were then removed in vacuo. The oily residue was extracted with pentane (25 mL) and filtered. The zirconium enolate product 14 (0.29 g) precipitated from the pentane solution at -78 $^{\circ}C$ together with small amounts of Cp₂Zr(OPh)₂ and Cp₂Zr[OC- $(Ph)=CH_2]_2$ which could not be separated. Complex 14 was identified by NMR spectra and its aldol reaction with benzaldehyde (see below): ¹H NMR (C₆D₆) & 7.81, 7.25, 6.96, 6.75 (aromatic H), 5.98 (Cp), 4.84, 4.22 (=CH₂); ¹³C NMR (C₆D₆) δ 166.0, 165.5 (C=CH₂, OPh_{ipso}), 139.2 (= $\bar{C}Ph_{ipso}$), 129.8, 125.7, 119.6, 118.6 (aromatic C, some hidden by solvent peaks), 113.1 (Cp), 86.6 (C= CH_2).

Aldol Condensation Reaction of 14 with Benzaldehyde. Slightly less than 1 molar equiv of benzaldehyde was added to a solution of 14 in benzene- d_6 at ambient temperature. The reaction was complete within 15 min as determined by ¹H NMR spectroscopy. 15: ¹H NMR (C_6D_6) δ 6.7–7.5 (m, Ph), 5.94, 5.95 (5 H each, Cp), 5.87 (1 H, dd, ${}^3J_{HH} = 2.8, 8.3$ Hz, -OCHPh-), 3.37 $(1 \text{ H}, \text{ dd}, {}^{2}J_{\text{HH}} = 15.8 \text{ Hz}, -CH_{2}^{-}), 2.75 (1 \text{ H}, \text{ dd}, -CH_{2}^{-}).$

Acknowledgment. Financial aid from the Stiftung Volkswagenwerk, the Fonds der Chemischen Industrie, the

Bundesminister für Forschung und Technologie, and the Alfried Krupp von Bohlen und Halbach-Stiftung is gratefully acknowledged. M.T.A. thanks the Alexander von Humboldt-Stiftung for a postdoctoral fellowship.

Registry No. 1a, 51177-89-0; 1b, 63672-39-9; 1c, 1273-09-2; 1d, 83076-03-3; 2a, 71191-32-7; 4a, 96896-91-2; 4c, 96896-94-5; 4d, 96896-93-4; 4e, 121253-38-1; 4f, 121253-39-2; 4g, 121253-40-5; 5a, 106625-46-1; 5b, 106625-47-2; 5g, 121253-46-1; 9, 121253-41-6; 10, 121253-42-7; 11, 37342-97-5; 12, 109550-91-6; 13, 52573-30-5; 14, 121253-43-8; 15, 121253-45-0; $W(CO)_6$, 14040-11-0; $M_0(CO)_6$, 13939-06-5; H_3COPh , 98-86-2; $Ph_3P=CH_2$, 3487-44-3; Cp_2Zr -[OC(Ph)=CH₂]₂, 121253-44-9; Cp₂Zr(OPh)₂, 12303-50-3; PhCHO, 100-52-7; $(\eta^2-1, 2-didehydrobenzene)$ titanocene, 12679-36-6.

Supplementary Material Available: Tables of bond lengths and angles, positional parameters, and temperature factors for the zirconoxycarbene complexes 4g and 10 (21 pages); listings of calculated and observed structure factors for 4g and 10 (35 pages). Ordering information is given on any current masthead page.

Synthesis of a Monopentamethylcyclopentadienyl Halide Complex of Calcium. The X-ray Crystal Structure of $[(Me_5C_5)Ca(\mu-I)(THF)_2]_2$

Michael J. McCormick,[†] S. Craig Sockwell,[†] Caroline E. H. Davies,[†] Timothy P. Hanusa,^{*,†} and John C. Huffman[‡]

Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, and Molecular Structure Center, Department of Chemistry, Indiana University, Bloomington, Indiana 47401

Received March 20, 1989

Potassium pentamethylcyclopentadienide and CaI₂ react in a 3:2 molar ratio in THF to yield a nearly equimolar mixture of the complexes $Cp*CaI(THF)_2$ and $Cp*_2Ca(THF)_2$ ($Cp* = Me_5C_5$). The metallocene can be removed with hexane, leaving the colorless, toluene-soluble organometallic halide in 57% yield. At 20 °C, the equilibrium constant in THF for the system $Cp*_2Ca(THF)_2 + CaI_2(THF)_2 \rightleftharpoons 2Cp*CaI(THF)_2$ is 4. Cp*CaI(THF)₂ crystallizes from toluene in the monoclinic space group $P2_1/a$, with a = 14.837 (4) Å, b = 13.022 (4) Å, c = 21.125 (7) Å, $\beta = 98.66$ (1)°, and $D_{calcd} = 1.47$ g cm⁻³ for Z = 4 (dimers). Least-squares refinement on the basis of 4437 observed reflections measured at 118 K led to a final R value of 0.036. Two independent iodide-bridged dimers appear in the asymmetric cell, each with a crystallographically imposed center of inversion. Each calcium in the $[Ca(\mu-I)]_2$ core is flanked by an η^5 -Cp* ring with average Ca-C distances in both dimers of 2.67 (1) Å and by two THF molecules with average Ca-O distances of 2.422 (6) Å in one dimer and 2.387 (7) Å in the other. The Ca-I and Ca-I' distances differ by 0.06 and 0.146 Å in the two dimers; a quantitative comparison of these values with those in related organolanthanide species provides a method for ranking structural distortions in bridged homometallic dimers.

Introduction

Although an organometallic complex of the alkalineearth $(Ae)^1$ element calcium was reported over 80 years ago,² the chemistry of organocalcium, -strontium, and barium compounds remains among the least developed of any similar group of metals.³ The low solubility in common organic solvents and marginal thermal stability of many Ca, Sr, and Ba complexes have hindered their investigation, so that even the optimum methods of preparation of the long-known "pseudo-Grignard" reagents (RAeX) are still under study.^{3,4}

Such experimental problems stem partly from the use of small, compact organic groups as ligands (e.g., Me, Et), which are unable to supply the steric saturation required

to stabilize the complexes against irreversible polymerization or decomposition.⁵ Consequently, the use of sterically demanding ligands to suppress oligomerization and block decomposition pathways could be expected to im-

[†]Vanderbilt University.

[‡]Indiana University.

⁽¹⁾ We would like to suggest the use of the symbol "Ae" to represent the alkaline-earth metals, analogous to the use of "Ln" for the lanthanides and "An" for the actinides. The symbol "Ae" emphasizes the common divalent, electropositive nature of these elements and does not conflict

with the symbols for the metals Al and Ac. (2) The synthesis of PhCaI was reported in 1905 (Beckman, E. Chem. Ber. 1905, 38, 904-906).

⁽³⁾ For the most recent general review of organometallic Ae chemistry, see: Lindsell, W. E. In Comprehensive Organometallic Chemistry; Wilkinson, G., Stone, F. G. A., Abel, E., Eds.; Pergamon: Oxford, 1982; Vol. I, Chapter 4.

⁽⁴⁾ Mochida, K.; Yamanishi, T. J. Organomet. Chem. 1987, 332, 247-252 and references therein.
(5) (a) Marks, T. J. Science (Washington, DC) 1982, 217, 989-997. (b)

Evans, W. J. Adv. Organomet. Chem. 1985, 24, 131-177.

Synthesis of a Calcium Cyclopentadienyl Halide Complex

prove the solubility and kinetic stability of Ae complexes. The recent synthesis of Cp_2^Ae complexes ($Cp^* = Me_5C_5$; Ae = Ca, Sr, Ba),⁶ which unlike the parent metallocenes are hydrocarbon-soluble, testifies to the soundness of this approach.

We have been seeking to exploit the large coordination numbers and Lewis acidity of organometallic species containing the heavy Ae metals through the synthesis of substituted cyclopentadienyl halide and pseudohalide complexes, $(R_5C_5)AeX$. These compounds could stand as analogues to the synthetically important Cp₂LnX and Cp₃AnX species in organolanthanide and -actinide chemistry.7 We report the synthesis and crystallographic characterization of the monopentamethylcyclopentadienyl complex $[Cp*Ca(\mu-I)(THF)_2]_2$, which represents the first structurally characterized cyclopentadienyl halide complex of the heavy Ae metals.8-10

Experimental Section

All manipulations were performed with the rigid exclusion of air and moisture. Chemicals were handled with high vacuum or Schlenk techniques or in a Vacuum Atmospheres HE-143 drybox equipped with an MO40-1 recirculating purifier. Proton NMR spectra were obtained at 300 MHz with a Bruker NR-300 spectrometer and were referenced to the residual proton resonances of THF- d_8 (δ 3.58) or C₆D₆ (δ 7.15); carbon (¹³C) NMR spectra were recorded at 50.3 MHz on a Bruker NR-200 spectrometer and were referenced to the residual ¹³C resonances of C_6D_6 (δ 128.0). Infrared data were obtained on a Perkin-Elmer 1430 spectrometer. Elemental analyses were performed by Analytiche Laboratorien, Engelskirchen, West Germany, or by Galbraith Laboratories, Knoxville, TN.

Materials. Anhydrous calcium iodide (95%) was purchased from Strem Chemicals and heated under vacuum to remove residual amounts of free iodine. KCp* was prepared from potassium hydride and pentamethylcyclopentadiene. Cp*2Ca(THF)2 was prepared from the reaction of KCp* and CaI₂ in THF.^{6c} Solvents for reactions were distilled under nitrogen from sodium or potassium benzophenone ketyl. NMR solvents were stirred over sodium or potassium and vacuum transferred before use.

 $[Cp*Ca(\mu-I)(THF)_2]_2$ from KCp* and CaI₂. Potassium pentamethylcyclopentadienide (0.500 g, 2.87 mmol) was added to anhydrous CaI₂ (0.702 g, 2.39 mmol) in 125 mL of THF and the mixture stirred for 11 h. The mixture was then filtered through a medium glass frit and the filtrate evaporated to dryness. Toluene (75 mL) was added to the dried solid and the mixture stirred for 20 min. After the mixture was filtered again, the filtrate was cooled to 6 °C and large, colorless crystals of Cp*CaI(THF)₂ (mp >350 °C) began to appear within a week. Analysis indicates that some desolvation of the crystals had occurred and/or that the combustion was not as complete as possible. Calcd for C₁₈H₃₁CaIO₂: C, 48.43; H, 7.00; Ca, 8.98; I, 28.43; O, 7.17. Found: C, 48.46; H, 7.69; Ca, 9.61; I, 30.38; O (by difference), 3.86. Loss of THF from organoalkaline-earth complexes is fairly common,⁶ and incomplete combustion has been observed in similarly ionic organolanthanide systems.¹¹ The observed Ca:I ratio of 1.0,

Table I. Crystal Data and Summary of Data Collection for [Cp*Ca(u-1)(THF)]

	- /212
formula	$C_{36}H_{62}Ca_2I_2O_4$
in allow of amount	
color of cryst	COTOFIESS
cryst dimens, mm	$0.25 \times 0.25 \times 0.25$
space group	$P2_1/a$
cell dimens (at 118 K; 46 reflctns)	
a, Å	14.837 (4)
b, Å	13.022 (4)
c, Å	21.125 (7)
β , deg	98.66 (1)
V, \dot{A}^3	4034.98
Z (dimers/cell)	4
$D(\text{calcd}), \text{g/cm}^3$	1.470
wavelength, Å	0.71069
abs coeff, cm ⁻¹	18.226
type of scan	continuous $\theta - 2\theta$
scan speed, deg/min	6.0
scan width	1.8 + dispersn
bkgd counting	6 s at extremes of scan
limits of data collectn	$6^{\circ} \leq 2\theta \leq 45^{\circ}$
no. of unique intensities	5280
no. with $F > 2.33\sigma(F)$	4437
R(F)	0.0358
$R_{w}(F)$	0.0371
goodness of fit	0.992
max Δ/σ in final cycle	0.05

however, establishes that the crystals are free from both $Cp*_{2}Ca(THF)_{2}$ and $CaI_{2}(THF)_{2}$.

In solutions of the crystals, both Cp*CaI(THF)₂ and Cp*₂Ca-(THF)₂ can be identified in NMR spectra, the latter compound by its proton chemical shifts at δ 2.06 in C_6D_6 (lit.^{6c} δ 2.06) and δ 1.88 in THF- d_8 .¹² Relative amounts of the complexes were determined by integration of the peak areas. Since the resonance for $Cp*_2Ca(THF)_2$ generated by disproportionation of crystalline $Cp*CaI(THF)_2$ is unshifted in C_6D_6 or THF- d_8 relative to the value of pure $Cp*_2Ca(THF)_2$ in the same solvents, the exchange between the two complexes is evidentally stopped on the room-temperature ¹H NMR time scale. Although $Cp*_2Ca(THF)_2$ is detectable (4%) in the ¹H NMR of solutions of crystalline Cp*CaI(THF)₂ in C₆D₆ (see below), its low concentration prevents its detection in these solutions by ¹³C NMR. The resonances assignable to Cp*CaI- $(THF)_2$ are as follows: ¹H NMR (C₆D₆, 20 °C) δ 3.58 (m, 8 H, α -C₄H₈O), 2.32 (s, 15 H, Cp*); 1.35 (m, 8 H, β -C₄H₈O); ¹H NMR (THF-d₈, 20 °C) δ 2.00 (s, Cp*); ¹³C NMR (C₆D₆, 20 °C, saturated solution, proton decoupled) δ 114.2 (C₅(CH₃)₅), 68.9 (C₄H₈O), 25.4 (C_4H_8O) , 11.9 $(C_5(CH_3)_5)$; major IR bands (KBr pellet) 2929 vs, br, 2729 m, 1449 m, 1348 w, 1299 w, 1264 w, 1189 w, 1034 vs, 884 s, 678 w cm⁻¹

 $[Cp*Ca(\mu-I)(THF)_2]_2$ from KCp* and CaI₂ (3:2). Using a procedure similar to that given above, anhydrous CaI_2 (1.000 g, 3.40 mmol) and KCp* (0.890 g, 5.10 mmol) were stirred in 150 mL of THF overnight. After being filtered through a fine glass frit, the filtrate from the reaction mixture was evaporated to drvness. The residue was then stirred for 2 h in 100 mL of hexane and the mixture filtered again through a fine frit. The retained solid provided 0.86 g (57% yield) of Cp*CaI(THF)₂. Proton NMR of this material in C₆D₆ indicated a Cp*CaI(THF)₂:Cp*₂Ca(THF)₂ ratio of 89:11; because of the Schlenk equilibria in this solvent (see below), the actual purity of the solid is >90%.¹³

[Cp*Ca(µ-I)(THF)₂]₂ from Cp*₂Ca(THF)₂ and CaI₂. $Cp*_2Ca(THF)_2$ (0.155 g, 0.341 mmol) was added to anhydrous CaI_2 (0.100 g, 0.340 mmol) in 30 mL of THF, and the slightly cloudy reaction mixture stirred for 40 h. The reaction mixture was then filtered through a medium glass frit. The filtrate was evaporated to dryness, and ¹H NMR of the residue in THF- d_8 indicated a

^{(6) (}a) Burns, C. J.; Andersen, R. A. J. Organomet. Chem. 1987, 325, 31-37. (b) Andersen, R. A.; Blom, R.; Boncella, J. M.; Burns, C. J.; Volden, H. V. Acta Chem. Scand., Ser. A 1987, A41, 24-35. (c) McCormick, M. J.; Williams, R. A.; Levine, L. J.; Hanusa, T. P. Polyhedron 1988, 7(9), 725-730. (7) Marks, T.I J.; Ernst, R. D. In ref 3; Vol. 3, Chapter 21.3

⁽⁸⁾ Structures of cyclopentadienyl halide complexes of Be and Mg are known. See: (a) Goddard, R.; Akhtar, J.; Starowieyski, K. B. J. Organomet. Chem. 1985, 282, 149–154. (b) Johnson, C.; Toney, J.; Stucky, G. D. J. Organomet. Chem. 1972, 40, C11–C13.

⁽⁹⁾ The synthesis of pentamethylcyclopentadienyl halide complexes of Be and Mg has been described. See ref 6a and: Fagan, P. J.; Man-riquez, J. M.; Maatta, E. A.; Seyam, A. M.; Marks, T. J. J. Am. Chem. Soc. 1981, 103, 6650-6667

⁽¹⁰⁾ The synthesis of $(C_5H_5)CaI(THF)_2$ from the reaction of CH_3CaI and C_5H_6 was reported some years ago (Bogatskii, A. V.; Chumachenko, T. K.; Derkach-Kozhukhova, A. E.; Lyamtseva, L. N.; Suprinovich, E. S. Zh. Obshch. Khim. 1977, 47, 2297–2305). Other than its insolubility in hexane, no chemical properties of the light brown solid were described.

⁽¹¹⁾ Evans, W. J.; Meadows, J. H.; Hanusa, T. P. J. Am. Chem. Soc. 1984, 106, 4454-4460.

⁽¹²⁾ The chemical shift of pure $Cp*_2Ca(THF)_2$ in THF- d_8 at 20 °C is 6 1.88 (Sockwell, S. C.; Hanusa, T. P., unpublished results). (13) Even crystalline $Cp*CaI(THF)_2$ exhibits a $Cp*CaI(THF)_2:Cp*_2Ca(THF)_2$ ratio of 96:4 when dissolved in C_8D_6 ; this equilibrium should be considered when assessing the purity of samples by NMR.

Table II. Fractional Coordinates (×10⁴) and Isotropic Thermal Parameters (×10 Å²) for the Non-Hydrogen Atoms in $[Cp*Ca(\mu-I)(THF)_2]_2$

atom	x	У	z	$B_{iso}{}^a$
Ca(1A)	4624 (1)	4888 (1)	1028 (1)	13
I(2A)	6000.1 (3)	3817.7 (3)	248.9 (2)	17
C(3A)	5422(4)	6670 (4)	1475 (3)	16
C(4A)	4658 (4)	6538 (5)	1788 (3)	17
C(5A)	4810 (5)	5674 (5)	2194 (3)	19
C(6A)	5672 (4)	5248 (5)	2121 (3)	16
C(7A)	6054 (4)	5879 (5)	1682 (3)	14
C(8A)	5605 (5)	7560 (5)	1058 (4)	23
C(9A)	3855 (5)	7249 (6)	1730 (4)	25
C(10A)	4219 (5)	5370 (6)	2684 (4)	27
C(11A)	6120 (5)	4334 (5)	2465 (4)	22
C(12A)	6989 (5)	5780 (5)	1499 (3)	19
O(13A)	4400 (3)	3178 (3)	1452(2)	20
C(14A)	4748 (5)	2162 (6)	1342 (4)	31
C(15A)	3912 (6)	1473 (6)	1299 (4)	31
C(16A)	3333 (5)	1980 (6)	1743 (4)	26
C(17A)	3810 (5)	3001 (6)	1928 (4)	26
O(18A)	3003 (3)	4619 (3)	858 (2)	19
C(19A)	2685 (5)	3861 (5)	368 (3)	23
C(20A)	1794 (5)	4263 (6)	21 (4)	26
C(21A)	1421 (5)	4854 (6)	544 (4)	32
C(22A)	2276 (5)	5333 (6)	903 (4)	23
Ca(1B)	789 (1)	4952 (1)	4082 (1)	13
I(2B)	657.7(3)	3662.9 (3)	5396.0 (2)	17
C(3B)	1010 (4)	3756 (5)	3060 (3)	14
C(4B)	460 (5)	4599 (5)	2807 (3)	17
C(5B)	-378 (4)	4539 (5)	3042 (3)	15
C(6B)	-357 (4)	3662(5)	3433 (3)	17
C(7B)	503 (4)	3176 (5)	3448 (3)	15
C(8B)	1907 (5)	3485 (6)	2851(4)	24
C(9B)	696 (5)	5353 (6)	2317 (3)	26
C(10B)	-1158 (5)	5276 (6)	2869 (3)	23
C(11B)	-1127 (5)	3256 (6)	3755 (4)	25
C(12B)	782 (5)	2177 (5)	3797 (3)	21
O(13B)	2335 (3)	4744 (3)	4551 (2)	18
C(14B)	2775 (5)	5361 (5)	5079 (4)	22
C(15B)	3795 (5)	5084 (7)	5129 (5)	37
C(16B)	3815 (5)	4121 (7)	4716 (4)	34
C(17B)	2853 (5)	3797 (6)	4577 (4)	27
O(18B)	1468 (3)	6513 (3)	3776 (2)	21
C(19B)	2348 (5)	6514 (6)	3541 (4)	27
C(20B)	2313 (5)	7413 (6)	3093 (4)	28
C(21B)	1722 (5)	8174 (6)	3381 (4)	27
C(22B)	1001 (5)	7480 (6)	3589(4)	27

^a Isotropic values for those atoms refined anisotropically are calculated by using the formula given by: Hamilton, W. C. Acta Crystallogr. **1959**, *12*, 609–610.

Cp*CaI(THF)₂:Cp*₂Ca(THF)₂ ratio of 70:30.

X-ray Crystallography of $[Cp*Ca(\mu-I)(THF)_2]_2$. General procedures for data collection and reduction have been described previously.¹⁴ A suitable crystal measuring $0.25 \times 0.25 \times 0.25$ mm was located and transferred by using standard inert atmosphere techniques to a Picker four-circle goniostat equipped with a Furnas monochromator (HOG crystal) and Picker X-ray generator. The crystal was cooled to 118 K for characterization and data collection. Relevant crystal and data collection parameters for the present study are given in Table I.

A systematic search of a limited hemisphere of reciprocal space located a set of diffraction maxima with symmetry and systematic absences corresponding to the unique monoclinic space group $P2_1/a$ (alternate setting of $P2_1/c$, No. 14). Subsequent solution and refinement of the structure confirmed this choice.

Data collection was performed by using standard movingcrystal/moving-detector techniques with fixed backgrounds. Data were reduced to a unique set of intensities and associated sigmas in the usual manner. The structure was solved by a combination of direct methods (MULTAN78) and Fourier techniques. Two independent molecules were located in the unit cell. All hydrogen atoms were clearly visible in a difference Fourier synthesis phased

(14) Chisholm, M. H.; Folting, K.; Huffman, J. C.; Kirkpatrick, C. C. Inorg. Chem. 1984, 23, 1021-1037.

Table III. Selected Bond Lengths (Å) and Angles (deg) in [Cp*CaI(THF)₂]₂

	distance		
	[Cp*CaI(THF) ₂] ₂	[Cp*CaI(THF) ₂] ₂	
atoms	(A)	(B)	
Ca-I Ca-I'	3.1356 (15)	3.1283 (15)	
Ca=0	2.441 (4)	2.373 (5)	
Ca–O'	2.403 (4)	2.400 (5)	
Ca-C(3)	2.710 (6)	2.722 (6)	
Ca-C(4)	2.678 (6)	2.704 (6)	
Ca-C(5)	2.643(7) 2.624(7)	2.640 (6)	
Ca-C(0) Ca-C(7)	2.682(6)	2.673 (6)	
Ca-C(av)	2.67 (1)	2.67 (1)	
Ca-centroid	2.38	2.39	
O-C(14)	1.452 (8)	1.448 (8)	
0-C(17)	1.447 (8)	1.449 (8)	
O = C(19) O = C(22)	1.400 (8)	1.400 (8)	
C(3)-C(4)	1.400(0) 1.407(9)	1.425 (9)	
C(3) - C(7)	1.417 (9)	1.412 (9)	
C(4) - C(5)	1.411 (9)	1.408 (9)	
C(5) - C(6)	1.425 (9)	1.409 (9)	
C(6) - C(7)	1.419 (9)	1.420 (9)	
C(3) = C(8)	1.410(20) 1 504(10)	1.415(20) 1 505 (10)	
C(4) - C(9)	1.504(10) 1.500(10)	1.505(10) 1.505(10)	
C(5) - C(10)	1.507 (10)	1.505 (10)	
C(6) - C(11)	1.498 (9)	1.509 (10)	
C(7) - C(12)	1.502(10)	1.522 (9)	
C(14) - C(15) C(15) - C(16)	1.523(11) 1.517(19)	1.544 (11)	
C(15) = C(16) C(16) = C(17)	1.517(12) 1.529(11)	1.329(11) 1.475(11)	
C(10) - C(20)	1.505(10)	1.501 (11)	
C(20)-C(21)	1.518 (12)	1.509 (12)	
C(21)-C(22)	1.512 (10)	1.515 (11)	
	ar	ngle	
atoms	$\frac{\text{ar}}{[Cp*CaI(THF)_2]_2}$	ngle [Cp*CaI(THF) ₂] ₂ (B)	
atoms	ar [Cp*CaI(THF) ₂] ₂ (A) 94 59 (4)	ngle [Cp*CaI(THF) ₂] ₂ (B) 97.73.(4)	
atoms Ca-I-Ca' O(13)-Ca-O(18)	ar [Cp*CaI(THF) ₂] ₂ (A) 94.59 (4) 74.57 (16)	ngle [Cp*CaI(THF) ₂] ₂ (B) 97.73 (4) 77.89 (16)	
atoms Ca-I-Ca' O(13)-Ca-O(18) Ca(1)-O(13)-C(14)	$\begin{array}{c} & \text{ar} \\ \hline & [Cp*CaI(THF)_2]_2 \\ & (A) \\ \hline & 94.59 \ (4) \\ & 74.57 \ (16) \\ & 134.5 \ (4) \end{array}$	ngle [Cp*CaI(THF) ₂] ₂ (B) 97.73 (4) 77.89 (16) 123.6 (4)	
atoms Ca-I-Ca' O(13)-Ca-O(18) Ca(1)-O(13)-C(14) Ca(1)-O(13)-C(17)	$\begin{array}{c} & \text{ar} \\ \hline [Cp*CaI(THF)_2]_2 \\ (A) \\ \hline 94.59 \ (4) \\ 74.57 \ (16) \\ 134.5 \ (4) \\ 122.0 \ (4) \end{array}$	ngle [Cp*CaI(THF) ₂] ₂ (B) 97.73 (4) 77.89 (16) 123.6 (4) 125.9 (4)	
atoms Ca-I-Ca' O(13)-Ca-O(18) Ca(1)-O(13)-C(14) Ca(1)-O(13)-C(17) C(14)-O(13)-C(17) C(14)-O(13)-C(17)	$\begin{array}{c} & \text{ar} \\ \hline [Cp*CaI(THF)_2]_2 \\ (A) \\ \hline 94.59 (4) \\ 74.57 (16) \\ 134.5 (4) \\ 122.0 (4) \\ 103.5 (5) \\ 114.2 (4) \\ \hline \end{array}$	ngle [Cp*CaI(THF) ₂] ₂ (B) 97.73 (4) 77.89 (16) 123.6 (4) 125.9 (4) 105.5 (5) 105.5 (5)	
$\frac{\text{atoms}}{\text{Ca-I-Ca'}}$ $\frac{\text{Ca-I-Ca'}}{\text{O}(13)-\text{Ca-O}(18)}$ $\frac{\text{Ca}(1)-\text{O}(13)-\text{C}(14)}{\text{Ca}(1)-\text{O}(13)-\text{C}(17)}$ $\frac{\text{C}(14)-\text{O}(13)-\text{C}(17)}{\text{Ca}(1)-\text{O}(18)-\text{C}(19)}$ $\frac{\text{Ca}(1)-\text{O}(18)-\text{C}(19)}{\text{Ca}(1)-\text{O}(18)-\text{C}(29)}$	$\begin{array}{c} & \text{ar} \\ \hline & [Cp*CaI(THF)_2]_2 \\ & (A) \\ \hline & 94.59 \ (4) \\ & 74.57 \ (16) \\ & 134.5 \ (4) \\ & 122.0 \ (4) \\ & 103.5 \ (5) \\ & 114.6 \ (4) \\ & 129.7 \ (4) \\ \end{array}$	ngle [Cp*CaI(THF) ₂] ₂ (B) 97.73 (4) 77.89 (16) 123.6 (4) 125.9 (4) 105.5 (5) 121.6 (4) 127.0 (4)	
$\begin{array}{r} atoms \\ \hline Ca-I-Ca' \\ O(13)-Ca-O(18) \\ Ca(1)-O(13)-C(14) \\ Ca(1)-O(13)-C(17) \\ C(14)-O(13)-C(17) \\ Ca(1)-O(18)-C(17) \\ Ca(1)-O(18)-C(19) \\ Ca(1)-O(18)-C(22) \\ C(19)-O(18)-C(22) \\ C(19)-O(18)-C(22) \\ \end{array}$	$\begin{array}{c} \begin{array}{c} \text{ar} \\ \hline \\ [Cp*CaI(THF)_2]_2 \\ (A) \\ \hline \\ 94.59 \ (4) \\ 74.57 \ (16) \\ 134.5 \ (4) \\ 122.0 \ (4) \\ 103.5 \ (5) \\ 114.6 \ (4) \\ 129.7 \ (4) \\ \hline \\ 108.6 \ (5) \end{array}$	$\begin{array}{c} \mbox{ngle} \\ \hline [Cp*CaI(THF)_2]_2 \\ (B) \\ \hline 97.73 (4) \\ 77.89 (16) \\ 123.6 (4) \\ 125.9 (4) \\ 105.5 (5) \\ 121.6 (4) \\ 127.0 (4) \\ 108.5 (5) \end{array}$	
$\begin{array}{c} atoms \\ \hline Ca-I-Ca' \\ O(13)-Ca-O(18) \\ Ca(1)-O(13)-C(14) \\ Ca(1)-O(13)-C(17) \\ C(14)-O(13)-C(17) \\ Ca(1)-O(18)-C(19) \\ Ca(1)-O(18)-C(22) \\ C(19)-O(18)-C(22) \\ C(19)-O(18)-C(22) \\ C(4)-C(3)-C(7) \end{array}$	$\begin{array}{c} \\ \hline \\ \hline \\ [Cp*CaI(THF)_2]_2 \\ \hline \\ (A) \\ \hline \\ 94.59 \ (4) \\ 74.57 \ (16) \\ 134.5 \ (4) \\ 122.0 \ (4) \\ 103.5 \ (5) \\ 114.6 \ (4) \\ 129.7 \ (4) \\ 108.6 \ (5) \\ 107.9 \ (6) \\ \end{array}$	$\begin{array}{c} \label{eq:constraint} \hline \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	
$\begin{array}{c} atoms \\ \hline Ca-I-Ca' \\ O(13)-Ca-O(18) \\ Ca(1)-O(13)-C(14) \\ Ca(1)-O(13)-C(17) \\ C(14)-O(13)-C(17) \\ Ca(1)-O(18)-C(19) \\ Ca(1)-O(18)-C(22) \\ C(19)-O(18)-C(22) \\ C(19)-O(18)-C(22) \\ C(4)-C(3)-C(7) \\ C(4)-C(3)-C(8) \end{array}$	$\begin{array}{c} \\ \hline \\ \hline \\ [Cp*CaI(THF)_2]_2 \\ \hline \\ (A) \\ \hline \\ 94.59 (4) \\ 74.57 (16) \\ 134.5 (4) \\ 122.0 (4) \\ 103.5 (5) \\ 114.6 (4) \\ 129.7 (4) \\ 108.6 (5) \\ 107.9 (6) \\ 126.8 (6) \\ \end{array}$	$\begin{array}{r} \hline \\ \hline $	
$\frac{\text{atoms}}{Ca-I-Ca'}$ $O(13)-Ca-O(18)$ $Ca(1)-O(13)-C(14)$ $Ca(1)-O(13)-C(17)$ $C(14)-O(18)-C(17)$ $Ca(1)-O(18)-C(22)$ $C(19)-O(18)-C(22)$ $C(4)-C(3)-C(7)$ $C(4)-C(3)-C(8)$ $C(7)-C(3)-C(8)$ $C(7)-C(3)-C(8)$ $C(7)-C(3)-C(8)$	$\begin{array}{c} \\ \hline \\ $	$\begin{array}{c} \label{eq:constraint} \hline \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	
$\begin{array}{c} atoms \\ \hline Ca-I-Ca' \\ O(13)-Ca-O(18) \\ Ca(1)-O(13)-C(14) \\ Ca(1)-O(13)-C(17) \\ C(14)-O(13)-C(17) \\ Ca(1)-O(18)-C(22) \\ Ca(1)-O(18)-C(22) \\ C(19)-O(18)-C(22) \\ C(4)-C(3)-C(7) \\ C(4)-C(3)-C(8) \\ C(7)-C(3)-C(8) \\ C(7)-C(3)-C(8) \\ C(3)-C(4)-C(5) \\ C(3)-C(4)-C$	$\begin{array}{c} \\ \hline \\ $	$\begin{array}{c} \\ \hline \\ $	
$\begin{array}{c} atoms \\ \hline Ca-I-Ca' \\ O(13)-Ca-O(18) \\ Ca(1)-O(13)-C(14) \\ Ca(1)-O(13)-C(17) \\ C(14)-O(13)-C(17) \\ Ca(1)-O(18)-C(22) \\ Ca(1)-O(18)-C(22) \\ C(19)-O(18)-C(22) \\ C(4)-C(3)-C(7) \\ C(4)-C(3)-C(8) \\ C(7)-C(3)-C(8) \\ C(7)-C(3)-C(8) \\ C(3)-C(4)-C(5) \\ C(3)-C(4)-C(9) \\ C(5)-C(4)-C(9) \\ \end{array}$	$\begin{array}{c} \begin{array}{c} \text{ar} \\ \hline \\ $	$\begin{array}{r} \label{eq:constraints} \hline \begin{tabular}{ cp*Cal(THF)_2]_2} \\ \hline \end{tabular} \\ \hline \end{tabular}$	
$\begin{array}{c} atoms \\ \hline Ca-I-Ca' \\ O(13)-Ca-O(18) \\ Ca(1)-O(13)-C(14) \\ Ca(1)-O(13)-C(17) \\ C(14)-O(13)-C(17) \\ C(14)-O(18)-C(19) \\ Ca(1)-O(18)-C(22) \\ C(19)-O(18)-C(22) \\ C(4)-C(3)-C(7) \\ C(4)-C(3)-C(7) \\ C(4)-C(3)-C(8) \\ C(7)-C(3)-C(8) \\ C(7)-C(3)-C(8) \\ C(3)-C(4)-C(5) \\ C(3)-C(4)-C(9) \\ C(5)-C(4)-C(9) \\ C(4)-C(5)-C(6) \\ \end{array}$	$\begin{array}{c} & \text{ar} \\ \hline [Cp*CaI(THF)_2]_2 \\ (A) \\ \hline 94.59 (4) \\ 74.57 (16) \\ 134.5 (4) \\ 122.0 (4) \\ 103.5 (5) \\ 114.6 (4) \\ 129.7 (4) \\ 108.6 (5) \\ 107.9 (6) \\ 126.8 (6) \\ 124.9 (6) \\ 125.0 (6) \\ 126.4 (6) \\ 108.0 (6) \\ \end{array}$	$\begin{array}{c} \\ \hline \\ $	
$\begin{array}{c} atoms \\ \hline Ca-I-Ca' \\ O(13)-Ca-O(18) \\ Ca(1)-O(13)-C(14) \\ Ca(1)-O(13)-C(17) \\ C(14)-O(13)-C(17) \\ Ca(1)-O(18)-C(22) \\ C(1)-O(18)-C(22) \\ C(1)-O(18)-C(22) \\ C(4)-C(3)-C(7) \\ C(4)-C(3)-C(7) \\ C(4)-C(3)-C(8) \\ C(7)-C(3)-C(8) \\ C(7)-C(3)-C(8) \\ C(3)-C(4)-C(5) \\ C(3)-C(4)-C(5) \\ C(3)-C(4)-C(9) \\ C(4)-C(5)-C(6) \\ C(4)-C(5)-C(10) \\ \end{array}$	$\begin{array}{c} & \text{ar} \\ \hline \\ \hline [Cp*CaI(THF)_2]_2 \\ (A) \\ \hline \\ 94.59 (4) \\ 74.57 (16) \\ 134.5 (4) \\ 122.0 (4) \\ 103.5 (5) \\ 114.6 (4) \\ 129.7 (4) \\ 108.6 (5) \\ 107.9 (6) \\ 126.8 (6) \\ 124.9 (6) \\ 126.4 (6) \\ 126.4 (6) \\ 108.0 (6) \\ 124.9 (6) \\ \end{array}$	$\begin{array}{c} \\ \hline \\ $	
$\begin{array}{c} atoms \\ \hline Ca-I-Ca' \\ O(13)-Ca-O(18) \\ Ca(1)-O(13)-C(14) \\ Ca(1)-O(13)-C(17) \\ C(14)-O(13)-C(17) \\ Ca(1)-O(18)-C(22) \\ C(19)-O(18)-C(22) \\ C(4)-C(3)-C(7) \\ C(4)-C(3)-C(8) \\ C(7)-C(3)-C(8) \\ C(7)-C(3)-C(8) \\ C(3)-C(4)-C(5) \\ C(3)-C(4)-C(5) \\ C(5)-C(4)-C(9) \\ C(4)-C(5)-C(10) \\ C(6)-C(5)-C(10) \\ C(6)-C(5)-C(10) \\ \end{array}$	$\begin{array}{c} \begin{array}{c} & \text{ar} \\ \hline \\ $	$\begin{array}{c} \\ \hline \\ $	
$\frac{\text{atoms}}{Ca-I-Ca'}$ O(13)-Ca-O(18) Ca(1)-O(13)-C(14) Ca(1)-O(13)-C(17) C(14)-O(13)-C(17) Ca(1)-O(18)-C(22) C(19)-O(18)-C(22) C(4)-C(3)-C(7) C(4)-C(3)-C(8) C(7)-C(3)-C(8) C(7)-C(3)-C(8) C(3)-C(4)-C(5) C(3)-C(4)-C(9) C(4)-C(5)-C(6) C(4)-C(5)-C(10) C(6)-C(5)-C(10) C(6)-C(5)-C(10) C(6)-C(7)-C(10) C(6)-C(7)-C(10) C(6)-C(7)-C(10) C(6)-C(6)-C(7) C(11)-	$\begin{array}{c} \begin{array}{c} & \text{ar} \\ \hline \\ $	$\begin{array}{c} \\ \hline \\ $	
$\begin{array}{c} atoms \\ \hline Ca-I-Ca' \\ O(13)-Ca-O(18) \\ Ca(1)-O(13)-C(14) \\ Ca(1)-O(13)-C(17) \\ C(14)-O(13)-C(17) \\ Ca(1)-O(18)-C(22) \\ C(19)-O(18)-C(22) \\ C(19)-O(18)-C(22) \\ C(4)-C(3)-C(8) \\ C(3)-C(4)-C(3) \\ C(3)-C(4)-C(5) \\ C(3)-C(4)-C(5) \\ C(3)-C(4)-C(9) \\ C(5)-C(4)-C(9) \\ C(5)-C(4)-C(9) \\ C(4)-C(5)-C(10) \\ C(6)-C(5)-C(10) \\ C(6)-C(5)-C(10) \\ C(5)-C(6)-C(11) \\ C(7)-C(6)-C(11) \\ C(7)-C(6)-C(11) \\ C(7)-C(6)-C(11) \\ \end{array}$	$\begin{array}{r} & \text{ar} \\ \hline \hline [Cp*CaI(THF)_2]_2 \\ (A) \\ \hline 94.59 (4) \\ 74.57 (16) \\ 134.5 (4) \\ 122.0 (4) \\ 122.0 (4) \\ 122.0 (4) \\ 122.0 (4) \\ 122.7 (4) \\ 103.5 (5) \\ 114.6 (4) \\ 129.7 (4) \\ 108.6 (5) \\ 107.9 (6) \\ 126.8 (6) \\ 124.9 (6) \\ 125.0 (6) \\ 125.0 (6) \\ 125.0 (6) \\ 126.4 (6) \\ 108.0 (6) \\ 124.9 (6) \\ 126.6 (6) \\ 107.3 (6) \\ 126.7 (6) \\ 126.7 (6) \\ 125.9 (6) \\ \end{array}$	$\begin{array}{r} \label{eq:constraints} \hline \\ \hline [Cp*CaI(THF)_2]_2 \\ (B) \\ \hline \\ \hline 97.73 (4) \\ 77.89 (16) \\ 123.6 (4) \\ 125.9 (4) \\ 105.5 (5) \\ 121.6 (4) \\ 127.0 (4) \\ 108.5 (5) \\ 107.8 (6) \\ 123.5 (6) \\ 123.5 (6) \\ 128.1 (6)$	
$\begin{array}{c} atoms \\ \hline Ca-I-Ca' \\ O(13)-Ca-O(18) \\ Ca(1)-O(13)-C(14) \\ Ca(1)-O(13)-C(17) \\ C(14)-O(13)-C(17) \\ C(14)-O(18)-C(19) \\ Ca(1)-O(18)-C(22) \\ C(19)-O(18)-C(22) \\ C(4)-C(3)-C(8) \\ C(3)-C(4)-C(3) \\ C(3)-C(4)-C(5) \\ C(3)-C(4)-C(9) \\ C(5)-C(4)-C(9) \\ C(5)-C(4)-C(9) \\ C(5)-C(4)-C(9) \\ C(5)-C(4)-C(10) \\ C(5)-C(6)-C(10) \\ C(6)-C(5)-C(10) \\ C(5)-C(6)-C(11) \\ C(5)-C(6)-C(11) \\ C(7)-C(6)-C(11) \\ C(3)-C(6)-C(11) $	$\begin{array}{r} & \text{ar} \\ \hline [Cp*CaI(THF)_2]_2 \\ (A) \\ \hline 94.59 (4) \\ 74.57 (16) \\ 134.5 (4) \\ 122.0 (4) \\ 122.0 (4) \\ 122.0 (4) \\ 122.0 (4) \\ 122.7 (4) \\ 103.5 (5) \\ 114.6 (4) \\ 129.7 (4) \\ 108.6 (5) \\ 107.9 (6) \\ 126.8 (6) \\ 124.9 (6) \\ 124.9 (6) \\ 125.0 (6) \\ 126.4 (6) \\ 108.0 (6) \\ 124.9 (6) \\ 126.6 (6) \\ 107.3 (6) \\ 126.7 (6) \\ 125.9 (6) \\ 108.2 (6) \\ \end{array}$	$\begin{array}{r} \label{eq:constraints} \hline \\ \hline [Cp*CaI(THF)_2]_2 \\ (B) \\ \hline \\ \hline 97.73 (4) \\ 77.89 (16) \\ 123.6 (4) \\ 125.9 (4) \\ 105.5 (5) \\ 121.6 (4) \\ 127.0 (4) \\ 108.5 (5) \\ 107.8 (6) \\ 123.5 (6) \\ 123.5 (6) \\ 128.1 (6) \\ 108.1 (6) \\ 125.6 (6) \\ 126.0 (6) \\ 126.0 (6) \\ 126.0 (6) \\ 126.1 (6) \\ 124.5 (6) \\ 127.4 (6) \\ 108.3 (6) \\ 126.7 (6) \\ 124.9 (6) \\ 107.8 (6) \\ \hline \end{array}$	
$\begin{array}{c} atoms \\ \hline Ca-I-Ca' \\ O(13)-Ca-O(18) \\ Ca(1)-O(13)-C(14) \\ Ca(1)-O(13)-C(17) \\ C(14)-O(13)-C(17) \\ C(14)-O(18)-C(19) \\ Ca(1)-O(18)-C(22) \\ C(19)-O(18)-C(22) \\ C(19)-O(18)-C(22) \\ C(4)-C(3)-C(8) \\ C(3)-C(4)-C(3) \\ C(3)-C(4)-C(5) \\ C(3)-C(4)-C(5) \\ C(3)-C(4)-C(9) \\ C(5)-C(4)-C(9) \\ C(5)-C(4)-C(9) \\ C(5)-C(4)-C(9) \\ C(5)-C(6)-C(10) \\ C(6)-C(5)-C(10) \\ C(5)-C(6)-C(11) \\ C(7)-C(6)-C(11) \\ C(3)-C(7)-C(6) \\ C(3)-C(7)-C(6) \\ C(3)-C(7)-C(12) \\ \end{array}$	$\begin{array}{r} & \text{ar} \\ \hline [Cp*CaI(THF)_2]_2 \\ (A) \\ \hline 94.59 (4) \\ 74.57 (16) \\ 134.5 (4) \\ 122.0 (4) \\ 122.0 (4) \\ 122.0 (4) \\ 122.0 (4) \\ 122.0 (4) \\ 129.7 (4) \\ 108.6 (5) \\ 114.6 (4) \\ 129.7 (4) \\ 108.6 (5) \\ 120.7 (4) \\ 108.6 (5) \\ 124.9 (6) \\ 124.9 (6) \\ 125.0 (6) \\ 124.9 (6) \\ 126.4 (6) \\ 108.0 (6) \\ 124.9 (6) \\ 126.6 (6) \\ 126.7 (6) \\ 125.9 (6) \\ 108.2 (6) \\ 125.2 (6) \\ \end{array}$	$\begin{array}{r} eq:space-s$	
$\begin{array}{c} atoms \\ \hline Ca-I-Ca' \\ O(13)-Ca-O(18) \\ Ca(1)-O(13)-C(14) \\ Ca(1)-O(13)-C(17) \\ C(14)-O(13)-C(17) \\ C(14)-O(18)-C(19) \\ Ca(1)-O(18)-C(22) \\ C(19)-O(18)-C(22) \\ C(4)-C(3)-C(8) \\ C(3)-C(4)-C(3) \\ C(3)-C(4)-C(5) \\ C(3)-C(4)-C(5) \\ C(3)-C(4)-C(9) \\ C(5)-C(4)-C(9) \\ C(5)-C(4)-C(9) \\ C(5)-C(4)-C(9) \\ C(5)-C(6)-C(10) \\ C(6)-C(5)-C(10) \\ C(6)-C(5)-C(10) \\ C(5)-C(6)-C(11) \\ C(7)-C(6)-C(11) \\ C(3)-C(7)-C(6) \\ C(3)-C(7)-C(12) \\ C(6)-C(7)-C(12) \\ \end{array}$	$\begin{array}{r} & \text{ar} \\ \hline [Cp*CaI(THF)_2]_2 \\ (A) \\ \hline 94.59 (4) \\ 74.57 (16) \\ 134.5 (4) \\ 122.0 (4) \\ 122.0 (4) \\ 122.0 (4) \\ 122.0 (4) \\ 122.0 (4) \\ 128.7 (4) \\ 108.6 (5) \\ 114.6 (4) \\ 129.7 (4) \\ 108.6 (5) \\ 107.9 (6) \\ 126.8 (6) \\ 124.9 (6) \\ 124.9 (6) \\ 125.0 (6) \\ 126.4 (6) \\ 108.0 (6) \\ 124.9 (6) \\ 126.6 (6) \\ 107.3 (6) \\ 126.7 (6) \\ 125.9 (6) \\ 108.2 (6) \\ 125.2 (6) \\ 125.2 (6) \\ 126.4 (6) \\ \end{array}$	$\begin{array}{r} \label{eq:constraints} \hline \\ \hline [Cp*CaI(THF)_2]_2 \\ (B) \\ \hline \\ \hline 97.73 (4) \\ 77.89 (16) \\ 123.6 (4) \\ 125.9 (4) \\ 105.5 (5) \\ 121.6 (4) \\ 127.0 (4) \\ 108.5 (5) \\ 107.8 (6) \\ 123.5 (6) \\ 123.5 (6) \\ 128.1 (6)$	
$\begin{array}{c} atoms \\ \hline Ca-I-Ca' \\ O(13)-Ca-O(18) \\ Ca(1)-O(13)-C(14) \\ Ca(1)-O(13)-C(17) \\ C(14)-O(13)-C(17) \\ C(14)-O(18)-C(19) \\ Ca(1)-O(18)-C(22) \\ C(19)-O(18)-C(22) \\ C(19)-O(18)-C(22) \\ C(4)-C(3)-C(8) \\ C(3)-C(4)-C(3) \\ C(3)-C(4)-C(5) \\ C(3)-C(4)-C(5) \\ C(3)-C(4)-C(9) \\ C(5)-C(4)-C(9) \\ C(5)-C(4)-C(9) \\ C(5)-C(4)-C(9) \\ C(5)-C(6)-C(10) \\ C(5)-C(6)-C(10) \\ C(5)-C(6)-C(11) \\ C(7)-C(6)-C(11) \\ C(3)-C(7)-C(6) \\ C(3)-C(7)-C(12) \\ C(6)-C(7)-C(12) \\ C(6)-C(7)-C(12) \\ O(13)-C(14)-C(15) \\ \end{array}$	$\begin{array}{c} \begin{array}{c} & \text{ar} \\ \hline [Cp*CaI(THF)_2]_2 \\ (A) \\ \hline 94.59 (4) \\ 74.57 (16) \\ 134.5 (4) \\ 122.0 (4) \\ 122.0 (4) \\ 122.0 (4) \\ 122.0 (4) \\ 122.0 (4) \\ 123.5 (5) \\ 114.6 (4) \\ 129.7 (4) \\ 108.6 (5) \\ 107.9 (6) \\ 126.8 (6) \\ 124.9 (6) \\ 124.9 (6) \\ 125.0 (6) \\ 125.0 (6) \\ 126.4 (6) \\ 108.0 (6) \\ 124.9 (6) \\ 126.6 (6) \\ 126.7 (6) \\ 125.9 (6) \\ 125.9 (6) \\ 108.2 (6) \\ 125.2 (6) \\ 125.2 (6) \\ 126.4 (6) \\ 103.9 (6) \\ 126.4 (6) \\ 103.9 (6) \\ 126.4 (6) \\ 103.9 (6) \\ 126.4 (6) \\ 103.9 (6) \\ 126.4 (6) \\ 103.9 (6) \\ 1$	$\begin{array}{r} \label{eq:product} & \\ \hline [Cp*CaI(THF)_2]_2 \\ (B) \\ \hline \\ 97.73 (4) \\ 77.89 (16) \\ 123.6 (4) \\ 125.9 (4) \\ 105.5 (5) \\ 121.6 (4) \\ 127.0 (4) \\ 108.5 (5) \\ 107.8 (6) \\ 123.5 (6) \\ 123.5 (6) \\ 128.1 (6) \\ 127.5 (6) \\ 124.7 (6) \\ 104.3 (6) \\ 104.3 (6) \\ 105.1 (6) \\ 104.3 (6) \\ 105.1 (6) \\ 104.3 (6) \\ 105.1 (6) \\ 105$	
$\begin{array}{c} atoms \\ \hline Ca-I-Ca' \\ O(13)-Ca-O(18) \\ Ca(1)-O(13)-C(14) \\ Ca(1)-O(13)-C(17) \\ C(14)-O(13)-C(17) \\ C(14)-O(18)-C(19) \\ Ca(1)-O(18)-C(22) \\ C(19)-O(18)-C(22) \\ C(19)-O(18)-C(22) \\ C(4)-C(3)-C(8) \\ C(7)-C(3)-C(8) \\ C(3)-C(4)-C(5) \\ C(3)-C(4)-C(5) \\ C(3)-C(4)-C(5) \\ C(3)-C(4)-C(9) \\ C(5)-C(4)-C(9) \\ C(5)-C(4)-C(9) \\ C(5)-C(6)-C(10) \\ C(5)-C(6)-C(10) \\ C(5)-C(6)-C(11) \\ C(7)-C(6)-C(11) \\ C(7)-C(6)-C(11) \\ C(7)-C(6)-C(12) \\ C(3)-C(7)-C(12) \\ C(6)-C(7)-C(12) \\ C(13)-C(14)-C(15) \\ C(14)-C(15)-C(16) \\ C(15)-C(15)-C(16) \\ C(15)-C(15)-C(15) \\ C$	$\begin{array}{c} & \text{ar} \\ \hline [Cp*CaI(THF)_2]_2 \\ (A) \\ \hline 94.59 (4) \\ 74.57 (16) \\ 134.5 (4) \\ 122.0 (4) \\ 122.0 (4) \\ 122.0 (4) \\ 122.0 (4) \\ 122.0 (4) \\ 122.0 (4) \\ 122.0 (4) \\ 120.7 (4) \\ 103.5 (5) \\ 114.6 (4) \\ 129.7 (4) \\ 108.6 (5) \\ 129.7 (4) \\ 108.6 (5) \\ 120.7 (6) \\ 126.8 (6) \\ 124.9 (6) \\ 125.0 (6) \\ 126.4 (6) \\ 108.0 (6) \\ 124.9 (6) \\ 126.6 (6) \\ 126.7 (6) \\ 126.7 (6) \\ 125.9 (6) \\ 108.2 (6) \\ 125.2 (6) \\ 125.2 (6) \\ 126.4 (6) \\ 103.8 (7) \\ 103.8 (7) \\ 103.8 (7) \\ 104.7 (6) \\ 103.8 (7) \\ 104.7 (6) \\ 103.8 (7) \\ 104.7 (6) \\ 104.7 $	$\begin{array}{c} \mbox{ngle} \\ \hline [Cp*CaI(THF)_2]_2 \\ (B) \\ \hline 97.73 (4) \\ 77.89 (16) \\ 123.6 (4) \\ 125.9 (4) \\ 105.5 (5) \\ 121.6 (4) \\ 127.0 (4) \\ 108.5 (5) \\ 107.8 (6) \\ 123.5 (6) \\ 123.5 (6) \\ 128.1 (6) \\ 128.1 (6) \\ 128.1 (6) \\ 125.6 (6) \\ 126.0 (6) \\ 126.0 (6) \\ 126.0 (6) \\ 126.0 (6) \\ 126.7 (6) \\ 124.5 (6) \\ 126.7 (6) \\ 124.9 (6) \\ 107.8 (6) \\ 127.5 (6) \\ 124.7 (6) \\ 104.3 (6) \\ 104.8 (6) \\ 10$	
$\begin{array}{c} atoms \\ \hline \\ Ca-I-Ca' \\ O(13)-Ca-O(18) \\ Ca(1)-O(13)-C(14) \\ Ca(1)-O(13)-C(17) \\ C(14)-O(13)-C(17) \\ C(14)-O(18)-C(19) \\ Ca(1)-O(18)-C(22) \\ C(19)-O(18)-C(22) \\ C(19)-O(18)-C(22) \\ C(4)-C(3)-C(8) \\ C(7)-C(3)-C(8) \\ C(3)-C(4)-C(5) \\ C(3)-C(4)-C(5) \\ C(3)-C(4)-C(5) \\ C(3)-C(4)-C(9) \\ C(5)-C(4)-C(9) \\ C(5)-C(4)-C(9) \\ C(5)-C(6)-C(10) \\ C(5)-C(6)-C(10) \\ C(5)-C(6)-C(11) \\ C(7)-C(6)-C(11) \\ C(7)-C(6)-C(11) \\ C(3)-C(7)-C(12) \\ C(6)-C(7)-C(12) \\ C(6)-C(7)-C(12) \\ C(13)-C(14)-C(15) \\ C(14)-C(15)-C(16) \\ C(13)-C(12)-C(16) \\$	$\begin{array}{c} & \text{ar} \\ \hline [Cp*CaI(THF)_2]_2 \\ (A) \\ \hline 94.59 (4) \\ 74.57 (16) \\ 134.5 (4) \\ 122.0 (4) \\ 122.0 (4) \\ 122.0 (4) \\ 122.0 (4) \\ 122.0 (4) \\ 122.0 (4) \\ 125.0 (5) \\ 114.6 (4) \\ 129.7 (4) \\ 108.6 (5) \\ 107.9 (6) \\ 126.8 (6) \\ 124.9 (6) \\ 124.9 (6) \\ 125.0 (6) \\ 126.4 (6) \\ 108.0 (6) \\ 124.9 (6) \\ 126.6 (6) \\ 126.7 (6) \\ 125.9 (6) \\ 125.9 (6) \\ 125.2 (6) \\ 125.2 (6) \\ 125.2 (6) \\ 125.2 (6) \\ 125.2 (6) \\ 125.2 (6) \\ 126.4 (6) \\ 103.8 (7) \\ 104.7 (6) \\ 104.7 (6) \\ 105.5 (6) \\ \end{array}$	$\begin{array}{c} \mbox{rgs} \\ \hline [Cp*CaI(THF)_2]_2 \\ (B) \\ \hline \end{tabular} \\ $	
$\begin{array}{c} atoms \\ \hline \\ Ca-I-Ca' \\ O(13)-Ca-O(18) \\ Ca(1)-O(13)-C(14) \\ Ca(1)-O(13)-C(17) \\ C(14)-O(13)-C(17) \\ C(14)-O(18)-C(19) \\ Ca(1)-O(18)-C(22) \\ C(19)-O(18)-C(22) \\ C(19)-O(18)-C(22) \\ C(4)-C(3)-C(8) \\ C(7)-C(3)-C(8) \\ C(3)-C(4)-C(5) \\ C(3)-C(4)-C(5) \\ C(3)-C(4)-C(5) \\ C(3)-C(4)-C(9) \\ C(5)-C(4)-C(9) \\ C(5)-C(4)-C(9) \\ C(5)-C(4)-C(9) \\ C(5)-C(6)-C(10) \\ C(6)-C(5)-C(10) \\ C(6)-C(5)-C(10) \\ C(6)-C(5)-C(10) \\ C(5)-C(6)-C(11) \\ C(7)-C(6)-C(11) \\ C(7)-C(6)-C(11) \\ C(3)-C(7)-C(12) \\ C(6)-C(7)-C(12) \\ C(6)-C(7)-C(12) \\ C(6)-C(7)-C(12) \\ O(13)-C(14)-C(15) \\ C(14)-C(15)-C(16) \\ C(17)-C(16) \\ C(17)-C(16) \\ O(18)-C(19)-C(20) \\ \end{array}$	$\begin{array}{c} & \text{ar} \\ \hline [Cp*CaI(THF)_2]_2 \\ (A) \\ \hline 94.59 (4) \\ 74.57 (16) \\ 134.5 (4) \\ 122.0 (4) \\ 122.0 (4) \\ 122.0 (4) \\ 122.0 (4) \\ 122.0 (4) \\ 122.0 (4) \\ 122.0 (4) \\ 120.7 (4) \\ 108.6 (5) \\ 114.6 (4) \\ 129.7 (4) \\ 108.6 (5) \\ 120.7 (4) \\ 108.6 (6) \\ 124.9 (6) \\ 126.8 (6) \\ 124.9 (6) \\ 125.0 (6) \\ 126.4 (6) \\ 108.0 (6) \\ 124.9 (6) \\ 126.6 (6) \\ 126.7 (6) \\ 125.9 (6) \\ 125.9 (6) \\ 125.2 (6) \\ 125.2 (6) \\ 125.2 (6) \\ 125.2 (6) \\ 125.2 (6) \\ 103.8 (7) \\ 104.7 (6) \\ 105.5 (6) \\ 106.2 (6) \\ \end{array}$	$\begin{array}{c} \mbox{rgs} \\ \hline [Cp*CaI(THF)_2]_2 \\ (B) \\ \hline 97.73 (4) \\ 77.89 (16) \\ 123.6 (4) \\ 125.9 (4) \\ 105.5 (5) \\ 121.6 (4) \\ 127.0 (4) \\ 108.5 (5) \\ 107.8 (6) \\ 123.5 (6) \\ 123.5 (6) \\ 128.1 (6) \\ 128.1 (6) \\ 128.1 (6) \\ 125.6 (6) \\ 126.0 (6) \\ 126.0 (6) \\ 126.0 (6) \\ 126.0 (6) \\ 126.0 (6) \\ 127.4 (6) \\ 108.3 (6) \\ 126.7 (6) \\ 124.9 (6) \\ 107.8 (6) \\ 127.5 (6) \\ 124.7 (6) \\ 104.3 (6) \\ 104.3 (6) \\ 104.3 (7) \\ 104.8 (6) \\ 105.4 (6) \\ 105.4 (6) \\ \hline \end{array}$	
$\begin{array}{c} atoms \\ \hline \\ Ca-I-Ca' \\ O(13)-Ca-O(18) \\ Ca(1)-O(13)-C(14) \\ Ca(1)-O(13)-C(17) \\ C(14)-O(13)-C(17) \\ Ca(1)-O(18)-C(19) \\ Ca(1)-O(18)-C(22) \\ C(19)-O(18)-C(22) \\ C(4)-C(3)-C(8) \\ C(7)-C(3)-C(8) \\ C(3)-C(4)-C(5) \\ C(3)-C(4)-C(5) \\ C(3)-C(4)-C(9) \\ C(5)-C(4)-C(9) \\ C(5)-C(4)-C(9) \\ C(5)-C(6)-C(10) \\ C(6)-C(5)-C(10) \\ C(5)-C(6)-C(11) \\ C(7)-C(6)-C(11) \\ C(7)-C(6)-C(11) \\ C(3)-C(7)-C(12) \\ C(6)-C(7)-C(12) \\ C(6)-C(7)-C(12) \\ C(6)-C(7)-C(12) \\ C(13)-C(14)-C(15) \\ C(14)-C(15)-C(16) \\ C(13)-C(17)-C(16) \\ C(13)-C(17)-C(16) \\ O(18)-C(19)-C(20) \\ C(19)-C(20)-C(21) \\ \end{array}$	$\begin{array}{c} & \text{ar} \\ \hline [Cp*CaI(THF)_2]_2 \\ (A) \\ \hline 94.59 (4) \\ 74.57 (16) \\ 134.5 (4) \\ 122.0 (4) \\ 122.0 (4) \\ 122.0 (4) \\ 122.0 (4) \\ 122.0 (4) \\ 122.0 (4) \\ 122.0 (4) \\ 120.7 (4) \\ 108.6 (5) \\ 114.6 (4) \\ 129.7 (4) \\ 108.6 (5) \\ 120.7 (4) \\ 108.6 (6) \\ 124.9 (6) \\ 126.8 (6) \\ 124.9 (6) \\ 125.0 (6) \\ 126.4 (6) \\ 108.0 (6) \\ 124.9 (6) \\ 126.6 (6) \\ 126.7 (6) \\ 125.9 (6) \\ 125.9 (6) \\ 125.2 (6) \\ 125.2 (6) \\ 125.2 (6) \\ 125.2 (6) \\ 103.8 (7) \\ 104.7 (6) \\ 105.5 (6) \\ 106.2 (6) \\ 102.2 (6) \\ \end{array}$	$\begin{array}{c} \\ \hline \\ $	
$\begin{array}{c} atoms \\ \hline \\ Ca-I-Ca' \\ O(13)-Ca-O(18) \\ Ca(1)-O(13)-C(14) \\ Ca(1)-O(13)-C(17) \\ C(14)-O(13)-C(17) \\ Ca(1)-O(18)-C(19) \\ Ca(1)-O(18)-C(22) \\ C(19)-O(18)-C(22) \\ C(19)-O(18)-C(22) \\ C(4)-C(3)-C(8) \\ C(7)-C(3)-C(8) \\ C(3)-C(4)-C(5) \\ C(3)-C(4)-C(5) \\ C(3)-C(4)-C(9) \\ C(5)-C(4)-C(9) \\ C(5)-C(4)-C(9) \\ C(4)-C(5)-C(6) \\ C(4)-C(5)-C(10) \\ C(6)-C(5)-C(10) \\ C(6)-C(5)-C(10) \\ C(5)-C(6)-C(7) \\ C(5)-C(6)-C(7) \\ C(5)-C(6)-C(11) \\ C(7)-C(6)-C(11) \\ C(7)-C(6)-C(11) \\ C(3)-C(7)-C(12) \\ C(6)-C(7)-C(12) \\ C(6)-C(7)-C(12) \\ C(6)-C(7)-C(12) \\ C(13)-C(17)-C(16) \\ C(13)-C(17)-C(16) \\ C(15)-C(16)-C(17) \\ O(13)-C(17)-C(16) \\ O(18)-C(19)-C(20) \\ C(21)-C(22)-C(21) \\ C(20)-C(21)-C(22) \\ \end{array}$	$\begin{array}{c} & \text{ar} \\ \hline [Cp*CaI(THF)_2]_2 \\ (A) \\ \hline 94.59 (4) \\ 74.57 (16) \\ 134.5 (4) \\ 122.0 (4) \\ 122.0 (4) \\ 122.0 (4) \\ 122.0 (4) \\ 122.0 (4) \\ 122.0 (4) \\ 125.0 (6) \\ 126.8 (6) \\ 129.7 (4) \\ 108.6 (5) \\ 107.9 (6) \\ 126.8 (6) \\ 124.9 (6) \\ 126.8 (6) \\ 124.9 (6) \\ 125.0 (6) \\ 126.4 (6) \\ 108.0 (6) \\ 124.9 (6) \\ 126.6 (6) \\ 126.7 (6) \\ 126.7 (6) \\ 126.7 (6) \\ 126.7 (6) \\ 126.9 (6) \\ 126.2 (6) \\ 108.2 (6) \\ 125.2 (6) \\ 125.2 (6) \\ 108.2 (6) \\ 103.8 (7) \\ 104.7 (6) \\ 105.5 (6) \\ 106.2 (6) \\ 102.2 (6) \\ 101.8 (6) \\ \end{array}$	$\begin{array}{c} \mbox{ngle} \\ \hline [Cp*CaI(THF)_2]_2 \\ (B) \\ \hline 97.73 (4) \\ 77.89 (16) \\ 123.6 (4) \\ 125.9 (4) \\ 105.5 (5) \\ 121.6 (4) \\ 127.0 (4) \\ 108.5 (5) \\ 121.6 (4) \\ 127.0 (4) \\ 108.5 (6) \\ 123.5 (6) \\ 123.5 (6) \\ 128.1 (6) \\ 128.1 (6) \\ 128.1 (6) \\ 125.6 (6) \\ 126.0 (6) \\ 126.0 (6) \\ 126.0 (6) \\ 126.0 (6) \\ 126.0 (6) \\ 127.4 (6) \\ 108.3 (6) \\ 126.7 (6) \\ 124.9 (6) \\ 107.8 (6) \\ 127.5 (6) \\ 124.7 (6) \\ 104.3 (6) \\ 104.3 (7) \\ 104.8 (6) \\ 105.4 (6) \\ 105.4 (6) \\ 103.1 (6) \\ 101.7 (6) \\ \hline \end{array}$	

on the non-hydrogen parameters. All hydrogen atoms were refined isotropically and non-hydrogen atoms anisotropically in the final cycles. A final difference Fourier synthesis was featureless. Positional parameters are supplied in Table II; selected bond distances and angles are listed in Table III.

Results and Discussion

Synthesis of $Cp*CaI(THF)_2$ from KCp* and CaI_2 . Considering that the metathetical reaction of a 2:1 molar ratio of KCp* or NaCp* and CaI₂ produces $Cp*_2Ca-(THF, OEt_2)_2$ in high yield (eq 1),⁶ simple stoichiometric

$$2\text{KCp}^* + \text{CaI}_2 \xrightarrow{\text{THF}} \text{Cp}^*_2\text{Ca}(\text{THF})_2 + 2\text{KI}_{\downarrow} \quad (1)$$

$$1 \quad (81\%)$$

considerations suggest that monopentamethylcyclopentadienyl alkaline-earth halide complexes could be prepared by the reaction of equimolar amounts of KCp* and CaI_2 .

Stirring an approximately equimolar mixture of KCp^{*} and CaI₂ in THF overnight, removing the precipitate, and evaporating the solvent from the filtrate does yield Cp^{*}CaI(THF)₂ (2),¹⁵ but 1 and CaI₂(THF)₂ (3)¹⁶ are present as well. Separation of the compounds by solvent extraction is not easily done, since all three are moderately to easily soluble in THF, and only 1 has any solubility in alkanes. If the crude material is washed with toluene, however, most of 1 and some of 2 is dissolved. On standing, the toluene washings will deposit colorless crystals of 2 in low yield. In the absence of air or moisture, solid samples of 2 are indefinitely stable at room temperature.

The mixture of 1 and 2 obtained from the reaction of KCp^{*} and CaI₂ suggests that a Schlenk equilibrium between 1 and 2 exists, as in eq 2. The ¹H NMR spectrum

of homogeneous 34 and 15 mM THF- d_8 solutions of 2 prepared from crystalline material reveals 1 and 2 in a 1:2 molar ratio. If eq 2 is applicable, an amount of 3 equal to that of 1 must also present in solution. The relative amounts of 1, 2, and 3 in THF- d_8 are then 1, 2, and 1, respectively, and the equilibrium constant K calculated from eq 3 is 4.¹⁷ This is the value expected from a sta-

$$K = \frac{[Cp*CaI(THF)_2]^2}{[Cp*_2Ca(THF)_2][CaI_2(THF)_2]}$$
(3)

tistical distribution of Cp* rings and iodide ligands and indicates that complete scrambling of the ligands is occurring.

Higher Yield Synthesis of $Cp*CaI(THF)_2$. The preparation of 2 is complicated by the Schlenk equilibrium between 1 and 2 (see eq 2) complicates the preparation of the latter in good yield. Although excess CaI_2 could be added to the reaction with KCp* in order to suppress the

Figure 1. ORTEP view of one of the two independent dimers of $[Cp*Ca(\mu-I)(THF)_2]_2$ (A), giving the numbering scheme used in the tables. Dimer B is numbered similarly. For clarity, the THF ligands have been rendered as lines.

formation of 1, the residual $CaI_2(THF)_2$ would seriously contaminate the final product.¹⁸ An alternate approach is to use a 50% molar excess of KCp*, which produces nearly equimolar mixtures of 1 and 2, with little or no 3.¹⁹ Removal of most of the metallocene is accomplished with a hexane wash, leaving 2 in moderately good yield.

Synthesis of $[Cp*Ca(\mu-I)(THF)_2]_2$ from $Cp*_2Ca-(THF)_2$ and CaI_2 . Stirring an equimolar mixture of 1 and CaI_2 in THF overnight, removing the solvent, and analyzing the material by NMR spectroscopy in THF- d_8 indicates the presence of both 1 and 2 in a ratio of 30:70. This is essentially the same proportion as that from KCp* and CaI₂ and supports the appropriateness of eq 2. Although in principle 2 can be prepared from either 1 or KCp*, the use of KCp* avoids the extra steps required to prepare 1.

Relationship of Cp*CaI(THF)₂ to Grignard Reagents. The equilibrium between 1, 2, and 3 in THF invites comparison with the behavior of organomagnesium Grignard reagents. In an NMR tube experiment, 2 was found rapidly and completely to dissociate in dioxane- d_8 to form 1 and a white precipitate, presumably the solvate CaI₂-(dioxane)_n. Such behavior is typical of Grignard solutions.^{20,21} A saturated solution of crystalline 2 prepared in C₆D₆ exhibits a 4:96 ratio of 1:2 in its ¹H NMR spectrum. Although the ratio of 1:2 in a fairly dilute (11 mM) solution in C₆D₆ does not change over a 2-week period, greater dilution causes the amount of 1 to increase with time.²²

Schlenk equilibria and exchange in Grignard systems has been directly observed with various types of NMR

⁽¹⁵⁾ In this paper, we will use the formula "Cp*CaI(THF)₂" to refer to the compound in solution or when only the empirical formula is of interest; no degree of association is implied by it. "[Cp*Ca(μ -I)(THF)₂]₂" will be used when the structural features in the solid state are discussed.

⁽¹⁶⁾ We will use the formula of the disolvate in the following discussion, although the actual number of THF ligands in solution is probably higher. It might be noted that evaporation of saturated THF solutions of CaI₂ produces a material which analyzes as (partially desolvated) CaI₂(THF)₄. Anal. Calcd for CaI₂(THF)₄: C, 33.00; H, 5.54. Found (average of two determinations): C, 30.91; H, 5.08. The solubility of anhydrous CaI₂ in THF is calculated to be 12.4 g/L (42.2 mmol/L). The presence of CaI₂(THF)₂ in solution is evidenced by the increase in integrated intensities of THF resonances in ¹H NMR spectra measured in C₆D₆. (17) Although it is in principle not as accurate.

⁽¹⁷⁾ Although it is in principle not as accurate a method, an identical value of K was obtained by examining the crude products from the reaction mixtures of KCp^{*} and CaI₂ after removal of the THF but without filtering. The ratio of CaI₂:KCp^{*} was varied from 1 to 4, and the value of K measured by ¹H NMR in THF- d_8 averaged to 4.0.

⁽¹⁸⁾ It is worth noting that the addition of excess iodide (as ("Bu)₄N⁺I⁻) to the reaction of KCp* and CaI₂ in THF has essentially the same effect on the ratio of 1 to 2 as does the addition of excess CaI₂. This is an indication that the function of excess iodide may be to drive a dissociative equilibrium such as Cp*CaI(THF)₂ = [Cp*Ca(THF)_n]⁺ + [I(THF)_n]⁻ to the left and prevent the formation of 1 from the combination of 1 [Cn*Ca(THF)]⁺

 $[[]I(THF)_n]^-$ to the left and prevent the formation of 1 from the rombination of " $[Cp*Ca(THF)_n]^+$ " with free $[Cp*]^-$. (19) These amounts, measured by NMR in C_6D_6 , are those expected from the stoichiometric equation $3KCp^* + 2CaI_2 \xrightarrow{THP} Cp*_2Ca(THF)_2 + Cp*CaI(THF)_2 + 3KI \downarrow$. Schlenk equilibrium is evidently not synthetically important when the $KCp*:CaI_2$ ratio is appreciably greater than one.

⁽²⁰⁾ Schlenk, W.; Schlenk, W. Chem. Ber. 1929, 62, 920-924.

⁽²¹⁾ Reviews of the early literature on Grignard chemistry may be found in: (a) Wakefield, B. J. Organomet. Chem. Rev. 1966, 1, 131-156.
(b) Ashby, E. C. Q. Rev., Chem. Soc., 1967, 21, 259-285.

⁽²²⁾ A nominally 1.9 mM solution of 2, prepared by adding 0.010 g of 2 to 12 mL of C₆D₆, exhibits a ratio of 1.2 of 35:65 after 8 h. On standing 72 h, the 1:2 ratio changes to 46:54. Owing to precipitation of Cal₂(THF)₂, a completely clear solution of 2 is never obtained in C₆D₆. Grignard solutions prepared in hydrocarbons also have R/X > 1 and may decompose on high dilution; see: (a) Glaze, W. H.; Selman, C. M. J. Organomet. Chem. 1966, 5, 477. (b) Smith, W. N., Jr. J. Organomet. Chem. 1974, 64, 25.

spectroscopy,²³⁻²⁵ but Cp*MgI has not been reported, so as to enable comparison of the equilibrium constant for 2 with its organomagnesium analogue. The value for Kof 4 calculated for compound 2 in THF- d_8 at ambient temperature, however, is far less than the value of $\sim 10^4$ observed for CpMgCl (¹H NMR) or $\sim 10^6$ observed for CpMgBr (¹H, ²⁵Mg NMR) in the same solvent.^{23d,24} Several factors might be responsible for the large difference in the value for K, including the bulk of Cp vs Cp*, the greater charge density of Mg^{2+} relative to Ca^{2+} , and the nucleophilicity of Br^- vs $I^{-,26}$

Structure of $[Cp*Ca(\mu-I)(THF)_2]_2$. To establish structural parameters for this prototypical cyclopentadienyl halide complex, crystals deposited from the toluene wash from KCp* and CaI₂ were collected and subjected to a X-ray structure determination. $[Cp*Ca(\mu I(THF)_2_2$ crystallizes from toluene as a halide-bridged dimer, in which each calcium atom is coordinated by a single pentamethylcyclopentadienyl ring, two THF molecules, and two bridging iodides. Two independent dimers (A and B) appear in the asymmetric cell, each with a crystallographically imposed center of inversion. An ORTEP view of one complex is displayed in Figure 1.

The average $(\eta^5$ -Cp*)-Ca distance for both species is 2.67 Å, whereas the average Ca-O(THF) distance is 2.422 (6) Å in one dimer and 2.387 (7) Å in the second dimer. The $[Ca(\mu-I)]_2$ core is somewhat asymmetric in each dimer, the Ca–I distances differing by 0.062 Å in one case and by 0.146 Å in the other.

Most of the parameters of the individual units are unexceptional. The pentamethylcyclopentadienyl ring in complex A [B] is planar to within 0.009 Å [0.003 Å]. The methyl groups are bent away from the ring plane by an average of 0.11 Å [0.10 Å], leading to an displacement angle of 4.2° [3.8°]. No unusual internal contacts are evident; the closest nonbonded carbon-carbon distance involves a ring methyl group and the α -C of a THF ligand at a distance of 3.48 Å (C10–C17 in dimer A).

The structure of 2 is the first crystallographically characterized monocyclopentadienyl structure of a heavy Ae metal, and only two organocalcium structures are available for comparison. In polymeric Cp₂Ca, each calcium ion is surrounded by two η^5 , one η^3 , and one η^1 Cp rings, with an average Ca-C(η^5) distance of 2.80 Å.²⁷ If the Ca²⁺ is considered to be fully nine-coordinate with a radius of 1.18 Å²⁸ (this is a generous assumption, as the η^1 ring is 3.10 Å from the metal center), the 0.12 Å difference between this value and the seven-coordinate radius of Ca²⁺ (1.06 Å) account satisfactorily for the 0.13 Å shorter Ca-C distance of 2.67 (1) Å in 2. In the structure of

(25) Elemental analysis, through which R_2M and Wurtz-coupled R_2 species can be identified, has been used to infer the presence of Schlenk equilibria in organoalkaline-earth systems (see ref 3, 9, and: Gowenlock, B. G.; Lindsell, W. E.; Singh, B. J. Chem. Soc., Dalton Trans. 1978, 657-664).

 $[C_5H_3-1,3-(SiMe_3)_2]_2Ca(THF),^{29}$ the average Ca-C distance is 2.69 Å, essentially the same as the value in 2. Other comparisons can be made with the metallocenes $[C_5H_3]$ -1,3-(SiMe₃)₂]₂Sr(THF)²⁹ and Cp*₂Ba,³⁰ which display average Ae-C distances of 2.81 and 2.99 (2) Å, respectively. The differences of 0.15 Å in the radii of seven-coordinate Ca^{2+} and Sr^{2+} and the change of 0.29 Å between the radii of seven-coordinate Ca²⁺ and six-coordinate Ba²⁺ compare favorably with the 0.14 and 0.32 Å differences in the Ae-C bond lengths.

Useful structural comparisons are also possible with divalent organolanthanide species. The average metal-C(Cp*) distances in $[Cp*Eu(\mu-C=CPh)(THF)_2]_2$ (2.82 (2) Å),³¹ [Cp*Sm(μ -I)(THF)₂]₂ (2.81 (2) Å),³² [Cp*₂Sm-(OC₅H₁₀)] (2.816 (3) Å),³³ Cp*₂Yb(MeC=CMe) (2.659 (9) Å),³⁴ and Cp*₂Yb(THF)(0.5toluene) (2.66 (2) Å)³⁵ differ from that found in 2 (2.67 (1) Å) by 0.15, 0.14, 0.15, 0.01, and 0.01 Å, respectively. These values compare well with differences of 0.14, 0.16, and 0.02 Å between the sevencoordinate metal radius of Ca²⁺ and those of Eu²⁺, Sm²⁺ and Yb²⁺, respectively. Similarly, the average M-O(THF) bond lengths in $[Cp*Eu(\mu-C=CPh)(THF)_2]_2$ (2.62 (1) Å), $[Cp*Sm(\mu-I)(THF)_2]_2$ (2.64 (2) Å), and $Cp*_2Yb(THF)$ -(0.5toluene) (2.412 (5) Å) differ by 0.14, 0.14, and 0.01 Å, respectively, from the average for both dimers in 2 of 2.405 (9) Å, again closely paralleling the difference in metal radii. Such correspondences suggest that the steric environment around the metals in these divalent systems is similar, although with the largest divalent radii of the group, 2 and $[Cp*Sm(\mu-I)(THF)_2]_2$ must be the most coordinatively unsaturated. The decomposition of dilute hydrocarbon solutions of 2 (see above) may reflect the fact that loss of a THF ligand generates an unstable six-coordinate "Cp*CaI(THF)" species, which then metathesizes to the more sterically saturated Cp*₂Ca(THF)₂ complex.

The similarities of 2 with the isostructural samarium complex $[Cp*Sm(\mu-I)(THF)_2]_2$ extend beyond metal-C distances. Both it and the calcium species are constructed around a planar $M(\mu-I)_2M'$ core, with I-M-I' angles of 82.04° in the samarium complex and 85.41° and 82.27° in the A and B dimers of 2. The most conspicuous difference between the structures is that the Ca-I bond lengths differ by 0.062 and 0.146 Å in the two conformers of 2, whereas in $[Cp*Sm(\mu-I)(THF)_2]_2$ the corresponding Sm–I lengths differ by 0.103 Å. Intriguingly, the asymmetry observed in the two calcium dimers brackets the range of differences in metal-(μ -halide) bond lengths found in the organolanthanide complexes $[(C_8H_8)\overline{Ce}(THF)(\mu-Cl)]_2 (0.080\ \text{\AA})^{36}$ $[Cp*Sm(\mu-I)(THF)_2]_2$ (0.103 Å), and $Cp*_2Y(\mu-Cl)YClCp*_2$ (0.136 Å),³⁷ a series previously proposed as a model of dimer-to-monomer dissociation in complexes containing M_2X_2 centers.³² Especially counterintuitive is that the difference in M-X bond lengths in the structurally "open" $Cp*_2Y(\mu-Cl)YClCp*_2$ is less than that observed in dimer B of the "closed" 2, a fact which highlights the difficulty

^{(23) (}a) Evans, D. F.; Fazakerley, G. V. J. Chem. Soc. A 1971, 184-189.
(b) Parris, G. E.; Ashby, E. C. J. Am. Chem. Soc. 1971, 93, 1206-1213.
(c) Magnuson, J. A.; Roberts, J. D. J. Org. Chem. 1972, 37, 133-135. (d)
Ford, W. T.; Grutzner, J. B. J. Org. Chem. 1972, 37, 2561-2564. (e)
Rogers, H. R.; Hill, C. L.; Fujiwara, Y.; Rogers, R. J.; Mitchell, H. L.;
Whitesides, G. M. J. Am. Chem. Soc. 1980, 102, 217-226. (f) Rogers, H.
R.; Deutch, J.; Whitesides, G. M. Ibid., 1980, 102, 226-231. (g) Rogers, H. R.; Rogers, R. J.; Mitchell, H. L.; Whitesides, G. M. Ibid., 1980, 102, 226-234. 231-238. (h) Barber, J. J.; Whitesides, G. M. Ibid. 1980, 102, 239-241.
(24) Benn, R. Angew. Chem., Int. Ed. Engl. 1984, 23, 534-535.

⁽²⁶⁾ No evidence for Schlenk equilibrium is found in the room-tem-perature ¹H NMR spectrum of Cp*CaCl (prepared from Cp*₂Ca and CaCl₂ in THF) in THF- d_8 (McCormick, M. J.; Hanusa, T. P., unpublished results). This result suggests the importance of the identity of the halide to the exchange process, a conclusion supported by the ~10² difference in the value of K for CpMgCl and CpMgBr.
(27) Zerger, R.; Stucky, G. J. Organomet. Chem. 1974, 80, 7–17.
(28) Shannon, R. D. Acta Crystallogr. Sect. A 1976, A32, 751–767.

⁽²⁹⁾ Engelhardt, L. M.; Junk, P. C.; Raston, C. L.; White, A. H. J.

⁽²⁹⁾ Engeinardt, L. M.; Junk, P. C.; Raston, C. L.; White, A. H. J.
Chem. Soc., Chem. Commun. 1988, 150–1501.
(30) Williams, R. A.; Hanusa, T. P.; Huffman, J. C. J. Chem. Soc.,
Chem. Commun. 1988, 1045–1046.
(31) Boncella, J. M.; Tilley, T. D.; Andersen, R. A. J. Chem. Soc.,
Chem. Commun. 1984, 710–712.
(32) Evans, W. J.; Grate, J. W.; Choi, H. W.; Bloom, I.; Hunter, W. E.;
Annucl. L. L. Larg. Chem. Soc. 1065, 107, 041, 046.

Atwood, J. L. J. Am. Chem. Soc. 1985, 107, 941-946.

⁽³³⁾ Evans, W. J.; Vlibarri, T. A. Polyhedron 1989, 8(8), 1007-1014. (34) Burns, C. J.; Andersen, R. A. J. Am. Chem. Soc. 1987, 109, 940-941

⁽³⁵⁾ Tilley, T. D.; Andersen, R. A.; Spencer, B.; Ruben, H.; Zalkin, A.;

<sup>Templeton, D. H. Inorg. Chem. 1980, 19, 2999-3003.
(36) Hodgson, K. O.; Raymond, K. N. Inorg. Chem. 1972, 11, 171-175.
(37) Evans, W. J.; Peterson, T. T.; Rausch, M. D.; Hunter, W. E.;</sup> Zhang, H.; Atwood, J. L. Organometallics 1985, 4, 554-559.

Figure 2. Assymetry in homometallic bridged dimers. Differences in M-X bond lengths are indicated as Δ (black circles) and ϕ (white circles), defined as in the text. The values of Δ (Å) and ϕ (%) for each complex are (1) Cp*₂Y(μ -Cl)ClYCp*₂ (0.136, 8.1, ref 37), (2) [Cp*₂ClSm(μ -Cl)SmCp*₂[(MeOCH₂CH₂)₄(OMe)]-SmCp*₂]⁺ (0.120, 6.9, ref 39), (3) [Cp*CaI(THF)₂]₂ (B) (0.146, 6.8, this work), (4) (Cp₂YCl)₂AlH₃·Et₂O (0.097, 5.6, ref 40), (5) {Cp₂Y[N=C(H)C(CH₃)₃]₂ (0.068, 5.1, ref 38), (6) [(C₈H₈)CeCl-(THF)]₂ (0.080, 4.7, ref 36), (7) [Cp*SmI(THF)]₂ (0.103, 4.7, ref 32), and (8) [Cp*CaI(THF)₂]₂ (A) (0.062, 2.9, this work).

of drawing structural comparisons between complexes with different metal radii and sets of ligands.

Measures of Asymmetry. Although the simple difference in metal-ligand bond lengths (Δ) is most often used to gauge the degree of asymmetry in bridged dimers, compensation for changes in metal and ligand sizes could be made by calculating the *relative* difference in effective ionic radii of the ligands. That is

$$\phi = \frac{R_{\rm eff(1)} - R_{\rm eff(2)}}{0.5(R_{\rm eff(1)} + R_{\rm eff(2)})} \tag{4}$$

where ϕ is a measure of asymmetry and $R_{\rm eff}$, the "effective ionic radius" of the ligand, equals the difference between the metal-ligand distance and the coordination number adjusted radius of the metal.³⁷

The values of Δ (in Å) are plotted in Figure 2 against decreasing values of ϕ (as %) for all known structurally characterized homometallic bridged dimers with $\Delta \ge 0.06$ Å. Two points are especially worthy of note: (1) Cp*₂Y-(μ -Cl)YClCp*₂ (Figure 2, number 1) is calculated as having a slightly larger ϕ value than does dimer B of 2 (Figure 2, number 3), even though Δ is smaller for the yttrium complex, and (2) a complex with short metal-ligand distances relative to the size of the metal radius (e.g., {Cp₂Y[N=C(H)C(CH₃)]} (Figure 2, number 5),³⁸ for which the Y^{3+} radius is 1.019 Å and the two Y-N lengths are 2.314 and 2.382 Å)) will possess a relatively large ϕ , even though the absolute difference in metal-ligand lengths (Δ) may be moderate. Thus ϕ can be used both to rank the asymmetry in complexes with large metal ions in a chemically reasonable manner and also to highlight asymetry greater than that apparent from simple metal-ligand bond length differences. Of course, the use of ϕ does not remove the difference in Ca-I lengths in the two dimers of 2, which appears to stem from crystal packing effects.

Conclusions

In reactions which are typical in early-transition-metal and f-element chemistry, the metathesis of KCp* and CaI₂ can produce either the metallocene Cp*₂Ca(THF)₂ or the monopentamethylcyclopentadienyl dimer complex [Cp*Ca(μ -I)(THF)₂]₂. The solid-state structure of the latter also has parallels in organolanthanide systems, but in solution it displays Schlenk equilibrium between Ca-I₂(THF)₂ and Cp*₂Ca(THF)₂, inviting comparisons with organomagnesium Grignard reagents. The ability of organometallic Ae complexes to exhibit chemical properties of several different metal families highlights the location of the Ae metals as "bridging elements" between the alkali metals, magnesium, and the f-elements. A major challenge in this area is the determination of those complexes and reaction conditions likely to display most effectively the range of reactivity inherent in organometallic Ae chemistry.

Acknowledgment is made to the donors of the Petroleum Research Fund, administered by the American Chemical Society, and to the Natural Science Committee of Vanderbilt University for support of this research. We thank Professor W. J. Evans for a preprint of ref 33.

Registry No. 1, 121232-39-1; **2**, 121232-38-0; KCp*, 94348-92-2; CaI₂, 10102-68-8; $[Cp*Co(\mu-I)(THF)_2]_2$, 121232-37-9.

Supplementary Material Available: Tables of hydrogen atom fractional coordinates, bond distances and angles involving hydrogen atoms, and anisotropic thermal parameters (11 pages); a listing of structure factor amplitudes (12 pages). Ordering information is given on any current masthead page.

⁽³⁸⁾ Evans, W. J.; Meadows, J. H.; Hunter, W. E.; Atwood, J. L. J. Am. Chem. Soc. 1984, 106, 1291–1300.

⁽³⁹⁾ Evans, W. J.; Drummond, D. M.; Grate, J. J. Am. Chem. Soc. 1987, 109, 3928-3936.

 ⁽⁴⁰⁾ Lobkovskii, E. B.; Soloveichik, G. L.; Erofeev, A. B.; Bulychev, B. M.; Bel'skii, V. J. Organomet. Chem. 1982, 235, 151-159.