formation for methylsilylene and dimethylsilylene. For CH3SiH the calculated value at 298 K is 49.2 kcal/mol. Reactions 4-7 predict heats of formation of 32.8, 32.6, 33.1, and 32.0 kcal/mol, respectively, for dimethylsilylene. The agreement among these four reactions is encouraging, particularly since all but reaction 6 make use of the calculated value for methylsilylene. It is estimated that the average of these four values (32.6 kcal/mol) is accurate to 3-4 kcal/mol. The implications of these results are discussed in light of recent experimental results in the accompanying papers by Ring, O'Neal, and co-workers'2 and $Walsh.¹³$

Acknowledgment. This work was supported in part by grants from the National Science Foundation (CHE86-40771) and the Air Force Office of Scientific Research (87-0049). The computer time made available by the North Dakota State University Computer Center is gratefully acknowledged.

Registry No. SiH₂, 13825-90-6; CH₃SiH, 55544-30-4; (CH₃)₂Si, 6376-86-9; SiH₄, 7803-62-5; CH₃SiH₃, 992-94-9; (CH₃)₂SiH₂, **11** 11-74-6.

(13) Walsh, R. Organometallics, third of four papers in this issue.

Stoichiometric and Catalytic Ring Opening of Hexaalkylcyclodisilazanes by Organoalkali Reagents

Dietmar Seyferth,* Joanne M. Schwark, and Regina M. Stewart

Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02 139

Received January 1 1, 1989

The action of organoalkali reagents (RLi, $RLi/Me₃CON$ a, $RLi/Me₃COK$) on cyclo-($Me₂SiNMe)₂$ and $\text{cyclo-}(M_{e_2}S_iNPr^i)_{2}$ results in ring opening to give alkali-metal amides of the type RMe₂SiNMeSiMe₂NMeM $(M = L_i, Na, K)$ which react with chlorosilanes, RM e₂SiCl, to give the expected linear trisilazanes. Relatively unhindered lithium amides also open the cyclo- $(Me₂SiNMe)₂$ ring. The use of a catalytic amount of RLi or RLi/Me₃CONa (but not of RLi/Me₃COK) results in ring-opening polymerization of cyclo-(Me₂SiNMe)₂ but not of the more hindered cyclo- $(Me_2SiNPr^i)_2$.

Introduction

Stoichiometric and catalytic ring opening of cyclotrisiloxanes by the action of strong nucleophilic reagents $(OH^-, OR^-, OSiMe_3^-$, RLi, etc.) is well-known,¹ and the catalytic processes are useful in the preparation of linear polysiloxanes. Applied to cyclopolysilazanes, cyclo- $(R¹R²SiNR³)_n$, such processes might be expected to result in formation of linear polysilazanes. However, none have been reported thus far.² Our interest in polysilazanes as precursors for silicon nitride and silicon carbonitride3 led us to investigate the possibility of organoalkali reagent catalyzed ring-opening polymerization of cyclic polysilazanes.

Results and Discussion

In the cyclopolysiloxane series, cyclo- $(R_2SiO)_n$, the four-membered ring is known only when R is an extremely bulky organic group,⁴ and for the $R = CH_3$ series the cyclotrisiloxane is the smallest ring known. Hexamethylcyclotrisiloxane has enhanced reactivity, compared with the larger cyclics, and is readily cleaved by strong nucleophiles.' In the cyclopolysilazane series the four-membered cyclodisilazane ring system is very stable, and many examples of $Si₂N₂$ rings have been reported.⁵

Before investigating the possibility *of* the catalytic ring-opening polymerization of cyclodisilazanes, we have studied the stoichiometric opening of the cyclodisilazane ring by organoalkali reagents. The cyclodisilazanes chosen for study were 1 and **2.** Both compounds are stable,

distillable liquids. Hexamethylcyclodisilazane was found

0276-7333/89/2308-1980\$01.50/0 *0* 1989 American Chemical Society

⁽¹⁾ Noll, W. Chemistry and Technology *of* **Silcones; Academic Press: New York, 1968; Chapter 5.**

⁽²⁾ For a discussion of previous attempts to prepare linear poly-
 silazanes containing R₂SiNR or R₂SiNH repeat units see: Aylett, B. J. *Organomet. Chem. Rev.* **1968**, 3, **151**.

⁽³⁾ Seyferth, D. In Inorganic and Organometallic Polymers; Zeldin, M., Wynne, K. J., **Allcock, H. R., Eds.; ACS Symposium Series 360, American Chemical Society: Washington, DC, 1988; pp 143-155 and references cited therein.**

⁽⁴⁾ Michalczyk, M. J.; **Fink, M.** J.; **Haller, K. J.; West, R.; Michl,** J. **Organometallics 1986, 5, 531.**

⁽⁵⁾ For reviews on cyclodisilazanes see: (a) Fink, W. *Angew Chem., Int.* **Ed. Engl. 1966, 5, 760. (b) Zhinkin, D. Ya.; Varezhkin, Yu. M.; Morgunova, M. M.** *Russ. Chem. Reo. (Engl. Transl.)* **1980,49,1149. (c) Varezhkin, Yu. M.; Zhinkin, D. Ye; Morgunova, M. M.** *Russ. Chem. Reo.* **(Engl. Transl.) 1981,50, 1158.** (d) **Klingebiel. U. Nachr.** *Chem.* **Tech.** *Lab.* **1987, 35, 1042.**

Table I. Stoichiometric Ring Opening of cyclo- $(Me_2SiNMe)_2$ and (cyclo-Me₂SiNPrⁱ)₂ by Organoalkali Reagents

	chloro- silane	
RLi	quench	product (% yield)
		I. Reactions of cyclo- $(Me_2SiNMe)_2$
MeLi	Me ₃ SiCl	Me ₃ SiNMeSiMe ₂ NMeSiMe ₃ (70)
MeLi	Me ₂ HSiCl	Me ₃ SiNMeSiMe ₂ NMeSiMe ₂ H (83)
MeLi	Me ₂ SiCl ₂	$Me3SiNMeSiMe2NMeSiMe2Cl (57)$
n-BuLi	Me ₂ SiCl	n-BuMe ₂ SiNMeSiMe ₂ NMeSiMe ₃ (81)
n-BuLi	Me ₂ HSiCl	n-BuMe ₂ SiNMeSiMe ₂ NMeSiMe ₂ H (86)
t-BuLi	Me ₃ SiCl	t -BuMe ₂ SiNMeSiMe ₂ NMeSiMe ₃ (87)
t-BuLi	Me ₂ HSiCl	t-BuMe ₂ SiNMeSiMe ₂ NMeSiMe ₂ H (80)
MeLi/ Me ₃ CONa	Me ₃ SiCl	$Me3SiNMeSiMe2NMeSiMe3$ (70)
MeLi/ Me ₃ CONa	Me,ViSiCl	Me ₃ SiNMeSiMe ₂ NMeSiMeVi (60)
$MeLi/Me_3COK$	Me-SiCl	$Me3SiNMeSiMe2NMeSiMe3$ (60)
II. Reactions of cyclo- $(Me_2SiNPr^i)_2$		
MeLi	Me-HSiCl	$Me3SiNPriSiMe2NPriSiMe2H (64)$
<i>n</i> -BuLi	Me _o HSiCl	n-BuMe ₂ SiNPr ⁱ SiMe ₂ NPr ⁱ SiMe ₂ H (67)

in a gas-phase electron diffraction study to contain a planar $Si₂N₂$ ring, with an SiNSi angle of 98 $^{\circ}$ and an Si-N bond distance of 1.74 **A,6** very similar to SiNSi bond angles and Si-N bond lengths of solid cyclodisilazanes as determined by X-ray diffraction.⁷ It has been noted^{5c} that the cyclodisilazane ring is quite strained compared with the six-membered cyclotrisilazane and the eight-membered cyclotetrasilazane rings. In view of this, one might expect that attack at a silicon atom of these cyclodisilazanes by a strongly nucleophilic organoalkali reagent will result in opening of the strained $Si₂N₂$ ring.

There has been one previous report of the cleavage of a cyclodisilazane by an organolithium reagent (eq 1).⁸ In

our study of such ring-opening reactions we found such reactions of 1 and **2** to be fairly general in terms of the alkyllithium reagent that may be used (MeLi, n-BuLi, t-BuLi) and to proceed in high yield when carried out in THF solution (Table I and Scheme I). In all reactions, the cyclodisilazane was added to a two- to fourfold excess of the respective organolithium reagent solution which had been cooled to a suitably low temperature (to minimize reaction of RLi with the solvent). The final reaction temperature depended on the lithium reagent used. Reactions with the reactive *n-* and tert-butyllithium could be carried out at 0 °C, but reactions with the less reactive methyllithium sometimes were carried out at room temperature or by heating briefly at reflux. The final quench

with a chlorosilane was carried out at room temperature or at reflux. In contrast to the facile ring opening of cy $clo-(Me₂SiO)₃$ by organolithium reagents and other strong nucleophiles,¹ cyclo-(Me₂SiNMe)₃ did not react with *n*butyllithium in THF.

If cyclodisilazane ring opening is to be a useful oligomerization/polymerization procedure, the propagation steps involving further cyclodisilazane cleavage by lithium amide **3** and by higher oligomers and then polymers, i.e., by $R'[Me₂SiN(R)SiMe₂N(R)]_nLi$ in the case of cyclo- $(Me₂SiNMe)₂$, must occur at a reasonable rate. Such ring-opening reactions were examined first in stoichiometric reactions (Scheme 11). They were found to proceed in good yield $(R, R' = Me, 70\%; R = Me, R' = Me₃Si,$ 83%) when the lithium amide was not too hindered and when the reaction mixture was heated at reflux. More hindered lithium amides such as Pr^i_2NLi and $(\text{Me}_3\text{Si})_2\text{NLi}$ did not react with hexamethylcyclodisilazane. More to the point, a reaction of the initially formed methyllithium ring-opening product Me₃SiNMeSiMe₂NMeLi with a second molar equivalent of **hexamethylcyclodisilazane,** i.e., the first propagation step, gave the expected **Me3SiNMeSiMe2NMeSiMezNMeSiMezNMeLi** and addition of Me₃SiCl to the reaction mixture resulted in formation of Me3SiNMeSiMezNMeSiMe3 **(4** % yield) and **Me3Si(NMeSiMe2)3NMeSiMe3** (25% yield), as well as higher, nonvolatile oligomers. Thus we could expect such polymerization to occur, at least with cyclo- $(Me_2SiNMe)_2$.

The initial ring-opening products, the lithium amides **3,** appeared to be stable in solution, even in refluxing THF, at least for limited periods of time. **A** potential decomposition process of the type described by Fink⁹ (eq 2) was not observed. Apparently higher temperatures are required for such a cycloreversion process.

$$
\frac{\text{(Me}_3\text{Si})_2\text{NSiMe}_2\text{N}(\text{SiMe}_3)\text{Li} \frac{\text{xylene}}{\text{reflux 8 h}}}{\text{LiN}(\text{SiMe}_3)_2 + \text{cyclo} \cdot (\text{Me}_2\text{SiN} \text{SiMe}_3)_2 \tag{2}}
$$

Lithium amide intermediates of type **3** could be observed by 29Si NMR spectroscopy. **A** solution of MesSiNMeSiMezNMeLi in which most of the THF had been removed by trap-to-trap distillation in vacuo and replaced by C_6D_6 showed the ²⁹Si resonance (DEPT technique¹⁰) for the Me₃SiN silicon atom at δ_{Si} 2.53 and the NSiMe₂NLi resonance at δ_{Si} -7.74. By comparison, the Me3SiC1 quench product of this lithium amide, \rm{Me}_3 SiN \rm{MeSiMe}_2 N \rm{MeSiMe}_3 , showed two $^{29}\rm{Si}$ resonances at δ_{Si} 5.35 (Me₃Si) and -0.26 (SiMe₂). (Hexamethylcyclodisilazane in C_6D_6 shows a single ²⁹Si resonance at 8.01 ppm.) The 29Si NMR spectra of this lithium amide and of n -BuMe₂SiNMeSiMe₂NMeLi $[\delta_{\rm Si}$ 3.96 (n -BuMe₂SiN) and -9.61 (NSiMe₂N)] were devoid of other resonances,

⁽⁶⁾ Gergo, E.; Schultz, G.; Hargittai, T. *J. Organomet. Chem.* **1985,** *292,* **343.**

^{(7) (}a) Parkanyi, L.; Argay, G.; Hencsei, P.; Nagy, J. J. Organomet.
Chem. 1976, 116, 299. (b) Parkanyi, L.; Szollosy, A.; Bihatsi, L.; Hencsei, P. J. Organomet. Chem. 1983, 251, 159. (c) Parkanyi, L.; Szollosy, A.; Bihatai, L.; Hencsei, P.; Nagy, J. *J.* Organomet. Chem. **1983,256,235.** (d) Parkanyi, L.; Bihatsi, L.; Hencsei, P.; Szollosy, A. *J.* Organomet. Chem. **1987,** *321,* **7.**

⁽⁸⁾ (a) Bush, R. P.; Lloyd, N. C.; Pearce, C. A. *J.* Chem. SOC., Chem. *Commun.* **1967,1269.** (b) Bush, R. P.; Pearce, C. A. *J.* Chem. **SOC.** *A* **1969, 808.**

⁽⁹⁾ Fink, W. Chem. Ber. **1963,96, 1071. (10)** Williams, E. A.; Cargioli, J. D. In *Annual Reports on NMR* Spectroscopy; Webb, G. A., Ed.; Academic Press: New York, **1979:** Vol. **9, pp 221-318; 1983;** Vol. **15, pp 235-289.**

Scheme **I11**

 $RLi + cyclo-(Me₂SiNMe)₂ \rightarrow RMe₂SiNMeSiMe₂NMeLi$ Initiation

Propagation

 $RMe₂SiNMeSiMe₂NMeLi + cyclo-(Me₂SiNMe)₂$ \rightarrow RMezSiNMe(SiMe2NMe)3Li $cyclo-(Me₂SiNMe)₂$ etc. RMe₂SiNMe(SiMe₂NMe)₅Li

$$
RMe2SiNMe(SiMe2NMe)nLi
$$

""living polymer"

Termination

$RMe₂SiNMe(SiMe₂NMe)_nLi + Me₂R'SiCl \rightarrow$ **RMe2SiNMe(SiMe2NMe),SiMe2R'**

an indication that a clean ring opening had taken place.

Organosodium and -potassium reagents in general are more reactive than organolithium reagents, so it was of interest to study the action of organosodium and -potassium nucleophiles on hexamethylcyclodisilazane. The sodium reagents chosen were of the Lochmann base type,¹¹ $RLi/Me₃CONa (R = n-Bu, Me)$. These react readily with hexamethylcyclodisilazane to give $RMe₂SimMeSiMe₂$ -NMeNa below room temperature. Subsequent reaction of these sodium amide intermediates with a chlorosilane gave good yields of linear trisilazanes.

Organopotassium reagents of the MeLi/Me₃COK type¹¹ also reacted with hexamethylcyclodisilazane under mild conditions (-15 °C) . Addition of Me₃SiCl to such a reaction mixture gave $Me₃SiNMeSiMe₂NMeSiMe₃$ in 60% yield, in addition to some nonvolatile material.

Since stoichiometric ring opening of cyclo- $(Me_2SiNMe)_2$ by RLi, RNa, and RK could be readily effected and since such cyclodisilazane ring opening also occurred with $Me₂NLi$ and $Me₃Si(Me)NLi$, we undertook a study of organoalkali-catalyzed ring-opening polymerization of **1** and **2.** The expected chemistry is shown in Scheme 111. If, **as** anticipated, the rate of initiation is much greater than the rates of the propagation steps, then the molecular weight of the product will be determined by the monomer/initiator molar ratio (in the absence of side reactions).

Catalytic ring opening polymerization of hexamethylcyclodisilazane by n -butyl- and methyllithium and n -butyland methylsodium did indeed occur. The required reaction temperatures reflected the reactivity of these organoalkali reagents in the stoichiometric reactions. Thus, the RLi-initiated reactions were started at 0 "C, and then the reaction mixtures were heated at reflux (in THF) until no more cyclo- $(Me₂SiNMe)₂$ could be detected by GLC. In the case of the RNa-initiated polymerizations, the cyclodisilazane was added to the $RLi/Me₃CONa$ reagent at -78 °C and subsequently the reaction mixture was warmed to -15 °C and finally to room temperature. The products in general were white waxy solids. Their molecular weights, determined by cryoscopy in benzene, were in the 1000-3000 range and in most cases were not too far off from the theoretical molecular weight calculated from the monomer/catalyst molar ratio. However, cryoscopic molecular weights in that range are only approximate and no useful quantitative data are in hand. However, it is clear that ring-opening polymerization of hexamethylcyclodisilazane has been effected. Polymers of type $RMe₂SiNMe(SiMe₂NMe)_nSiMe₂R' with $n =$ about 11-35$ have been prepared.

etc

The oligomeric/polymeric products obtained must be linear species of the type shown in Scheme 111. For instance, the ¹H NMR spectrum (in CDCl₃) of the wax obtained by the action of 5 mol % n -BuLi/Me₃CONa on cyclo- $(Me_2SiNMe)_2$ (Me₃SiCl quench) showed only two resonances at δ 0.12 (SiCH₃) and 2.40 (NCH₃). The n-C₄H₉ resonances were observed only when the spectrum intensity was increased by several orders of magnitude. The $29Si NMR$ spectrum in CDCl₃ of the wax showed a single resonance at δ_{Si} -2.27. In contrast, the ²⁹Si NMR spectrum $(in CDCl₃)$ of the product obtained by the action of 10 mol % MeLi/Me₃CONa on cyclo- $(Me₂SiNMe)₂$ (Me₃SiCl quench), which was of lower molecular weight (1425-1500), showed the resonances due to the terminal $Me₃Si$ groups (5.17 ppm) , the Me₂Si next to the Me₃Si groups (-1.53 cm) ppm), and the Me2Si groups further inward (-2.25 ppm). These values should be compared with the ²⁹Si NMR spectrum of $Me₃SiNMeSiMe₂NMeSiMe₂NMeSiMe₂$ NMeSiMe, which was isolated as a pure compound and, in CDCl₃ solution, showed ²⁹Si resonances at δ_{Si} 4.97, -1.46, and -2.63).

It would appear that in the case of RK initiation of the ring-opening polymerization of **hexamethylcyclodisilazane** the propagation process (Scheme 111) is complicated by "back-biting'' of the reactive potassium amide chain terminus, a process which results in extrusion of cyclo- $(M_eSiNMe)_3$ as shown in Scheme IV in its simplest form. Presumably, only the potassium amide chain end (vs lithium or sodium amide) is reactive enough to effect such nucleophilic chain scission.

The chemistry of the organoalkali-initiated ring-opening polymerization of hexamethylcyclodisilazane does not appear to be a general process. The R_2NL stoichiometric ring opening of cyclo-(Me₂SiNMe)₂ is, as mentioned above, subject to steric hindrance. Thus, it was not surprising that attempted ring-opening polymerization of cyclo- $(Me₂SiNPr^j)₂$ by 5 mol % *n*-BuLi in THF at room temperature, then at reflux, was unsuccessful. Obviously, the initially formed $R'SiMe₂NPrⁱSiMe₂N(Prⁱ)Li$ intermediate is too hindered, so initiation is not followed by the propagation steps. Although this was not investigated, one would expect that bulky substituents on silicon also would prevent ring-opening polymerization of cyclodisilazanes by RLi.

Linear organosilicon polymers do not give ceramic residues in high yield when they are pyrolyzed if they do not contain functional substituents whose thermally induced reactions lead to extensive cross-linking during the initial stages of pyrolysis. Linear polysilazanes of the type prepared in this study do not contain such substituents, and thus it was not surprising that, as the TGA trace in Figure

⁽¹¹⁾ Lochmann, L.; Pospisil, J.; Lim, **D.** *Tetrahedron Lett.* **1966,257.**

Figure 1. Pyrolysis of a Me(SiMe₂NMe)_xSiMe₃ polymer: TGA trace (under argon at 10 $°C/min$).

1 shows, there is no ceramic residue when they are pyrolyzed. Thus, as expected, linear polysilazanes with an R2SiNR' repeat unit are not useful preceramic polymers. Trapping of the volatile pyrolysis products of a $Me₃Si [NMeSiMe₂]_xNMeSiMe₃$ polymer showed them to consist of cyclo- $(Me_2SiNMe)_2$ and cyclo- $(Me_2SiNMe)_3$, with the former predominating. The formation of these small cyclics can be rationalized either in terms (a) of a radical chain scission/back-biting process or (b) of a decomposition to give an unsaturated Me₂Si=NMe intermediate which then undergoes cycloaddition. It may be that the cyclic trimer is formed by process a and the cyclic dimer by process b.

Experimental Section

General Comments. All reactions were performed under a nitrogen atmosphere by using standard Schlenk techniques or a nitrogen-filled Vacuum Atmospheres drybox. All solvents were distilled under nitrogen from the appropriate drying agents. Chlorosilanes were purchased from Petrarch Systems, Inc. or Silar, and distilled from magnesium chips before use. Methyl- and tert-butyllithium were purchased from Aldrich. Organolithium reagents were titrated for RLi content by the Gilman double titration method. Unsolvated potassium tert-butoxide (Aldrich) and sodium tert-butoxide (Alfa) were used as received.

Gas chromatographic (GLC) analyses were performed on a Hewlett-Packard 58906 gas chromatograph equipped with a 6 ft, 0.25 in. column packed with 10% SE-30 silicone rubber gum on Chromosorb P. The internal standard method was used in yield determinations with a temperature program of $6 °C/min$ from 100 to 275 °C. Internal standards used were octane (C_8) , nonane (C_9) , and decane (C_{10}) . Preparative GLC (Gow Mac 550) thermal conductivity detector gas chromatograph, 6 ft, 0.25 in. 10% **SE-30** on Chromosorb P column) was used to collect samples for analysis and spectroscopy.

Proton NMR spectra were obtained either with a JEOL FX-9OQ, a Bruker WM-250, or a Varian XL-300 NMR spectrometer using $\mathrm{CDCl}_{3}/\mathrm{CHCl}_{3}$ as a reference at 7.24 ppm downfield from tetramethylsilane. ²⁹Si NMR spectra (fully proton decoupled) were obtained by using a Varian XL-300 operating at 59.59 MHz in CDCl₃ or C_6D_6 with 0.05 M Cr(acac)₃ as a relaxation reagent. Tetramethylsilane (at 0.00 ppm) was used **as** an external standard. As indicated in the experiments below, some ²⁹Si NMR spectra were obtained by using a DEPT pulse sequence.¹⁰

Molecular weights were determined by cryoscopy in benzene at M.I.T. or by vapor pressure osmometry by Galbraith Laboratories, Knoxville, TN. Elemental analyses were performed by the Scandinavian Microanalytical Laboratory, Herlev, Denmark.

For the polymers, the "theoretical" analytical values are those calculated on the basis of the experimental molecular weights. Since the latter were only approximate, the agreement between calculated and found analytical values was not always good.

Preparation **of** Starting Materials. (a) Dimethylbis- (methy1amino)silane. A 1-L, three-necked flask equipped with a septum, an overhead mechanical stirrer, and a cold condenser (dry ice/acetone) was flame-dried under nitrogen and charged with 85.1 g (0.66 mol) of $Me₂SiCl₂$ and 400 mL of diethyl ether and cooled to 0 "C. Gaseous methylamine (Matheson) was bubbled into the solution through a 6-in. stainless-steel needle during the course of 3 h. The reaction mixture was allowed to warm to room temperature overnight. The precipitated [MeNH₃]Cl was filtered under nitrogen and washed with two 50-mL portions of ether. The combined organic phase was distilled to remove the Et_2O . The residue was distilled (1-ft. Vigreux column) to give 48.8 g (63%) of $Me₂Si(NHMe)₂$: bp 109 °C (lit.¹²) bp 57-58 \circ C at 132 mmHg); ¹H NMR (90 MHz, CDCl₃) δ -0.07 $(s, 6 H, Me₂Si), 0.44$ (br s, 2 H, NH), 2.41 (s, 6 H, NMe).

(b) **Dimethylbis(isopropy1amino)silane.** A similar reaction in which 26.2 g (0.2 mol) of Me_2SiCl_2 was added to 52.7 g (0.89 m) mol) of isopropylamine (Aldrich, distilled from CaO) in 400 mL of Et_2O gave 28.9 g (82%) of $Me₂Si(NHPrⁱ)₂$: bp 44 °C (10 mmHg) $[$ lit.¹³ bp 47-48 °C (11 mmHg)]; ¹H NMR (90 MHz, CDCl₃) δ -0.02 $(s, 6$ H, Me₂Si), 1.02 (d, $J = 6.7$ Hz, 12 H, Me₂C), 3.20 (br m, 2) H , NCH).

(c) Hexamethylcyclodisilazane. A 1-L, three-necked flask equipped with a mechanical stirrer, a condenser topped with a gas inlet tube (connecting to an oil bubbler in a Schlenk line), and a septum was flame-dried and charged with 24.73 g (0.21 mol) of $Me₂Si(NHMe)₂$ and 62 mL of hexane. By means of a 250-mL addition funnel 277 mL of 1.51 M "halide-free" methyllithium (0.42 mol) was added at 0 "C, dropwise over 2 h. After the mixture had been stirred at 0 °C for 2 h, 26.9 g (0.21 mol) of Me_2SiCl_2 was added dropwise at 0 °C. The reaction mixture was stirred and heated at reflux for 24 h. Filtration (or centrifugation) removed the LiCl. Removal of the solvent by trap-to-trap distillation (room temperature, 70 mmHg) was followed by distillation of the product, 23.8 g (65%) of cyclo-(Me₂SiNMe)₂: bp 50 °C (50 mmHg) or 60-62 °C (70 mmHg) (lit.¹² bp 52-52.5 °C at 51 mmHg); ¹H NMR (90 MHz, CDCl₃) δ 0.12 (s, 12 H, SiMe₂), 2.42 (s, 6 H, MeN); ¹³C NMR (67.9 MHz, C₆D₆) δ _C 0.44 (q, J = 177.0 Hz, Me,Si), 26.87 **(q,** *J* = 134.9 Hz, MeN); 29Si NMR (59.59 MHz, C_6D_6 , DEPT) δ_{Si} 8.06; IR (thin film) 2955 (m), 2900 (s), 2810 (s), 1435 **(vw),** 1250 (vs), 1190 (vs), 860 (vs), 840 (sh), 785 (vs), 675 (vw) cm⁻¹.

(d) N,N'-Diisopropyltetramethylcyclodisilazane. The reaction flask was charged with 15.06 g (0.086 mol) of Me_2Si - $(NHPr^{i})_{2}$ and 250 mL of Et₂O. *n*-Butyllithium (65 mL of 2.68 M in hexane, 0.173 mol) was added. After the resulting solution had been heated at reflux for 30 min, 11.2 g (0.087 mol) of Me_2SiCl_2 was added. The reaction mixture was stirred and heated at reflux for 3 h and then was centrifuged **to** separate the LiCl. The organic layer, after removal of the Et_2O was distilled (1-ft Vigreux column) to give 16.3 g (82%) of cyclo- $(Me_2SiNPr^i)_2$: bp 48.5 °C (2.5) mmHg); ¹H NMR (90 MHz, CDCl₃) δ 0.19 (s, 12 H, Me₂Si), 1.01 $(d, J = 6.3 \text{ Hz}, 12 \text{ H}, \text{Me}_2\text{C}), 3.19 \text{ (sept, } J = 6.3 \text{ Hz}, 2 \text{ H}, \text{NCH}),$ which agrees with the literature.¹⁵

Reaction of cyclo-(Me₂SiNMe)₂ with Methyllithium. (a) Trimethylchlorosilane Quench. A 50-mL, three-necked, round-bottomed flask equipped with a condenser topped with a gas inlet/outlet tube connected to an oil bubbler in a Schlenk line, a stir-bar, a glass stopper, and a septum (henceforth, the "standard reaction apparatus") was flame-dried and charged with 30 mL of THF and 13.0 mL of 1.51 M methyllithium (LiBr complex) (19.6 mmol) in diethyl ether. This solution was heated to reflux, and 0.873 g (5.0 mmol) of cyclo- $Me₂SiNMe₂$ was added dropwise by syringe during the course of 20 min. The resulting solution was heated at reflux for 25 min, and then 5.36 g (49.3 mmol) of Me,SiCl was added. The reaction mixture was stirred and heated at reflux for 30 min. At this point, a GLC yield determination was carried out. The solvent then was removed by trap-to-trap distillation (room temperature under vacuum). The residue was extracted with 20 mL of hexane. and the extracts

¹²⁾ Breed, L. W.; Elliott, R. L. *Inorg. Chem.* 1964, 3, 1622.
13) Wannagat, U.; Schreiner, G. *Monatsh. Chem.* 1965, 96, 1916.
14) Rochow, E. G.; Lienhard, K. Z. *Anorg. Allg. Chem.* 1964, 331, 316.

⁽¹⁵⁾ Wiseman, **G. H.;** Seyferth, D.; Wheeler, D. R. Organometallics **1986, 5, 146.**

were filtered to remove LiCl. Distillation of the hexane left an oily residue from which the product was isolated by GLC (this is the "standard workup"). The GLC analysis $(C_8$ internal standard) showed the presence of one major product, identified as $Me₃SiNMeSiMe₃NMeSiMe₃$, in 70% yield. Anal. Calcd for $\rm C_{10}H_{30}N_2Si_3$: C, 45.74; H, 11.51; N, 10.69. Found: C, 45.50; H, Me,Si), 0.07 (s, 6 H, Me2Si), 2.40 (s, 6 H, MeN). 11.33; N, 10.87. ¹H NMR (90 MHz, CDCl₃): δ 0.05 (s, 18 H,

(b) Dimethylchlorosilane Quench. The same procedure, with the exception that Me₂SiHCl was the chlorosilane used, gave Me3SiNMeSiMezNMeSiMe,H in 83% yield. Anal. Calcd for $C_9H_{28}N_2Si_3$: C, 43.48; H, 11.35; N, 11.27. Found: C, 43.57; H, 11.39 ; N, 11.30 . ¹H NMR (90 MHz, CDCl₃): δ 0.06 (s, 9 H, Me₃Si), 0.07 (s, 6 H, NMe₂SiN), 0.09 (d, $J = 3.4$ Hz, 6 H, $Me₂SiH$), 2.39, 2.41 (both s, 6 H, MeN), 4.42 (sept, *J* = 3.4 Hz, MeSiH).

(c) Dimethyldichlorosilane Quench. The same procedure was used except that $Me₂SiCl₂$ (an excess) was the chlorosilane added at the end. The product $Me₃SiNMeSiMe₂NMeSiMe₂Cl$ was obtained in 57% yield. Anal. Calcd for $\mathrm{C_9H_{27}N_2ClSi_3:}$ C, 38.19; H, 9.62; N, 9.90. Found: C, 38.54; H, 9.63; N, 9.92. 'H NMR (250 MHz, CDCl₃) δ 0.069 (s, 9 H, SiMe₃), 0.15 (s, 6 H, SiMe_2), 0.46 (s, 6 H, SiMe_2Cl), 2.42 (s, 3 H, NMe), 2.49 (s, 3 H, NMe).

Reaction of this compound with an excess of CH₃NH₂ in hexane at -78 "C gave **Me3SiNMeSiMe2NMeSiMezNHMe** in 79% yield. Anal. Calcd for $C_{10}H_{31}N_3Si_3$: C, 43.26; H, 11.26; N, 15.13. Found: C, 43.43; H, 11.17; N, 15.11. ¹H NMR (250 MHz, CDCl₃): δ 0.052 (s, 6 H, SiMe,), 0.056 (s, 9 H, SiMe3), 0.100 (s, 6 H, SiMez), 2.41 $(s, 9 H, NCH₃).$

Reaction of cyclo-(Me₂SiNMe)₂ with *n*-Butyllithium. (a) Trimethylchlorosilane Quench. The standard reaction apparatus was charged with 30 mL of THF and cooled to 0 "C, and then 9.0 mL of 2.58 M n-butyllithium (23.2 mmol) in hexane was added. Subsequently, 1.28 g (7.33 mmol) of cyclo- $(\text{Me}_2\text{SiNMe})_2$ was added. The reaction mixture was stirred at 0 °C for 30 min, and then 4.29 g (39.5 mmol) of Me₃SiCl was added by syringe. The resulting reaction mixture, from which LiCl had precipitated, **was** warmed to room temperature. The standard workup followed. The product **n-BuMezSiNMeSiMezNMeSiMe3** was obtained in 81% yield. Anal. Calcd for $\rm{C_{13}H_{36}N_2Si_3:}$ C, 51.24; H, 11.91; N, 9.19. Found: C, 51.30; H, 11.90; N, 9.38. 'H NMR (90 MHz, CDCI,): 6 0.04 (s, 6 H, n-BuMe,Si), 0.06 **(s,** 9 H, Me,SiN), 0.08 (s, 6 H, NSiMe₂N), 0.68-1.42 (complex m, 9 H, n-Bu), 2.40 (s, 6 H, MeN).

(b) Dimethylchlorosilane Quench. The same procedure was used, but Me₂SiHCl was added to the end rather than Me₃SiCl. The product **n-BuMe2SiNMeSiMe2NMeSiMezH** was obtained in 86% yield. Anal. Calcd for $C_{12}H_{34}N_2Si_3$: C, 49.76; H, 11.48; N, 9.67. Found: C, 49.73; H, 11.84; N, 9.44. 'H NMR (90 MHz, CDCl₃): δ 0.04 (s, 6 H, n-BuMe₂Si), 0.07 (s, 6 H, NSiMe₂N), 0.10 $(d, J = 2.9 \text{ Hz}, 6 \text{ H}, \text{Si} Me₂H), 0.68-1.42 \text{ (complex m, 9 H, n-Bu)},$ 2.39, 2.40 (both s, 6 H, MeN), 4.43 (complex m, 1 H, Me₂SiH).

Reaction **of** cyclo-(MezSiNMe)z with *tert* -Butyllithium. (a) Trimethylchlorosilane Quench. The standard reaction apparatus was charged with 30 mL of THF and cooled to -78 °C (dry ice/Me₂CO), and 10.0 mL of a 2.10 M solution of tert-butyllithium (21.0 mmol) in pentane was added. By syringe, 1.32 g (7.56 mmol) of cyclo- $(Me₂SiNMe)₂$ was added. The mixture was stirred at -78 °C for 30 min, and then the -78 °C bath was replaced with an ice bath. After the mixture had been stirred at 0 °C for 30 min, 4.29 g (39.5 mmol) of Me₃SiCl was added. The reaction mixture was warmed to room temperature. The standard
workup showed that the expected product tthat the expected product t-BuMezSiNMeSiMezNMeSiMe3 had been formed in 87 % yield. Anal. Calcd for $C_{13}H_{36}N_2Si_3$: C, 51.24; H, 11.91; N, 9.19. Found: C, 51.31; H, 11.91; N, 9.09. ¹H NMR (90 MHz, CDCl₃): δ 0.05 (s, 15 H, t-Bu $Me₂Si$ and $Me₃Si$), 0.10 (s, 6 H, NSi $Me₂N$), 0.86 (s, 9 H, t-Bu), 2.41, 2.44 (both s, 6 H, MeN).

(b) Dimethylchlorosilane Quench. The same procedure, except that Me₂SiHCl was used instead of Me₃SiCl, gave t-BuMe2SiNMeSiMe2NMeSiMe2H in 80% yield. Anal. Calcd for $C_{12}H_{34}N_2Si_3$: C, 49.76; H, 11.48; N, 9.67. Found: C, 49.60; H, 11.83; N, 9.41. ¹H NMR (90 MHz, CDCl₃): δ 0.10 (d, $J = 3.2$ Hz, 6 H, Me_2SiH), 0.10 (s, 6 H, t-Bu Me_2Si), 0.19 (s, 6 H, NSi Me_2N), 0.91 (s, $\bar{9}$ H, t -Bu), 2.32, 2.41 (both s, 6 H, MeN), 4.67 (sept, $J = 3.2$ Hz, 1 H, Me₂SiH).

Reaction of cyclo-(Me₂SiNMe)₂ with Lithium Dimethylamide. The standard reaction apparatus was charged with 20 mL of THF and cooled to -78 °C (dry ice/Me₂CO). Dimethylamine (3 mL liquid, 2.04 g, 0.045 mol) at -78 °C was cannulated into the reaction flask. By syringe, 3.70 mL of a 2.32 M solution of n-BuLi (8.60 mmol) in hexane was added to this solution. The resulting Me,NLi solution was warmed to room temperature and then was heated to reflux, and 0.923 g (5.29 mmol) of cyclo- $(Me₂SiNMe)₂$ was added by syringe, dropwise during the course of 20 min. The reaction mixture was cooled to room temperature, and 1.03 g (9.47 mmol) of Me₃SiCl was added. The standard workup followed. The product Me₂NSiMe₂NMeSiMe₂NMeSiMe₃ was obtained in 70% yield. Anal. Calcd for C₁₁H₃₃N₃Si₃: C, 45.30; H, 11.40; N, 14.41. Found: C, 45.02; H, 11.60; N, 14.36. ¹H NMR (250 MHz, CDCl,): *6* 0.17 **(s,** 12 H, NSiMe2N), 0.20 **(s,** 9 H, Me3Si), 2.40, 2.42 (both s, 6 H, SiNMeSi), 2.44 (s, 6 H, Me₂N).

Reaction of cyclo-(Me₂SiNMe)₂ with Lithium N-**Methyl(trimethylsily1)amide.** The standard reaction apparatus was charged with 20 mL of THF and 0.786 g (7.61 mmol) of $Me₃SiNHMe$ and cooled to -78 °C. By syringe, 3.28 mL of a 2.32 M solution of n-BuLi in hexane **(5.15** mmol) was added. After the mixture had been stirred for 10 min at -78 °C, it was warmed to room temperature and then heated to reflux. Hexamethylcyclodisilazane (0.9 g, 5.15 mmol) was added dropwise by syringe. After the mixture had been stirred for 30 min at reflux, 1.03 g (9.47 mmol) of Me₃SiCl was added. The standard workup followed. The product **Me3SiNMeSiMezNMeSiMezNMeSiMe3** was obtained in 83% yield. Anal. Calcd for $C_{13}H_{39}N_3Si_4$: C, 44.63; H, 11.24; N, 12.01. Found: C, 44.84; H, 11.18; N, 12.13. 'H NMR (90 MHz, C₆D₆): δ 0.19 (s, 18 H, Me₃Si), 0.25 (s, 12 H, NSiMe₂N), 2.44 (s, 9 H, MeN).
Reaction

of cyclo-(Me₂SiNMe)₂ with Me3SiNMeSiMezNMeLi. The standard reaction apparatus was charged with 25 mL of THF and cooled to 0 "C. By syringe, 3.0 mL of a 1.35 M solution of methyllithium (4.05 mmol) in $Et₂O$ was added. Subsequently, 0.711 g (4.08 mmol) of cyclo- $(Me₂SiNMe)₂$ was added to the MeLi solution, dropwise over 10 min. The resulting solution was stirred for 20 min at 0° C and then for 30 min at reflux. Another portion (0.60 g, 3.44 mmol) of cyclo-(Me₂SiNMe)₂ then was added. After this solution had been heated for 30 min at reflux, it was cooled to room temperature and 3.0 mL (23.7 mmol) of Me₃SiCl was added. After 30 min at room temperature the standard workup was done. GLC analysis $(C_9$ internal standard) showed the presence of two volatile products: $Me₃SiNMeSiMe₂NMeSiMe₃ (14%)$, identified by its ¹H NMR spectrum (see above), and the pentasilazane, **Me3SiNMeSiMezNMeSiMezNMeSiMe2NMeSiMe3** (25 %). The latter was isolated by GLC and characterized. Anal. Calcd for $C_{16}H_{48}N_4Si_5$: C, 43.98; H, 11.07; N, 12.82. Found: C, 43.84; H, 11.00; N, 13.08. ¹H NMR (250 MHz, CDCl₃): δ 0.05 (s, 18 H, Me,Si), 0.07 (9, 18 H, Me2Si), 2.4 **(s,** 12 H, MeN). %i NMR (59.59 MHz, CDC1,): bsi -2.63 (s,1 Si, SiMez central), -1.46 **(s,** 2 Si, SiMez first from end), 4.97 (s, 2 Si, Me₃Si).

Reaction of cyclo-(Me₂SiNPrⁱ)₂ with Methyllithium. The standard reaction apparatus was charged with 25 mL of THF and 2.50 mL of a 1.66 M solution of MeLi in Et_2O (4.15 mmol). This solution was heated to reflux, and 0.430 g (1.87 mmol) of cyclo- $(Me₂SiNPrⁱ)₂$ was added. After the mixture had been stirred and heated at reflux for 30 min, 0.85 g (9.0 mmol) of $\text{Me}_2\text{SiHC1}$ was added. The standard workup followed. The product Me₃SiNPrⁱSiMe₂NPrⁱSiMe₂H was obtained in 64% yield. Anal. Calcd for $C_{13}H_{36}N_2Si_3$: C, 51.26; H, 11.91; N, 9.20. Found: C, 51.37; H, 11.90; N, 9.32. 'H NMR (250 MHz, CDC13): 6 0.14 **(s,** 9 H, Me₃Si), 0.17 (d, $J = 3.6$ Hz, 6 H, Me₂SiH), 0.19 (s, 6 H, NSiMe2N), 1.15 (d, *J* = 6.7 Hz, 6 H, Me2CH), 1.17 (d, *J* = 6.7 Hz, 6 H, Me ₂CH), 3.46 (sept, $J = 6.7$ Hz, 2 H, Me ₂CH), 4.53 (sept, $J = 3.7$ Hz, Me₂SiH).

Reaction of $cycle_2SiNPr^i)_2$ with *n*-Butyllithium. Using the same procedure, the reaction of 0.865 g (3.76 mmol) of cyclo- $Me₂SiNPr'₂$ in 25 mL of THF with 4.20 mmol of n-BuLi in hexane was carried out at room temperature. Addition of 0.87 g (9.20 mmol) of Me₂SiHCl and the standard workup followed. The product **n-BuMe2SiNPriSiMezNPriSiMezH** was obtained in 67% yield. Anal. Calcd for $C_{16}H_{42}N_2Si_3$: C, 55.42; H, 12.21; N, 8.08. Found: C, 55.34; H, 12.14; N, 8.20. 'H NMR (250 MHz, CDCl₃): δ 0.13 (s, 6 H, n-BuMe₂Si), 0.17 (d, $J = 3.6$ Hz, 6 H,

Ring Opening *of Hexaalkylcyclodisilazanes*

 $Me₉SiH$), 0.20 (s, 6 H, NSi $Me₂N$), 0.60-1.42 (complex m, 9 H, $n-Bu$), 1.15, 1.17 (both d, $J = 6.7$ Hz, 12 H, $Me₂CH$), 3.47 (sept, $J = 6.7$ Hz, 12 H, Me₂CH), 4.53 (sept, $J = 3.6$ Hz, 1 H, Me₂SiH). A trimethylchlorosilane quench of such a cyclo-(Me₂SiN-
 r^{i})₂/n-BuLi reaction mixture gave n-Prⁱ)₂/n-BuLi BuMe₂SiNPrⁱSiMe₂NPrⁱSiMe₃ in 60% yield. Anal. Calcd for $C_{17}H_{44}N_2Si_3$: C, 56.59; H, 12.29; N, 7.76. Found: C, 56.50; H, 12.28; N, 7.84. ¹H NMR (250 MHz, CDCl₃): δ 0.14 (s, 6 H, $n-BuMe₂Si$), 0.15 (s, 9 H, Me₃Si), 0.21 (s, 6 H, NSiMe₂N), 0.60-1.42 (complex m, 9 H, n-Bu), 1.17 (d, $J = 6.0$ Hz, 12 H, $Me₂CH$), 3.52 , 3.57 (both sept, $J = 6.0$ Hz, 2 H, Me₂CH).

Attempted Reaction of cyclo-(Me₂SiNMe)₂ with Lithium **Bis(trimethylsily1)amide.** The standard reaction apparatus was charged with 20 mL of THF and 2.50 mL of $(Me_3Si)_2NH$ (1.93) g, 0.012 mol) and cooled to -78 °C in a dry ice/acetone bath. By syringe, 4.50 mL of a 2.66 M solution of *n*-butyllithium (12.0 mmol) in hexane was added over **5** min. The dry ice/acetone bath was removed after 15 min, and the reaction mixture was warmed to room temperature and then heated to reflux. By syringe, cy $clo-(Me₂SiNMe)₂$ (0.961 g, 5.51 mmol) was added dropwise over 30 min. After an additional 16 h at reflux, the reaction mixture was cooled to room temperature and trimethylchlorosilane (1.58 mL, 1.36 g, 12.50 mmol) was added. A white precipitate formed. The GLC analysis (internal standard C_9) of the reaction mixture showed the presence of unreacted $(Me₂SiNMe)₂$ in 100% yield, which was identified by comparison of its 'H NMR **spectrum** with that of an authentic sample.

Reaction of cyclo-(Me₂SiNMe)₂ with *II* -Butyllithium/ Sodium *tert* -Butoxide. (a) Trimethylchlorosilane Quench. The standard apparatus, equipped also with a low-temperature thermometer, was charged with 0.905 g (9.42 mmol) of t-BuONa and 40 mL of THF and, after cooling to **-78** "C, 3.66 mL of a 2.57 M solution of n-BuLi in hexane (9.42 mmol). After **5** min, 0.816 g (4.68 mmol) of cyclo-(MezSiNMe)z was added. The mixture was warmed to -15 °C, at which point the cyclodisilazane dissolved. After 10 min trimethylchlorosilane (2.14 g, 19.7 mmol) was added, and the reaction mixture was stirred at room temperature for 30 min. Standard workup showed the presence of **n-BuMe\$iNMeSiMe2NMeSiMe3** in 87 % yield. The product had proton NMR and IR spectra identical with those of an authentic sample (see above).

(b) Vinyldimethylchlorosilane Quench. Essentially the same procedure as in (a) was used, except that only 10% of the cyclo-(Me₂SiNMe)₂ was added at -78 °C and the rest at -15 °C. Also, ViMe₂SiCl was used in place of Me₃SiCl. The product **n-BuMe2SiNMeSiMe2NMeSiMe2Vi** was obtained in 68% yield. Anal. Calcd for $C_{14}H_{36}N_2Si_3$: C, 53.09; H, 11.46; N, 8.84. Found: (s, 6 H, n-Bu Me_2 Si), 0.08 (s, 6 H, NSi Me_2N), 0.13 (s, 6 H, $\tilde{Si}Me_2Vi$), 0.54 (t, 2 H, n-PrCH₂Si), 0.86 (t, 3 H, CH₃ of n-Bu), 1.27 (br m, 6 H, internal CH_2CH_2 of n-Bu), 2.4 (s, 6 H, MeN), 5.6-6.3 (complex C, 52.92; H, 11.46; N, 9.23. ¹H NMR (250 MHz, CDCl₃): δ 0.04 m, $3 H$, $CH₂=CH$).

Reaction of cyclo-(Me₂SiNMe)₂ with Methyllithium/Sodium *tert* -Butoxide. (a) Trimethylchlorosilane Quench. The same procedure was used **as** in (b) immediately above, except that methyllithium in Et_2O was used in place of n-BuLi and MesSiC1 was the chlorosilane added. The product Me3SiNMeSiMe2NMeSiMe3, a known compound (see above), was obtained in 70% yield. Its 'H NMR spectrum was identical with that reported above.

(b) Vinyldimethylchlorosilane Quench. The same procedure as that described immediately above was used, except that ViMe₂SiCl was the chlorosilane used. The product $Me₃Si\overline{N}MeSiMe₂NMeSiMe₂Vi$ was obtained in 60% yield. Anal. Calcd for $C_{11}H_{30}N_2Si_3$: C, 48.10; H, 11.00; N, 10.20. Found: C, 48.09; H, 11.17; N, 10.55. ¹H NMR (250 MHz, CDCl₃): δ 0.05 $(s, 9 H, Me₃Si), 0.08 (s, 6 H, NSiMe₂N), 0.13 (s, 6 H, \tilde{S}iMe₂Vi),$ 2.4 (s, 6 H, MeN), 5.6-6.3 (complex m, 3 H, $CH_2=CH$).

Reaction of cyclo-(Me₂SiNMe)₂ with Methyllithium/Potassium *tert* -Butoxide. The standard apparatus was charged with 1.04 g (9.27 mmol) of t -BuOK and 30 mL of THF. To this solution, cooled to -78 °C, was added 17.0 mL of a 0.545 M solution of MeLi in Et_2O (9.27 mmol). After 5 min, one-tenth of a solution of 1.645 g (9.43 mmol) of cyclo-(Me₂SiNMe)₂ was added by syringe. The mixture then was warmed to -15 °C, and the rest of the cyclodisilazane solution was added. The resulting mixture was warmed to room temperature, and now 1.20 g (11.1 mmol) of Me,SiCl was added. After 30 min, the standard workup gave 3.26 g of a clear, very viscous oily solid. This was diluted with THF and trap-to-trap distilled to give 2.1 g of a clear,
yellowish liquid. GLC analysis showed yellowish $Me₃SiNMe₂NMeSiMe₃$ (see above) to be present in 60% yield.

Ring-Opening Polymerization of cyclo-(Me₂SiNMe)₂. (1) With Organolithium Reagents. The general procedure was as follows.

The standard reaction apparatus was charged with the solvent and cooled (either to 0 °C or -78 °C), and then the $(Me_2SiNMe)_2$. was added by syringe. Subsequently, the organolithium reagent solution was added, and the reaction mixture was stirred at room temperature and then at the reflux temperature for some hours. The chlorosilane, generally an excess, then was added to "kill" the living polymer (LiCl precipitated), and the mixture was stirred at room temperature for 30-60 min. Volatiles were removed at reduced pressure, leaving a white solid which then was extracted with 15-20 mL of hexane. The extracts were centrifuged to remove LiCl, and the supernatant solution was distilled (trapto-trap in vacuo), leaving, generally, a white, waxy solid. The latter was soluble in organic solvents such as hexane, benzene, chloroform, carbon tetrachloride, and THF.

(a) **10%** MeLi in THF. Hexamethylcyclodisilazane (1.546 g, 8.9 mmol) and 0.66 mL of 1.35 M (0.89 mmol) of MeLi in diethyl ether were allowed to react in 25 mL of THF (2.5 h at reflux). Trimethylchlorosilane (0.26 g, 2.4 mmol) was added. Workup gave 1.148 g (75% yield) of a white, waxy solid. Anal. Calcd: C , 42.33; H, 10.66; N, 14.81. Found: C, 40.65; H, 9.85; N, 14.02. 'H NMR $(250 \text{ MHz}, \text{CDCl}_3): \delta 0.11 \text{ (s, 2.2 H, SiMe)}, 2.39 \text{ (s, 1 H, NMe)}.$ $^{29}{\rm Si~NMR}$ (59.59 MHz, DEPT, CDCl₃): $\,\delta_{{\rm Si}}$ –2.18 (s, SiMe₂), –1.4 $(s, Me₃SiNMeSiMe₂), 5.2 (s, SiMe₃).$ Mol wt (cryoscopy): 1140 (calcd from monomer/RLi ratio 1735).

(b) 5% Methyllithium in THF. $(Me_2SiNMe)_2$ (1.743 g, 9.99) mmol) and 0.39 mL of 1.30 M MeLi (0.51 mmol) in Et_2O were allowed to react in 25 mL of THF (mixed at -78 "C and at reflux for 4 h); 1.72 g (15.8 mmol) of Me,SiCl was added. Workup gave a white, waxy solid (1.65 g, 94% yield). Mol **wt** (cryoscopy): 3000-3200 (calcd from monomer/RLi ratio 3400).

(c) 5% *n*-Butyllithium in THF. $(Me_2SiNMe)_2$ (0.468 g, 2.68) mmol) and 53 mL of 2.52 M (0.13 mmol) of n-BuLi in hexane were allowed to react in 25 mL of THF, initially at -78 °C and then, after slow warming, at reflux for 1 h. Dimethylchlorosilane (20 mg, 0.18 mmol) was added. Workup gave 0.414 g (89%) of a white, waxy solid. Anal. Calcd: C, 41.80; H, 10.00; N, 14.82. Found: (s, 2 H, SiMe), 2.56 (s, 1 H, NMe). ¹³C NMR (67.9 MHz, C_6D_6): δ_c 1.94 (q, $J = 118.3$ Hz, SiMe), 30.25 (q, $J = 136.0$ Hz, NCH₃). 29 Si NMR (59.59 MHz, DEPT, C_6D_6): δ_{Si} -1.82. Mol wt (VPO): 1500. C, 40.78; H, 9.39; N, 14.59. ¹H NMR (300 MHz, C₆D₆): δ 0.36

(d) 10% *n*-Butyllithium in Hexane. $(Me_2SiNMe)_2$ (1.831) g, 10.5 mmol) and 0.45 mL of 2.42 M (1.1 mmol) of n -BuLi in hexane were allowed to react in 30 mL of hexane (initially at 0 "C and then at reflux for 1 h). Trimethylchlorosilane (23.7 mmol) was added. Workup gave 1.67 g (91%) of a white, waxy solid. ¹H NMR (250 MHz, CDCl₃): δ 0.12 (s, 6.2 H, SiMe), 0.4-1.25 (complex m, $1 H$, C_4H_9), 2.39 (s, $2.8 H$, NMe). Mol wt (cryoscopy): 1020 (calcd 1680).

(2) With the RLi/Me₃CONa Reagent. The standard reaction apparatus was charged with the sodium tert-butoxide and the THF, and the solution was cooled to -78 °C. Subsequently, an equimolar quantity of the organolithium reagent was added, and the mixture was stirred at -78 °C for a few minutes. One-tenth of the total amount of the $(Me_2SiNMe)_2$ to be added then was introduced by syringe. The dry ice/acetone bath was removed, and the rest of the cyclodisilazane was added at -15 "C over a period of 10 min. The reaction mixture was allowed to warm to room temperature, and then an excess of a chlorosilane was added. After 30 min of stirring the volatiles were removed at reduced pressure. The residue was extracted with hexane. Centrifugation and removal of hexane at reduced pressure generally left a white waxy solid.

(a) 10% MeLi/Me₃CONa. $(Me_2SiNMe)_2$ (2.036 g, 11.67) mmol), 0.11 g (1.14 mmol) of $Me₃CONa$, and 2.1 mL of 1.35 M (1.14 mmol) of MeLi in $Et₂O$ were allowed to react in 25 mL of

THF, initially at -78 °C and then at room temperature. Trimethylchlorosilane (2.37 mmol) was added. Workup gave 1.737 g (85%) of a white, waxy solid. Anal. Calcd: C, 41.96; H, 10.56; N, 15.29; Si, 32.19. Found: C, 40.95; H, 9.38; N, 13.89; Si, 33.18. ¹H NMR (250 MHz, CDCl₃): δ 0.12 (s, 2.15 H, SiMe), 2.39 (s, 1 H, NMe). ²⁹Si NMR (59.59 MHz, DEPT, CDCl₃): δ_{Si} -2.25 (s, inner SiMe₂), -1.53 (s, Me₃SiNMeSiMe₂-), 5.17 (s, SiMe₃). Mol **wt** (cryscopy): 1425-1500 (calcd 1780). Ceramic yield (by TGA, to 950 "C at 10 "C/min under argon): 0%.

In another such experiment, the living polymer was quenched with $Me_2(CH_2=CH)SiCl$ to give a polymer with a $SiMe_2CH=CH_2$ end group as a white, waxy solid in 97% yield, mol wt 1960.

(b) 10% **n**-BuLi/Me₃CONa. $Me_2\text{SiNMe}_{22}$ (0.90 g, 5.2 mmol), 0.05 g (0.52 mmol) of Me,CONa, and 0.20 mL of 2.57 M (0.52 mmol) of n-BuLi in hexane were allowed to react in 30 mL of THF, initially at -78 "C and then at room temperature. Trimethylchlorosilane (0.13 g, 0.12 mmol) was added. Workup gave 0.833 g **(93%e** of a white, waxy solid. Anal. Calcd: C, 42.94; H, 10.65; N, 14.95. Found: C, 41.91; H, 10.03; N, 14.03. 'H NMR (300 MHz, CDCl₃): δ 0.13 (s, 2 H, SiMe), 2.40 (s, 1 H, NMe). ¹H NMR (400 MHz, C_6D_6): δ 0.35 (s, 2 H, SiMe), 2.56 (s, 1 H, NMe). ²⁹Si NMR wt (cryoscopy): 1580 (calcd 1730). (59.59 MHz, DEPT, CDCl₃): δ_{Si} -2.25; in C₆D₆, δ_{Si} -1.79. Mol

A similar reaction in which $Me₂(CH₂=CH)SiCl$ was used in place of Me3SiC1 gave a white, waxy solid, molecular weight around 1550.

(e) 5% n-BuLi/Me,CONa. The same procedure as above was used except that 5% *n*-BuLi/Me₃CONa (0.25 mmol/4.9 mmol of (Me₂SiNMe)₂) was used. A white, tacky solid (0.875 g, 100%) was obtained. Anal. Calcd: C, 42.18; H, 10.53; N, 15.47. Found: C, 42.31; H, 9.89; N, 15.12. ¹H NMR (300 MHz, CDCl₃): δ 0.12 $(s, 2 H, Sime), 2.40 (s, 1 H, NMe).$ ¹H NMR (400 MHz, C_6D_6): δ 0.36 (s, 2 H, SiMe), 2.56 (s, 1 H, NMe). ²⁹Si NMR (59.59 MHz, CDCl₃): δ_{Si} -2.27; in C₆D₆ δ_{Si} -1.79.

Reaction of cyclo- $(Me_2\sin Me)_2$ with 20% *n*-Butyllithium/Potassium *tert* -Butoxide in THF. Trimethylchlorosilane Quench. The standard reaction apparatus was charged with potassium tert-butoxide (0.054 g, 0.50 mmol) in the drybox, connected to a nitrogen line, and cooled to -78 °C in a dry ice/acetone bath. By syringe, 15 mL of THF was added and then 0.21 mL of a 2.40 M solution of *n*-butyllithium (0.50 mmol) in hexane was added. After 5 min, cyclo- $(Me₂SiNMe)₂$ (0.428 g, 2.45 mmol) was added all at once. The cyclodisilazane was frozen in the reaction mixture. The bath was removed and the reaction mixture warmed until the cyclodisilazane dissolved. The -78 "C bath was replaced and the reaction mixture cooled again to -78 "C. A GLC analysis of the reaction mixture showed no remaining cyclodisilazane, so trimethylchlorosilane (0.13 g, 1.20 mmol) was added and the bath was removed. The reaction mixture was warmed to room temperature and a white precipitate formed. The standard workup was done. A GLC analysis (internal standard $C₉$) of the reaction mixture showed the presence of one major product, $(Me₂SiNMe)₃$ (0.40 g, 1.5 mmol, 94% based on the conversion of 3 equiv of the cyclodisilazane to 2 equiv of the cyclotrisilazane), which was identified by comparison of its 'H NMR spectrum and melting point $(34 °C; lit.¹² 33-34 °C)$ with those of an authentic sample.

Reaction of cyclo-(Me₂SiNMe)₂ with 10% KH in THF. The standard reaction apparatus was charged with 30 mL of THF and 0.02 g of KH (0.05 mmol). By syringe cyclo-(Me₂SiNMe)₂ (0.892 g, 5.11 mmol) was added over 20 min. After an additional 1 h at room temperature, the KH was still present as an insoluble solid in the reaction mixture which settled rapidly when the reaction mixture was not stirred. A GLC analysis of the supernatant solution showed that cyclo- $(Me₂SiNMe)₂$ had completely reacted and a new product was present. Methyl iodide (1.0 mL, 2.28 **g,** 16.2 mmol) was added. No precipitate formed. A standard workup of the reaction mixture was performed to remove the unreacted KH. The GLC analysis (internal standard C_{10}) of the reaction mixture showed the presence of one major product, cyclo- $(Me₂SiNMe)₃$ (0.895 g, 3.42 mmol, 89% based on the conversion of 3 equiv of the cyclodisilazane to 2 equiv of the cyclotrisilazane), which was GC collected and identified by comparison of its ¹H NMR spectrum and melting point (34 °C) ; lit.¹² 33-34 "C) with those of an authentic sample. Another lower boiling minor product **was** also present by GLC analysis, but in a quantity too small to collect and identify.

Attempted Polymerization of cyclo- $(M_{e_2}SiNPr^i)_2$ with 5% Methyllithium in THF. Trimethylchlorosilane Quench. The standard reaction apparatus was charged with 20 mL of THF and 0.972 g of cyclo- $(Me_2SiNPr^i)_2$ (4.22 mmol), and the reaction mixture was heated to reflux. By syringe, 0.13 mL of a 1.59 M solution of methyllithium (0.21 mmol) in $Et₂O$ was added. After an additional 18 h at reflux, trimethylchlorosilane (0.030 mL, 0.026 g, 0.21 mmol) was added. A white precipitate formed. The standard workup of the reaction mixture was performed. The GLC analysis (internal standard C_9) of the reaction mixture showed the presence of one major product, unreacted cyclo- $(Me₂SiNPrⁱ)₂$ (0.885 g, 3.84 mmol, 91%), which was identified by comparison of its 'H NMR spectrum with that of an authentic sample.

The same result was observed when n-butyllithium was used in place of methyllithium.

Pyrolysis **of** a Me(SiMe2NMe),SiMe3 Polymer. **A** 4.604-g sample of the polymer (mol **wt** 1425-1500) was divided between two silica boats and pyrolyzed in a stream of nitrogen in a Lindberg tube furnace equipped with a controller (30-300 $\rm{^oC}$ at 10 $\rm{^oC/min}$; 30 min at 300 "C; 300-700 "C at 10 "C/min). The exit end of the pyrolysis tube led to two traps that were immersed in liquid nitrogen. Upon completion of the pyrolysis the tubes were found to contain white solids. These were dissolved in diethyl ether. Evaporation of most of the ether at reduced pressure left a concentrated solution of the volatile pyrolysis products. This solution was examined by GLC. Two products were present. These were collected, and yields were determined (n-nonane internal standard): cyclo- $(Me_2SiNMe)_2$ (38% yield) and $(Me₂SiNMe)₃$ (12% yield). They were identified by comparison of their IR and 'H NMR spectra with those of authentic samples.12

Acknowledgment. We are grateful to the Office of Naval Research for support of this **work.**

Registry No. 1, 1073-92-3; 2, 98689-74-8; 3 $(R = Me, R' = Me)$, 121270-00-6; **4** $(R = Me, R' = Me, R' = Me)$, 920-75-2; **4** $(R = Me,$ $R' = Me, R' = H$), 121269-92-9; 4 ($R = Me, R' = Me, R' = Cl$), 121269-93-0; 4 (R = Me, R' = Me, R' = NHMe, 121269-94-1; **4** $(R = Me, R' = n-Bu, R' = Me)$, 121269-95-2; **4** $(R = Me, R' = Re)$ n-Bu, R = H), 121269-96-3; **4** (R = Me, R' = t-Bu, R' = Me), 121269-97-4; **4** $(R = Me, R' = t-Bu, R' = H)$, 121269-98-5; **4** $(R$ $=$ Me, R' = NMe₂, R' = Me, 121269-99-6; 4 (R = Pr-*i*, R' = Me, $R' = H$), 121270-01-7; **4** ($R = Pr-i$, $R' = n-Bu$, $R' = H$), 121270-02-8; $4 (R = Pr -i R' = n-Bu, R' = Me), 121270-03-9; Me₂SiCl₂, 75-78-5;$ $Me₂Si(NHMe)₂$, 10519-99-0; $Me₂Si(NHPr)₂$, 6026-42-2; $Me₃SiCl$, 75-77-4; $Me₂SiHCl$, 1066-35-9; $Me₂NLi$, 3585-33-9; **Me3SiNMeSiMe2NMeSiMe2NMeSiMe3,** 30725-39-4; **Me3SiNMeSiMe2NMeSiMe2NMeSiMe2NMeSiMe3,** 30746-48-6; $n-\text{BuMe}_2\text{SiNMe}\text{SiMe}_2\text{NMe}\text{SiMe}_2\text{Li}$ $Me₃SiNMeSiMe₂NMeSiMe₂Li$, 121270-05-1; $Me₃SiNMe (SiMe₂NMe)_nSiMe₃, 121270-06-2; n-BuMe₂SiNMe (SiMe₂NMe)_nSiMe₂H$, 121270-07-3; n-BuMe₂SiNMe- $(SiMe₂NMe)_nSiMe₃, 121270-08-4; Me₃SiNMe (SiMe₂NMe)_nSiMe₂CH=CH₂, 121270-09-5; n-BuMe₂SiNMe (SiMe₂NMe)_nSiMe₂CH=CH₂$, 121270-10-8; $(Me₂SiNMe)₃$, 1080-38-2; methylamine, 74-89-5; isopropylamine, 75-31-0; methyllithium, 917-54-4; n-butyllithium, 109-72-8; tert-butyllithium, 594-19-4; lithium **N-methyl(trimethylsilyl)amine,** 10568-44-2; lithium **bis(trimethylsilyl)amine,** 4039-32-1; sodium tert-butoxide, 865-48-5; vinyldimethylchlorosilane, 1719-58-0.