2284

for proton transfer between 1 and the hydroxide ion. This value agrees satisfactorily with a value of 27 M⁻¹ calculated from the kinetic data for the slower process¹⁶ assuming that the curvilinear dependence on hydroxide ion concentration is a manifestation of coupling to the proton transfer equilibrium. From the equilibrium constant of 22 M^{-1} and pK_w (13.72 at 20 °C, I = 0.5 M) a pK_a of 12.3 is calculated for 1. This is 4.3 pK_a units higher than the pK_a of pcyanophenol in water, while in THF the acidities of 1 and p-cyanophenol are about the same.^{6b} From this comparison one may deduce that water provides much less solvational stabilization to 2 than to the p-cyanophenolate ion, indicating that the charge in 2 is highly dispersed.

Rate Constants. Our k_{OH} value of 135 M⁻¹ s⁻¹ is much higher than k_{OD} reported for the deprotonation of **3a** (3.07 M^{-1} s⁻¹) and **3b** (1.97 M^{-1} s⁻¹) by OD⁻ in acetone- d_6/D_2O

$$(CO)_5Cr = C$$

 R
 $3a: R = H$
 $b: R = CH_3$

(3.6:1 by volume) at 38 °C.⁷ However, a reevaluation of the kinetic data on these latter reactions suggests $k_{\rm OD}$ values in the order of $10^3 \text{ M}^{-1} \text{ s}^{-1.17}$ Since the acidities of **3a** and **3b** are comparable to that of $1,^7$ this new estimate for $k_{\rm OD}$ is consistent with our result when the difference in solvent and temperature is taken into account.

Intrinsic Rate Constant. On the basis of $k_{pip} = 69 \text{ M}^{-1}$ s⁻¹ and $pK_a^{pip} = 11.52$ an *intrinsic* rate constant¹⁸ for deprotonation of 1 by secondary amines can be estimated as $\log k_0 = \log (k_{\rm pip}/q) - \beta(\Delta pK + \log (p/q)).^{18,19}$ Assuming $\beta = 0.5$ affords $\log k_0 = 2.08$. Since $\Delta pK + \log (p/q) =$ -0.48 is quite small, any error in the assumed Brønsted β value is of little consequence. Our log k_0 is quite low, lower than for any carbon acid studied to date^{18,21} except for nitroalkanes.¹¹ There is accumulating evidence of an inverse relationship between resonance stabilization of carbanions and the intrinsic rate constant for their formation,¹⁸ which is the result of the resonance stabilization lagging behind bond changes in the transition state.¹⁸ Our low log k_0 value therefore suggests that 2 must derive much of its stabilization from a resonance rather than a polar effect, which is consistent with the solvent effect on the pK_a discussed above. Similar conclusions have been reached regarding the rather low intrinsic rate constants in the deprotonation of hydride transition-metal complexes.²²

Acknowledgment. This research has been supported by Grant CHE-8617370 from the National Science Foundation.

Registry No. 1, 20540-69-6.

- (18) (a) Bernasconi, C. F. Tetrahedron 1985, 41, 3219. (b) Bernasconi,
 C. F. Acc. Chem. Res. 1987, 20, 301.
- (19) $\Delta pK = pK_a^{pip} pK_a(1)$; p and q are statistical factors.²⁰ (20) Bell, R. P. The Proton in Chemistry, 2nd ed.; Cornell University: Ithaca, NY, 1973; Chapter 10. (21) Bernasconi, C. F.; Bunnell, R. D.; Terrier, F. J. Am. Chem. Soc.
- 1988, 110, 6514. (22) (a) Jordan, R. F.; Norton, J. R. J. Am. Chem. Soc. 1982, 104, 1255.
- (b) Edidin, R. T.; Sullivan, J. M.; Norton, J. R. Ibid. 1987, 109, 3945.

Insertion of Ethylene into Zr-Si and Hf-Si Bonds

John Arnold, Mary P. Engeler, Frederick H. Elsner, Richard H. Heyn, and T. Don Tilley*

Chemistry Department, D-006 University of California at San Diego La Jolla, California 92093-0506

Received June 20, 1989

Summary: The zirconium and hafnium silyl derivatives $Cp^*Cl_2MSi(SiMe_3)_3$ and $CpCp^*Zr[Si(SiMe_3)_3]Cl (M = Zr,$ Hf; Cp^{*} = η^5 -C₅Me₅; Cp = η^5 -C₅H₅) undergo clean insertion reactions with ethylene to give the β -silylalkyl complexes $[Cp^*Cl_2ZrCH_2CH_2Si(SiMe_3)_3]_2$ (1a), Cp*Cl₂HfCH₂CH₂Si(SiMe₃)₃ (1b), and CpCp*Zr-[CH2CH2Si(SiMe3)3]Cl (2), respectively. These reactions are photochemically and thermally induced. Complex 1a is dimeric in both the solution and solid states, whereas 1b is monomeric in solution. Crystals of 1a are triclinic, $P\bar{1}$, with a = 9.247 (4) Å, b = 12.643 (6) Å, c = 14.519(6) Å, $\alpha = 79.64$ (3)°, $\beta = 81.25$ (3)°, $\gamma = 75.33$ (4)°, V = 1605 (1) Å³, Z = 1, $R_F = 4.46\%$, and $R_{wF} =$ 5.31%. The quantum yield for formation of 2 (λ = 380-470 nm, benzene- d_6) in the presence of excess ethylene is 2.5, implying a radical chain mechanism initiated by homolytic cleavage of a M-Si bond.

We have discovered transition-metal-silicon bonds that are reactive toward insertion of unsaturated substrates such as CO, CNR, and organic carbonyls.¹ These reactions involving d⁰ metal silyl complexes represent new routes to Si-C bonds and therefore have potentially important synthetic applications. Insertion of alkenes into M-Si bonds are also of interest, since the resulting β -silylalkyls could provide β -functional organosilicon compounds via reaction chemistry analogous to that based on hydro $zirconation^2$ (eq 1). Also, it appears that such insertions

$$M-SiR_3 + = \bigwedge^{R'} \rightarrow M \bigwedge^{SiR_3} \stackrel{E^+}{\to} E \bigwedge^{SiR_3} (1)$$

may occur in some transition-metal-catalyzed hydrosilations.^{3,4} Relevant investigations by Wrighton and co-workers have recently produced the first observation of insertion of an unactivated, monoalkene (C_2H_4) into the metal-silicon bond of photochemically activated Cp*- $(CO)_2$ FeSiMe₃ (Cp* = η^5 -C₅Me₅).⁴ With the goal of developing chemistry based on "silylzirconation" (eq 1), we initially examined the behavior of d^0 silyls $Cp_2Zr(SiMe_3)Cl$ and Cp₂Zr[Si(SiMe₃)₃]Cl toward ethylene.⁵ However,

(5) Campion, B. K.; Falk, J.; Tilley, T. D. J. Am. Chem. Soc. 1987, 109, 2049.

⁽¹⁶⁾ A reviewer has suggested that the slow process may represent reaction of 2 with oxygen.

⁽¹⁷⁾ Casey, C. P., personal communication.

^{(1) (}a) Arnold, J.; Tilley, T. D.; Rheingold, A. L.; Geib, S. J.; Arif, A. M. J. Am. Chem. Soc. 1989, 111, 149. (b) Elsner, F. H.; Tilley, T. D.; Rheingold, A. L.; Geib, S. J. J. Organomet. Chem. 1988, 358, 169. (c) Arnold, J.; Tilley, T. D. J. Am. Chem. Soc. 1987, 109, 3318, and references in the above.

^{(2) (}a) Carr, D. B.; Schwartz, J. J. Am. Chem. Soc. 1979, 101, 3521. (b) Schwartz, J. In New Applications of Organometallic Reagents in Organic

^{Schwartz, J. In New Applications of Organometallic Reagents in Organic} Synthesis; Seyferth, D., Ed.; Elsevier: Amsterdam, 1976. (c) Hart, D.
W.; Schwartz, J. J. Am. Chem. Soc. 1974, 96, 8115.
(3) (a) Harrod, J. F.; Chalk, A. J. In Organic Synthesis via Metal Carbonyls; Wender, I., Pino, P., Eds.; Wiley: New York, 1977; Vol. 2. (b) Millan, A.; Fernandez, M.; Bentz, P.; Maitlis, P. M. J. Mol. Catal. 1984, 26, 89. (c) Nesmeyanov, A. N.; Friedlina, R. K.; Chukovsksya, E. C.; Petrova, R. G.; Belyavksy, A. B. Tetrahedron 1962, 17, 61. (d) Seitz, F.; Wrighton, M. S. Angew. Chem., Int. Ed. Engl. 1988, 27, 289. (4) Randolph, C. L.; Wrighton, M. S. J. Am. Chem. Soc. 1986, 108, 3366.

^{3366.}

insertion products were not observed in these cases. Our investigations of early-transition-metal silvl complexes have since produced more reactive metal-silicon bonded species that do react with ethylene. In this report we describe facile, stoichiometric insertions of ethylene into the M-Si bonds of CpCp*Zr[Si(SiMe₃)₃]Cl^{1b} and $Cp*Cl_2MSi(SiMe_3)_3$ (M = Zr, Hf).⁶ Related alkene insertions in analogous group 4 metal alkyl derivatives are of current interest with respect to the mechanism of alkene polymerizations.⁷

The zirconium silyl derivative Cp*Cl₂ZrSi(SiMe₃)₃ combines rapidly with ethylene to give insertion product 1a (eq 2). Under 2 atm of ethylene, dimeric $1a^8$ is formed

cleanly in the dark $(t_{1/2} \approx 30 \text{ min at } 34 \text{ °C}, \text{ benzene-} d_6)$. This reaction is accelerated in the presence of ambient fluorescent room light, being complete within 5 min at 22 °C. Hafnium silyl Cp*Cl₂HfSi(SiMe₃)₃ reacts more sluggishly with ethylene under analogous conditions ($t_{1/2} \approx 2$ days in the dark at 22 °C; complete conversion within 1 h in the presence of fluorescent room light at 22 °C) to give $Cp*Cl_2HfCH_2CH_2Si(SiMe_3)_3$ (1b), which exists largely in monomeric form in benzene solution.⁸ These insertion reactions are quantitative by ¹H NMR, and isolated yields approach 80%. Relevant to the observed photochemistry are UV-vis spectra for silvl complexes Cp*Cl₂MSi(SiMe₃)₃ (M = Zr, Hf), which display absorptions that tail well into the visible region.^{6a} These bands disappear upon formation of 1a and $1b^{,8}$ and as expected the M-C bonds of these compounds are inert toward further insertions under 8 atm of ethylene in the presence of room light.

The ethylene group of 1a and 1b gives rise to AA'XX' patterns in ¹H NMR spectra. For 1a, this part of the spectrum was simulated (Figure 1). The crystal structure of 1a consists of dimeric units that possess a crystallo-

(6) (a) Arnold, J.; Roddick, D. M.; Tilley, T. D.; Rheingold, A. L.; Geib,

Figure 1. ¹H NMR resonances assigned to the ethylene hydrogens of la: (a) measured. (b) simulated. Coupling constants $(\text{ZrCH}_2\text{CH}_2\text{Si}, \text{AA'XX'}): J_{\text{AA'}} = 13.0 \text{ Hz}; J_{\text{AX}}, J_{\text{A'X}} = 5.0 \text{ Hz}; J_{\text{AX}}, J_{\text{A'X}} = 14.5 \text{ Hz}; J_{\text{XX'}} = 14.5 \text{ Hz}.$

Figure 2. ORTEP view of 1a with atom-labeling scheme. Selected bond distances (Å) and angles (deg): Zr(1)-Cl(1) 2.692 (2), Zr-(1)-Cl(1A) 2.579 (2), Zr(1)-Cl(2) 2.410 (2), Zr(1)-C(11) 2.222 (6),C(11)-C(12) 1.539 (8), C(12)-Si(1) 1.907 (5), Zr(1)-C(11)-C(12) 111.4 (4), C(11)-C(12)-Si(1) 114.0 (4), Cl(1)-Zr(1)-Cl(1A) 73.8 (1), Zr(1)-Cl(1)-Zr(1A) 106.2 (1), Cl(1A)-Zr(1)-C(11) 83.8 (1), C(11)-Zr(1)-Cl(2) 91.0 (2), Cl(1)-Zr(1)-Cl(2) 83.6 (1), Cl(1)-Zr-(1)-C(11) 139.7 (2), Cl(2)-Zr(1)-Cl(1A) 137.0 (1).

graphic inversion center (Figure 2).⁹ The inequivalent Zr-Cl (bridge) distances, 2.579 (2) and 2.692 (2) Å, suggest that the Cp*Cl₂ZrCH₂CH₂Si(SiMe₃)₃ units are rather weakly associated. The three independent Zr-Cl distances agree closely with values observed for corresponding parameters in $[CpZrCl_3]_{\infty}$.¹⁰ Distances and angles within the β -silylalkyl ligand are unexceptional and are inconsistent with the presence of an "agostic" interaction.¹¹

Upon exposure to fluorescent room light, the red zirconium silyl CpCp*Zr[Si(SiMe₃)₃]Cl reacts with 1 equiv of ethylene over ca. 3 days to afford β -silylalkyl derivative 2 (eq 3). Under 50 psi of ethylene, the reaction time is

^{(6) (}a) Arhold, S.; Roddick, D. M.; Tilley, T. D.; Rheinglolt, A. L.; Geib,
S. J. Inorg. Chem. 1988, 27, 3510. (b) Arnold, J.; Woo, H.-G.; Tilley, T.
D.; Rheingold, A. L.; Geib, S. J. Organometallics 1988, 7, 2045.
(7) (a) Clawson, L.; Soto, J.; Buchwald, S. L.; Steigerwald, M. L.;
Grubbs, R. H. J. Am. Chem. Soc. 1985, 107, 3377. (b) Jordan, R. F.;
Bajgur, C. S.; Willett, R.; Scott, B. J. Am. Chem. Soc. 1986, 108, 7410 and references therein.

⁽⁸⁾ For 1a: Anal. C, H, Cl. Mol wt calcd: 1146. Found: 1113 (isothermal distillation in benzene). ¹H NMR (benzene- d_6 , 22 °C, 300 MH2): δ 0.28 (s, 27 H, SiMe₃), 1.06 (m, 2 H, CH₂Si), 1.84 (s, 15 H, Cp*), 1.99 (m, 2 H, ZrCH₂). ¹³C[¹H] NMR (benzene- d_6 , 22 °C, 75.5 MH2): δ 1.38 (SiMe₃), 4.39 (CH₂Si), 11.89 (C₅Me₅), 7.292 (ZrCH₂), 124.1 (C₅Me₅), 7.292 (ZrCH₂), 124.1 (C₅Me₅), 7.245 (Si(SiMe₃)₃), -12.45 (Si(SiMe₃)₃), UV-vis (pentane, nm): 224 (ϵ = 11000 M⁻¹ cm⁻¹), 274 (ϵ = 9000 M⁻¹ cm⁻¹). For 1b: Anal. C, H, Cl. Mol wt calcd: 660. Found: 686 (isothermal distillation in benzene-d₁, 12 °C, 300 MHz): δ 0.27 (s, 27 H, SiMe₃), 0.93 (m, 2 H, CH₂Si), 1.80 (m, 2 H, HfCH₂), 1.87 (s, 15 H, Cp*). ¹³C NMR (benzene-d₆, 22 °C, 75.5 MHz): δ 1.49 (q, ¹J_{CH} = 120 Hz, SiMe₃), 4.79 (t, ¹J_{CH} = 122 Hz, CH₂Si), 11.47 (q, ¹J_{CH} = 127 Hz, C₅Me₆), 75.36 (t, ¹J_{CH} = 123 Hz, HfCH₂), 12.6 (s, C₅Me₅). ²⁹Si[¹H} NMR (benzene-d₆, 59.6 MHz, 22 °C): δ -71.49 (Si(SiMe₃)₃), -12.45 (Si(SiMe₃)₃). UV-vis (pentane, nm): 222 (ϵ = 15000 M⁻¹ cm⁻¹), 257 (ϵ = 14 000 M⁻¹ cm⁻¹). (isothermal distillation in benzene). ¹H NMR (benzene-d₆, 22 °C, 300

⁽⁹⁾ $C_{42}H_{92}Cl_4Si_8Zr_2$: triclinic, PI, a = 9.247 (4) Å, b = 12.643 (6) Å, c = 14.519 (6) Å, $\alpha = 79.64$ (3)°, $\beta = 81.25$ (3)°, $\gamma = 75.33$ (4)°; V = 1605 (1) Å³, Z = 1; $\mu = 6.58$ cm⁻¹; Mo K α radiation ($\lambda = 0.71073$ Å). Of 6815 reflections collected (3° $\leq 2\theta \leq 50^{\circ}$), 5666 were independent ($R_{int} = 0.27676$) 4.07%) and 3653 were considered observed $(F > 6.0\sigma(\hat{F})); R_F = 4.46\%$,

 $R_{wF} = 5.31\%$. (10) Engelhardt, L. M.; Papasergio, R. I.; Raston, C. L.; White, A. H. Organometallics 1984, 3, 18.

^{(11) (}a) C-H agostic interactions: Brookhart, M.; Green, M. L. H. J. Organomet. Chem. 1983, 250, 395. (b) A β -CSi bond agostic interaction is reported for [Cp₂Ti(CSiMe₃—CPhMe)]*: Eisch, J. J.; Piotrowski, A. M.; Brownstein, S. J.; Gabe, E. J.; Lee, F. L. J. Am. Chem. Soc. 1985, 107, 7219.

only ca. 10 h. This reaction is relatively clean (by ¹H NMR in benzene- d_6), and pure 2 can be isolated in ca. 50% yield as yellow crystals from pentane.¹² In the absence of light no product is formed after 5 days, indicating that insertion requires photochemical activation of CpCp*Zr[Si-(SiMe₃)₃]Cl. The UV-vis spectrum of CpCp*Zr[Si- $(SiMe_3)_3$]Cl exhibits an absorption at 461 nm ($\epsilon = 500$ L mol⁻¹ cm⁻¹), and use of cutoff filters has determined that the corresponding electronic transition gives rise to the observed photochemistry. The quantum yield for this reaction ($\lambda = 380-470$ nm, benzene- d_6) in the presence of excess ethylene is 2.5, suggesting a radical chain mechanism initiated by homolytic cleavage of a M-Si bond.¹³

Compound 1 is remarkably stable for an alkyl complex with β -hydrogens, very little decomposition being observed after 3 days at 80 °C (by ¹H NMR in benzene- d_6). Future work will involve further development and study of this insertion chemistry. Preliminary experiments show that Cp*Cl₂ZrSi(SiMe₃)₃ is unreactive toward styrene, propene, and Me₃SiCH=CH₂ and that Cp*Cl₂HfSi(SiMe₃)₃ is inert toward diphenylacetylene and 1-hexene.

Acknowledgment is made to the Air Force Office of Scientific Research, Air Force Systems Command, USAF, for support of this work under Grant No. AFOSR-88-0273 and to the DoD University Research Instrumentation Program (Grant DAAL03-87-G-0071) for funds to purchase an X-ray diffractometer. The U.S. Government is authorized to reproduce and distribute reprints for Governmental purposes. T.D.T. thanks the Alfred P. Sloan Foundation for a research fellowship (1988-1990).

Supplementary Material Available: A listing of crystal, data collection, and refinement parameters and tables of positional and thermal parameters, bond lengths, bond angles, anisotropic thermal parameters, and hydrogen atom coordinates for 1a (9 pages); a table of observed and calculated structure factors for 1a (21 pages). Ordering information is given on any current masthead page.

A Palladadigermetane: Palladium-Catalyzed **Insertion Reactions of Digermiranes**

Takeshi Tsumuraya and Wataru Ando*

Department of Chemistry, The University of Tsukuba Tsukuba, Ibaraki 305, Japan

Received May 1, 1989

Summary: The palladium-catalyzed reactions of digermirane 1 with dimethyl acetylenedicarboxylate and acetvlene give the ring expansion products 2 and 3. Reaction with methyl acrylate gives the rearranged product 4. In the stoichiometric reaction of 1 with Pd(PPh₃)₄, palladadigermetane 6 is isolated as a stable compound. 6 reacts with dimethyl acetylenedicarboxylate, acetylene, and methyl acrylate to yield 2, 3, and 4, respectively. The similar palladium-catalyzed reactions of thia- and selenadigermiranes 9 and 10 with acetylene give the ring expansion products 11 and 12, respectively.

One of the most interesting reactions of the Si-Si bond of the reactive disilanes is the transition-metal-catalyzed insertion of unsaturated hydrocarbons, and numerous papers have been published so far.¹⁻⁷ In spite of these studies, no interest has been shown in the transitionmetal-catalyzed insertion of unsaturated compounds into the Ge-Ge bond.⁸ Recently, we reported the preparation and chemical properties of a digermirane and its heterocvclic analogues.^{9,10} We report here the novel palladiumcatalyzed ring-expansion reactions of a digermirane and thia- and selenadigermiranes. We also report the stoichiometric reaction of the digermirane with $Pd(PPh_3)_4$ to yield a palladadigermetane as stable red crystals.

When a benzene solution of digermirane 1.9^c dimethyl acetylenedicarboxylate, and $Pd(PPh_3)_4$ (10 mol %) was heated to reflux for 45 h under an argon atmosphere, a crystalline product identified as digermacyclopentene 2,11 a insertion product of the acetylene into the Ge-Ge bond, was obtained in 51% yield (eq 1). It was also found that

Pd(II) complexes such as PdCl₂(PPh₃)₂ and PdCl₂(PhCN)₂ and $NiCl_2(PPh_3)_2$ catalyzed the insertion of the acetylene into the Ge-Ge bond of the digermirane 1 equally, giving the adduct 2. Unsubstituted acetylene also reacted with

(3) (a) Watanabe, H.; Kobayashi, M.; Higuchi, K.; Nagai, Y. J. Organomet. Chem. 1980, 186, 51. (b) Watanabe, H.; Kobayashi, M.; Saito, M.; Nagai, Y. J. Organomet. Chem. 1981, 216, 149. (c) Watanabe, H.; Saito, M.; Sutou, N.; Kishimoto, K.; Inose, J.; Nagai, Y. J. Organomet. Chem. 1982, 225, 343.

 (4) Carlson, C. W.; West, R. Organometallics 1983, 2, 1801.
 (5) Seyferth, D.; Goldman, E. W.; Escudie, J. J. Organomet. Chem. 1984, 271, 337.

(6) Jzang, T. T.; Liu, C. S. Organometallics 1988, 7, 1271 and references cited therein.

(7) (a) Ito, Y.; Nishimura, S.; Ishikawa, M. Tetrahedron Lett. 1987, 28, 1293. (b) Ito, Y.; Matsuura, T.; Murakami, M. J. Am. Chem. Soc. 1988. 110. 3692

(8) Recently, Pd(0)-catalyzed insertion reactions of acetylenes into a Ge-Sn bond have been reported, see: Piers, E.; Skerlj, R. T. J. Chem. Soc., Chem. Commun. 1987, 1025.

(9) (a) Ando, W.; Tsumuraya, T. Tetrahedron Lett. 1986, 27, 3251. (b) Tsumuraya, T.; Sato, S.; Ando, W. Organometallics 1988, 7, 2015. (c) Ando, W.; Tsumuraya, T. Organometallics 1988, 7, 1882.

(10) (a) Batcheller, S. A.; Masamune, S. Tetrahedron Lett. 1988, 29, 3383.
 (b) Masamune, S.; Batcheller, S. A.; Park, J.; Davis, W. M.; Yamashita, O.; Ohta, Y.; Kabe, Y. J. Am. Chem. Soc. 1989, 111, 1888.

CH₂), 51.8 (q, OMe), 125.9 (d, Ar), 128.8 (d, Ar), 141.2 (s, Ar), 147.8 (s, Ar), 157.9 (s, Ar), 169.9 (s, C=C).

0276-7333/89/2308-2286\$01.50/0

⁽¹²⁾ For 2: Anal. C, H. ¹H NMR (benzene- d_6 , 22 °C, 300 MHz): δ 0.34 (s, 27 H, SiMe₃), 1.08 (m, 2 H, CH₂Si), 1.40 (m, 2 H, ZrCH₂), 1.71 (s, 15 H, Cp^{*}), 5.90 (s, 5 H, Cp). UV-vis (pentane, nm): 225 (ϵ = 6000 M⁻¹ cm⁻¹), 329 (ϵ = 1000 M⁻¹ cm⁻¹).

^{(13) (}a) Lehnig, M.; Neumann, W. P. J. Organomet. Chem. 1975, 97,
(13) (a) Lehnig, M.; Neumann, W. P.; Becker, H. P. Angew. Chem., Int. Ed. Engl. 1967, 6, 876. (c) Bennett, S. W.; Eaborn, C.; Jackson, R. A.; Pearce, R. J. Organomet. Chem. 1968, 15, P17. (d) Fields, R.; Haszeldine, R. N.; Hubbard, A. F. J. Chem. Soc. C 1971, 3838.

^{(1) (}a) Sakurai, H.; Kamiyama, Y.; Nakadaira, Y. J. Am. Chem. Soc. 1975, 97, 931. (b) Sakurai, H.; Kamiyama, Y.; Nakadaira, Y. Chem. Lett. 1975, 87. (c) Sakurai, H.; Kobayashi, T.; Nakadaira, Y. J. Organomet. Chem. 1978, 162, C43.

^{(2) (}a) Okinoshima, H.; Yamamoto, K.; Kumada, M. J. Am. Chem. Soc. 1972, 94, 9263. (b) Tamao, K.; Hayashi, T.; Kumada, M. J. Orga-nomet. Chem. 1976, 114, C19.