, 50.60; H, 5.42; Co, 17.77; F, 22.89. Found: C, 50.51; H, 5.50; Co, 17.65; F, 23.21.

 $(\eta^6$ -Hexamethylbenzene) $(1-\eta^1,4-6-\eta^3$ -cyclooctenediyl)cobalt(III) Tetrafluoroborate (18b). 1 (3 g, 10.9 mmol) and 1.9 g (11.7 mmol) of hexamethylbenzene were dissolved in 100 mL of ether at room temperature. HBF<sub>4</sub>-Et<sub>2</sub>O (1.7 mL, 12.2 mmol) was added with vigorous stirring. The orange residue was dissolved in CH<sub>2</sub>Cl<sub>2</sub> and chromatographed over Al<sub>2</sub>O<sub>3</sub> (7% H<sub>2</sub>O). First hexamethylbenzene is separated with diethyl ether, and then 18b is eluated with ethanol. Red needles precipitated from the solution kept at 273 K overnight; yield, 2.6 g (6.3 mmol) (58% of theory). Anal. Calcd for C<sub>20</sub>H<sub>30</sub>CoBF<sub>4</sub>: C, 57.69; H, 7.21; F, 18.27. Found: C, 57.80; H, 7.15; F, 18.38.

 $(\eta^{6}$ -Mesitylene) $(1-\eta^{1},4-6-\eta^{3}$ -cyclooctenediyl)cobalt(III) Tetrafluoroborate (18c). 18c was prepared as described for 18a: yield, 72% of theory; mp 396 K dec. Anal. Calcd for C<sub>17</sub>H<sub>24</sub>CoBF<sub>4</sub>: C, 54.55; H, 6.42; F, 20.32. Found: C, 54.78; H, 6.44; F, 20.18.

 $(\eta^6$ -Biphenyl)(1- $\eta^1$ ,4-6- $\eta^3$ -cyclooctendiyl)cobalt(III) Tetrafluoroborate (18e). 18e was prepared from 1 in the same way as 18r; yield, 30% of theory. Anal. Calcd for C<sub>20</sub>H<sub>22</sub>CoBF<sub>4</sub>: C, 58.86; H, 5.43; Co, 14.44; F, 18.62. Found: C, 58.78; H, 5.45; Co, 14.45; F, 18.34.

 $(\eta^6$ -Naphthalene) $(1-\eta^1, 4-6-\eta^3$ -cyclooctenediyl)cobalt Tetrafluoroborate (18r).  $(\eta^3$ -Cyclooctenyl) $(\eta^2, \eta^2$ -cyclooctadiene-1,5)cobalt (1) (5 g, 18.1 mmol) and 2.5 g (19.5 mmol) of naphthalene were dissolved in 50 mL of ether at room temperature. The reaction solution was cooled to 273 K, and 2.4 mL (17.6 mmol) of HBF<sub>4</sub>-Et<sub>2</sub>O was added with vigorous stirring. The reaction solution was removed and the orange residue was dissolved in  $CH_2Cl_2$  (195 K). After filtration over  $Al_2O_3$  (7%  $H_2O$ ) at 195 K 18r was precipitated as a red solid by addition of cold ether (195 K): mp 322 K dec; yield, 45% of theory. Anal. Calcd for  $C_{18}H_{20}CoBF_4$ : C, 56.64; H, 5.24; F, 19.90. Found: C, 56.39; H, 4.96; F, 20.08.

 $(n^{6}-1.4-\text{Dihydroxybenzene})(1-n^{1}.4-6-n^{3}-\text{cyclooctenediyl})$ cobalt Tetrafluoroborate (18s). 1 (2 g, 7.2 mmol) and 1 g (9.1 mmol) of hydroquinone were dissolved in 40 mL of diethyl ether.  $HBF_4$ ·Et<sub>2</sub>O (1.3 mL, 9.5 mmol) was added dropwise to the reaction solution with vigorous stirring at room temperature. After being stirred for 1 h, the reaction solution was removed from the orange residue. The orange solid was dissolved in methanol and stirred for 1 h. After filtration of the orange solution most of the solvent was removed under vacuum and ether was added. An orange solid precipitated from the solution kept at 243 K overnight: yield, 1.0 g (2.7 mmol) (30% of theory); mp 311 K dec. <sup>1</sup>H NMR (acetonitrile-d<sub>3</sub>): -0.10 (m, 2 H), 0.60-1.19 (m, 2 H), 1.50-2.64 (m), 3.41 (m, 1 H), 4.80 (m, 1 H), 5.36 (m, 2 H), 6.32 (br s, 2 H, OH), 6.64 ppm (s, 4 H, aromatic H, free 1,4-dihydroxybenzene). Anal. Calcd for C14H18CoBF4O2: C, 46.15; H, 4.95; F, 20.88. Found: C, 46.39; H, 5.08; F, 21.04.

 $(\eta^{6}$ -Hexamethylbenzene) $(\eta^{2},\eta^{2}$ -cyclooctadiene-1,5)rhodium Tetrafluoroborate<sup>1d</sup> (20b) from  $(\eta^{3}$ -Cyclooctenyl) $(\eta^{2},\eta^{2}$ cyclooctadiene-1,5)rhodium<sup>17</sup> (19). 19 (0.3 g, 0.9 mmol) and 0.3 g (1.85 mmol) of hexamethylbenzene were dissolved in 30 mL diethyl ether. After addition of 0.13 mL (0.9 mmol) of HBF<sub>4</sub>-Et<sub>2</sub>O the solution was stirred for 1 h. The reaction solution was removed and redissolved in CH<sub>2</sub>Cl<sub>2</sub>. 20b precipitated as yellow needles on addition of ether; yield, 0.42 g (0.9 mmol).

 $(\eta^{6}-1,4-\text{Dihydroxybenzene})(\eta^{2},\eta^{2}-\text{cyclooctadiene-1,5})$ rhodium Tetrafluoroborate (20s) from ( $\eta^{3}$ -Cyclooctenyl)( $\eta^{2},\eta^{2}$ -cyclooctadiene-1,5)rhodium (19). 20s was prepared as described for 20b: yield, 78% of theory; mp 463 K dec. <sup>1</sup>H NMR (CD<sub>2</sub>Cl<sub>2</sub>): 7.55 (s, 2 H), 6.59 (s, 4 H), 4.62 (m, 4 H), 2.59-2.0 ppm (m, 8 H). Anal. Calcd for C<sub>14</sub>H<sub>10</sub>RhBF<sub>4</sub>O<sub>2</sub>: C, 41.18; H, 4.41; F, 18.63. Found: C, 41.15; H, 4.27; F, 18.60. IR (KBr): 3350 (vs, OH-), 1550, 1505 (s, aromatic C=C), 1225 (s, C--O), 1100-950 cm<sup>-1</sup> (vs, BF<sub>4</sub><sup>-</sup>). Tris(acetonitrile)(1- $\eta^{1},4-6-\eta^{3}$ -cyclooctenediyl)cobalt(III)]

**Tris**(acetonitrile) $(1-\eta^{1},4-6-\eta^{3}$ -cyclooctenediyl)cobalt(III)] **Tetrafluoroborate** (21). 18a (4.4 g, 13.3 mmol) was dissolved in 50 mL of acetonitrile and the mixture stirred at room temperature for 1 h. The deep brown solution was filtered and most of the solvent removed under vacuum. After addition of ether the solution was filtered and stored at 243 K overnight. 21 precipitated from the solution as brown needles: yield, 5.0 g (13.3 mmol); mp 367 K. <sup>1</sup>H NMR (acetonitrile- $d_3$ ): -0.06 (m, 2 H), 0.59-1.18 (m, 2 H), 1.50-2.61 (m), 3.40 (m, 1 H), 4.80 (m, 1 H), 5.36 ppm (m, 2 H). Anal. Calcd for  $C_{14}H_{21}CoBF_{4}N_{3}$ : C, 44.56; H, 5.57; N, 11.14. Found: C, 44.53; H, 5.54; N, 11.26. IR (KBr): 1060 (s, BF<sub>4</sub><sup>-</sup>), 2280-2360 cm<sup>-1</sup> (vw, -CN).

 $(\eta^5$ -Cyclopentadienyl) $(1-\eta^1,4-6-\eta^3$ -cyclooctenediyl)cobalt (22). 21 (1 g, 2.7 mmol) and 0.3 g (3.4 mmol) of NaCp were suspended in 50 mL of ether and the mixture stirred at room temperature overnight. The solution was filtered, and the solvent was removed under vacuum. The red residue was dissolved in pentane and filtered. Red crystals precipitated from the solution kept at 195 K overnight: yield, 0.5 g (2.2 mmol) (81% of theory); mp 382 K. Mass spectrum: m/2 232 (56%, [M]<sup>+</sup>), 230 (43%,  $[C_{13}H_{15}Co]^+)$ , 202 (76%,  $[C_{11}H_{11}Co]^+)$ , 124 (100%,  $[C_5H_5Co]^+)$ , 59 (30%,  $[Co]^+$ ). Anal. Calcd for  $C_{13}H_{17}Co$ : C, 67.24; H, 7.38; Co, 25.38. Found: C, 67.34; H, 7.29; Co, 25.24.

(Acetylacetonato)( $1-\eta^1$ ,  $4-6-\eta^3$ -cyclooctenediyl)cobalt (23). 6 (1 g, 2.7 mmol) and 0.4 g (3.3 mmol) of sodium acetylacetonate were dissolved in 30 mL of tetrahydrofuran and the mixture stirred at room temperature overnight. After addition of 30 mL of pentane the solution was filtered off and the solvent was removed under vacuum; this was accompanied by a color change from red to green. The green residue was recrystallized from pentane at 243 K to give 0.6 g (2.3 mmol) (85% of theory) of black crystals, mp 385 K dec. Mass spectrum: m/z 266 (20%, [M]<sup>+</sup>), 158 (100%, [C<sub>5</sub>H<sub>7</sub>CoO<sub>2</sub>]<sup>+</sup>), 59 (10%, [Co]<sup>+</sup>). Anal. Calcd for C<sub>13</sub>H<sub>19</sub>CoO<sub>2</sub>: C, 58.65; H, 7.19; Co, 22.14. Found: C, 58.54; H, 7.17; Co, 22.02.

 $(\eta^5$ -Fluorenyl) $(1-\eta^1,4-6-\eta^3$ -cyclooctenediyl)cobalt (24). 21 (1.5 g, 4.0 mmol) was suspended in 50 mL of diethyl ether. After addition of 1.0 g (5.3 mmol) of sodium fluorenyl<sup>13</sup> the reaction

solution was stirred at room temperature overnight. After filtration the solvent was removed under vacuum. The residue was redissolved in pentane and filtered. Crystallization at 195 K gave 24 as violet crystals: yield, 0.9 g (2.7 mmol) (68% of theory); mp 385 K. Mass spectrum: m/z 332 (25%, [M]<sup>+</sup>), 225 (20%, [C<sub>13</sub>H<sub>10</sub>Co]<sup>+</sup>), 224 (30%, [C<sub>13</sub>H<sub>9</sub>Co]<sup>+</sup>), 165 (100%, [C<sub>13</sub>H<sub>9</sub>]<sup>+</sup>), 59 (7%, [Co]<sup>+</sup>). Anal. Calcd for C<sub>21</sub>H<sub>21</sub>Co: C, 75.90; H, 6.33; Co, 17.77. Found: C, 75.85; H, 6.60; Co, 17.61.

 $(\eta^5$ -9-Carbethoxyfluorenyl) $(1-\eta^1, 4-6-\eta^3$ -cyclooctenediyl)cobalt (25). 25 was prepared as described for 24: yield, 68% of theory; mp 379 K. Mass spectrum: m/z 404 (40%, [M]<sup>+</sup>), 298 (20%,  $[C_{16}H_{15}CoO_2]^+$ ), 297 (50%,  $[C_{16}H_{14}CoO_2]^+$ ), 252 (40%,  $[C_{14}H_9CoO]^+$ ), 224 (35%,  $[C_{13}H_9Co]^+$ ), 165 (100%,  $[C_{13}H_9]^+$ ), 59 (25%,  $[Co]^+$ ). Anal. Calcd for  $C_{24}H_{25}CoO_2$ : C, 71.29; H, 6.19; Co, 14.60. Found: C, 71.10; H, 6.05; Co, 14.72.

 $(1-\eta^1,4-6-\eta^3$ -Cyclooctenediyl) (hexafluoroacetylacetonato)cobalt (26). 6 (1.0 g, 2.7 mmol) and 0.7 g (3.0 mmol) of sodium hexafluoroacetylacetonate were dissolved in 30 mL of tetrahydrofuran and the mixture stirred at room temperature overnight. After removal of the solvent the red solid was sublimed off under vacuum at 313 K to give 0.9 g (2.4 mmol) (89% of theory) of 26 as red crystals, mp 347-350 K. Mass spectrum: m/z 374 (62%, [M]<sup>+</sup>), 266 (25%, [C<sub>5</sub>HCoF<sub>6</sub>O<sub>2</sub>]<sup>+</sup>), 216 (60%, [C<sub>4</sub>HCoF<sub>4</sub>O<sub>2</sub>]<sup>+</sup>), 79 (100%), 59 (38%, [Co]<sup>+</sup>). Anal. Calcd for C<sub>13</sub>H<sub>13</sub>CoF<sub>6</sub>O<sub>2</sub>: C, 41.71; H, 3.48; F, 30.48. Found: C, 41.79; H, 3.60; F, 30.58.

 $(\eta^5$ -Pentadienyl) $(1-\eta^1, 4-6-\eta^3$ -cyclooctenediyl)cobalt (30). 23 (1 g, 3.8 mmol) was dissolved in tetrahydrofuran. After addition of 5.0 mmol of pentadienyllithium in tetrahydrofuran the reaction solution was stirred at room temperature overnight. The solution was filtered, and the solvent was removed under vacuum. Crystallization from pentane gave 0.6 g (2.6 mmol) (68% of theory) of 30: mp 368 K; mass spectrum: m/z 234 (35%, [M]<sup>+</sup>), 164 (63%), 138 (60%), 137 (53%), 124 (100%, [C<sub>5</sub>H<sub>5</sub>Co]<sup>+</sup>), 59 (34%, [Co]<sup>+</sup>). Anal. Calcd for C<sub>13</sub>H<sub>19</sub>Co: C, 66.67; H, 8.12; Co, 25.21. Found: C, 66.80; H, 8.38; Co, 24.99.

**Catalytic Measurements.** All measurements were made in a continuous-flow reactor under stationary conditions. The evaluation was made by on-line process chromatography. Concentrations: catalyst, 4.3 mmol/L; propyne, 6.6 mol/L; propionitrile, 3.9 mol/L; toluene, 345 g/L. Pressure: 35-40 bar. Temperature: the temperature for 65% propyne conversion was determined. If 65% propyne conversion was not attained, the temperature for maximum propyne conversion was determined.

Acknowledgment. We thank Dr. Henneberg and his co-workers for the mass spectra and R. Galonska, S. Hagenbach, W. Hofstadt, and E. Rickers for technical assistance.

Registry No. 1, 34829-55-5; 2a, 120967-09-1; 2b, 120967-10-4; 2c, 120967-11-5; 2d (isomer A), 120967-12-6; 2d (isomer B), 121053-57-4; 2e, 120967-13-7; 2f, 120967-14-8; 2g, 120967-15-9; 2h, 120967-16-0; 2i, 120967-17-1; 2j, 120967-18-2; 2k, 120967-19-3; 2m, 120967-20-6; 2n, 120967-21-7; 2p, 120967-22-8; 2q, 120967-49-9; 5a, 120967-24-0; 5b, 120967-25-1; 5c, 120967-27-3; 5e, 120967-29-5; 5h, 120967-31-9; 6a, 120967-33-1; 6b, 120967-35-3; 7a, 120989-90-4; 7b, 120967-48-8; 8a, 120967-37-5; 8b, 120967-39-7; 8c, 120967-41-1; 9, 12154-10-8; 10a, 120967-43-3; 10b, 120967-45-5; 10c, 120967-47-7; 11a, 120967-78-4; 11b, 120967-52-4; 12a, 120967-54-6; 12b, 120967-82-0; 12c, 120967-53-5; 13, 120967-58-0; 14, 120967-55-7; 15, 120967-56-8; 16, 120967-51-3; 17, 120967-50-2; 18a, 120967-60-4; 18b, 120967-62-6; 18c, 120967-64-8; 18e, 120967-66-0; 18r, 120989-92-6; 18s, 120967-68-2; 19, 31798-33-1; 20b, 36644-49-2; 20s, 120967-70-6; 21, 120967-72-8; 22, 120967-73-9; 23, 120967-79-5; 24, 120989-93-7; 25, 120989-94-8; 26, 120967-80-8; 27, 12184-35-9; 28, 120967-77-3; 29 (lig = THF), 120967-75-1; 29 (lig = DMF), 120967-76-2; 30, 120967-74-0; [Cp<sub>2</sub>Co]BF<sub>4</sub>, 52314-53-1; benzene, 71-43-2; hexamethylbenzene, 87-85-4; mesitylene, 108-67-8; pseudocumene, 95-63-6; biphenyl, 92-52-4; diphenylmethane, 101-81-5; 9,10-dihydroanthracene, 613-31-0; anisole, 100-66-3; p-anisidine, 104-94-9; fluorobenzene, 462-06-6; aniline, 62-53-3; p-phenylenediamine, 106-50-3; cyclooctadiene, 111-78-4; 1,3cyclohexadiene, 592-57-4; cyclopentadiene, 542-92-7; naphthalene, 91-20-3; hydroquinone, 123-31-9; (9-carbethoxyfluorenyl)lithium, 120967-81-9; propyne, 74-99-7; propionitrile, 107-12-0; 2-ethyl-3.6-dimethylpyridine, 40946-38-1; 2-ethyl-4,6-dimethylpyridine, 1124-35-2; 1,4-dimethoxybenzene, 150-78-7; methyl p-methoxybenzoate, 121-98-2.

Supplementary Material Available: Molecular structures and tables of crystal data and data collection, hydrogen atom positions, anisotropic thermal parameters, and bond distances and angles for 22 and 23 (11 pages); listings of observed and calculated thermal parameters and standard deviation for 22 and 23 (23 pages). Ordering information is given on any current masthead page.