for proton transfer between **1** and the hydroxide ion. This value agrees satisfactorily with a value of **27** M-' calculated from the kinetic data for the slower process¹⁶ assuming that the curvilinear dependence on hydroxide ion concentration is a manifestation of coupling to the proton transfer equilibrium. From the equilibrium constant of **22** M-I and $p_{\rm w}$ (13.72 at 20 °C, $I = 0.5$ M) a $p_{\rm A}$ of 12.3 is calculated for 1. This is 4.3 pK_a units higher than the pK_a of pcyanophenol in water, while in THF the acidities of **1** and p-cyanophenol are about the same.6b From this comparison one may deduce that water provides much less solvational stabilization to **2** than to the p-cyanophenolate ion, indicating that the charge in **2** is highly dispersed.

Rate Constants. Our k_{OH} value of 135 M^{-1} s⁻¹ is much higher than k_{OD} reported for the deprotonation of 3a (3.07 M^{-1} s⁻¹) and $\mathrm{3b}$ (1.97 M^{-1} s⁻¹) by OD⁻ in acetone- $d_6/\mathrm{D}_2\mathrm{O}$

$$
(CO)5Cr = C
$$
\n3a: R = H
\nb: R = CH₃

(3.6:l by volume) at **38** 0C.7 However, a reevaluation of the kinetic data on these latter reactions suggests k_{OD} values in the order of 10^3 M^{-1} s^{-1} .¹⁷ Since the acidities of **3a** and **3b** are comparable to that of **1,'** this new estimate for k_{OD} is consistent with our result when the difference in solvent and temperature is taken into account.

Intrinsic Rate Constant. On the basis of $k_{\text{pip}} = 69 \text{ M}^{-1}$ s^{-1} and $pK_a^{pip} = 11.52$ an *intrinsic* rate constant¹⁸ for deprotonation of **1** by secondary amines can be estimated as $\log k_0 = \log (k_{\text{pip}}/q) - \beta(\Delta pK + \log (p/q))$.^{18,19} Assuming $\beta = 0.5$ affords $\log k_0 = 2.08$. Since $\Delta pK + \log (p/q) = 0$ **-0.48** is quite small, any error in the assumed Brernsted β value is of little consequence. Our log k_0 is quite low, lower than for any carbon acid studied to date^{18,21} except for nitroalkanes.¹¹ There is accumulating evidence of an inverse relationship between resonance stabilization of carbanions and the intrinsic rate constant for their for $m₁₈$ which is the result of the resonance stabilization lagging behind bond changes in the transition state.18 Our low $\log k_0$ value therefore suggests that 2 must derive much of its stabilization from a resonance rather than a polar effect, which is consistent with the solvent effect on the pK_a discussed above. Similar conclusions have been reached regarding the rather low intrinsic rate constants in the deprotonation of hydride transition-metal complexes.22

Acknowledgment. This research has been supported by Grant **CHE-8617370** from the National Science Foundation.

Registry No. 1, 20540-69-6.

-
-
- (18) (a) Bernasconi, C. F. Tetrahedron 1985, 41, 3219. (b) Bernasconi, C. F. Acc. Chem. Res. 1987, 20, 301.

(19) $\Delta pK = pK_e^{10} pK_e(1); p$ and q are statistical factors.²⁰

(20) Bell, R. P. The Proton in Chemistry, 2nd ed
- **1988,110, 6514. (22). (a) Jordan, R. F.; Norton, J. R.** *J. Am. Chem. SOC.* **1982,104,1255.**
- (b) **Edidin, R. T.; Sullivan,** J. **M.; Norton, J. R.** *Ibid.* **1987, 109, 3945.**

Insertion of Ethylene into Zr-Si and Hf-SI Bonds

John Arnold, Mary P. Engeler, Frederick H. Elsner, Richard H. Heyn, and T. Don Tllley"

Chemistry Department, 0-006 University of California at San Diego La Jolla, California 92093-0506

Received June 20, 1989

Summary: The zirconium and hafnium silyl derivatives $Cp^*Cl_2MSi(SiMe_3)_3$ and $CpCp^*Zr[Si(SiMe_3)_3]Cl$ (M = Zr, Hf; $Cp^* = \eta^5 - C_5Me_5$; $Cp = \eta^5 - C_5H_5$) undergo clean insertion reactions with ethylene to give the β -silylalkyl complexes $[Cp^*Cl_2ZrCH_2CH_2Si(SiMe_3)_3]$ ₂ (1a), **Cp*CI,HfCH,CH,Si(SiMe,), (lb),** and CpCp*Zr- [CH,CH,Si(SiMe,),] CI **(2),** respectively. These reactions are photochemically and thermally induced. Complex **la** is dimeric in both the solution and solid states, whereas **lb** is monomeric in solution. Crystals of **la** are triclinic, P1, with $a = 9.247$ (4) \AA , $b = 12.643$ (6) \AA , $c = 14.519$ (6) Å, α = 79.64 (3)^o, β = 81.25 (3)^o, γ = 75.33 (4)^o $V = 1605$ (1) \AA^3 , $Z = 1$, $R_F = 4.46\%$, and $R_{WF} = 1$ 5.31%. The quantum yield for formation of 2 (λ = 380-470 nm, benzene- d_6) in the presence of excess ethylene is 2.5, implying a radical chain mechanism initiated by homolytic cleavage of a M-Si bond.

We have discovered transition-metal-silicon bonds that are reactive toward insertion of unsaturated substrates such as CO, CNR, and organic carbonyls.¹ These reactions involving d⁰ metal silyl complexes represent new routes to Si-C bonds and therefore have potentially important synthetic applications. Insertion of alkenes into M-Si bonds are also of interest, since the resulting β -silylalkyls could provide β -functional organosilicon compounds via reaction chemistry analogous to that based on hydro-

zirconation² (eq 1). Also, it appears that such insertions
\n
$$
M-SiR_3 + \frac{R'}{R'} + M \times SiR_3 \xrightarrow{E^{\dagger}} E \times SiR_3 \xrightarrow{(1)}
$$

may occur in some transition-metal-catalyzed hydro s ilations.^{3,4} Relevant investigations by Wrighton and co-workers have recently produced the first observation of insertion of an unactivated, monoalkene (C_2H_4) into the metal-silicon bond of photochemically activated Cp*- $(CO)_2FeSiMe_3$ $(Cp^* = \eta^5-C_5Me_5)^4$. With the goal of developing chemistry based on "silylzirconation" (eq **l),** we initially examined the behavior of d^0 silyls $Cp_2Zr(SiMe_3)Cl$ and $\text{Cp}_2\text{Zr}[\text{Si}(\text{SiMe}_3)_3]$ Cl toward ethylene.⁵ However,

(5) Campion, B. K.; Falk, J.; **Tilley, T. D.** *J. Am. Chem. SOC.* **1987,109, 2049.**

⁽¹⁶⁾ A reviewer has suggested that the slow process may represent reaction of 2 with oxygen.

⁽¹⁷⁾ Casey, C. P., personal communication.

⁽¹⁾ (a) Arnold, J.; Tilley, T. D.; Rheingold, A. L.; Geib, S. J.; Arif, A. M. *J. Am. Chem.* **SOC. 1989, 111, 149. (b) Elsner, F. H.; Tilley, T. D.; Rheingold, A. L.; Geib,** S. **J.** *J. Organomet. Chem.* **1988,** *358,* **169. (c) Arnold, J.; Tilley, T. D.** *J. Am. Chem.* **SOC. 1987,109,3318, and references** in the above.

(2) (a) Carr, D. B.; Schwartz, J. J. Am. Chem. Soc. 1979, 101, 3521. (b)

^{(2) (}a) Carr, D. B.; Schwartz, J. J. Am. Chem. Soc. 1979, 101, 3521. (b)
Schwartz, J. In New Applications of Organometallic Reagents in Organic
Synthesis; Seyferth, D., Ed.; Elsevier: Amsterdam, 1976. (c) Hart, D.
W.; Sch

^{3366.}

insertion products were not observed in these cases. Our investigations of early-transition-metal silyl complexes have since produced more reactive metal-silicon bonded species that do react with ethylene. In this report we describe facile, stoichiometric insertions of ethylene into the M-Si bonds of $CpCp^*Zr[Si(SiMe₃)₃]Cl^{1b}$ and $\text{Cp*Cl}_2\text{MSi}(\text{SiMe}_3)_3$ (M = Zr, Hf).⁶ Related alkene insertions in analogous group **4** metal alkyl derivatives are of current interest with respect to the mechanism of alkene polymerizations.'

The zirconium silyl derivative $Cp^*Cl_2ZrSi(SiMe_3)_3$ combines rapidly with ethylene to give insertion product **la** (eq 2). Under 2 atm of ethylene, dimeric $1a^8$ is formed

cleanly in the dark $(t_{1/2} \approx 30 \text{ min at } 34 \text{ °C}, \text{ benzene-}d_6)$. This reaction is accelerated in the presence of ambient fluorescent room light, being complete within 5 min at 22 °C. Hafnium silyl Cp*Cl₂HfSi(SiMe₃)₃ reacts more sluggishly with ethylene under analogous conditions $(t_{1/2} \approx 2)$ days in the dark at 22 °C; complete conversion within 1 h in the presence of fluorescent room light at 22 °C) to give **Cp*ClzHfCHzCHzSi(SiMe3)3 (lb),** which exists largely in monomeric form in benzene solution.8 These insertion reactions are quantitative by 'H NMR, and isolated yields approach 80%. Relevant to the observed photochemistry are UV-vis spectra for silyl complexes Cp*Cl₂MSi(SiMe₃)₃ $(M = Zr, Hf)$, which display absorptions that tail well into the visible region.^{6a} These bands disappear upon formation of **la** and **lb,8** and as expected the M-C bonds of these compounds are inert toward further insertions under 8 atm of ethylene in the presence of room light.

The ethylene group of **la** and **lb** gives rise to **AA'XX'** patterns in 'H NMR spectra. For **la,** this part of the spectrum was simulated (Figure 1). The crystal structure of **la** consists of dimeric units that possess a crystallo-

(6) (a) Arnold, J.; Roddick, D. M.; Tilley, T. D.; Rheingold, A. L.; Geib, S. J. *Inorg.* Chem. **1988,27,3510.** (b) Arnold, J.; Woo, H.-G.; Tilley, T.

Figure 1. ¹H NMR resonances assigned to the ethylene hydrogens of **1a**: (a) measured. (b) simulated. Coupling constants (a) measured. (b) simulated. Coupling constants ($ZrCH_2CH_2SH_2SH_3$, $AXXX'$): $J_{AA'} = 13.0 \text{ Hz}$; $J_{AX'} = 5.0 \text{ Hz}$; J_{AX} , $J_{AX} = 14.5 \text{ Hz}$; $J_{XX'} = 14.5 \text{ Hz}$.

Figure 2. ORTEP view **of la** with atom-labeling scheme. Selected bond distances **(A)** and angles (deg): Zr(l)-Cl(l) 2.692 (2), **Zr-** (1) -Cl(1A) 2.579 (2), Zr(1)-Cl(2) 2.410 (2), Zr(1)-C(11) 2.222 (6), C(ll)-C(12) 1.539 (8), C(12)-Si(l) 1.907 **(5),** Zr(l)-C(ll)-C(l2) 111.4 (4), C(ll)-C(l2)-Si(l) 114.0 (4), Cl(1)-Zr(1)-Cl(1A) 73.8 (1), $Zr(1)$ -Cl(1)-Zr(1A) 106.2 (1), Cl(1A)-Zr(1)-C(11) 83.8 (1), **and the club of the club state** of the club state of the club st $C(11) - Zr(1) - C1(2)$ 91.0 (2), Cl(1)-Zr(1)-Cl(2) 83.6 (1), Cl(1)-Zr-(l)-C(11) 139.7 (2), Cl(2)-Zr(l)-Cl(lA) **137.0** (1).

graphic inversion center (Figure **2).9** The inequivalent Zr-C1 (bridge) distances, 2.579 (2) and 2.692 (2) A, suggest that the Cp*Cl₂ZrCH₂CH₂Si(SiMe₃)₃ units are rather weakly associated. The three independent Zr-C1 distances agree closely with values observed for corresponding parameters in $[CDZrCl₃]_∞$.¹⁰ Distances and angles within the β -silylalkyl ligand are unexceptional and are inconsistent with the presence of an "agostic" interaction.¹¹

Upon exposure to fluorescent room light, the red zirconium silyl $CpCp*Zr[Si(SiMe₃)₃]Cl$ reacts with 1 equiv of ethylene over ca. 3 days to afford β -silylalkyl derivative **2** (eq 3). Under 50 psi of ethylene, the reaction time is

D.; Rheingold, A. L.; Geib, S. J. Organometallics 1988, 7, 2045.
(7) (a) Clawson, L.; Soto, J.; Buchwald, S. L.; Steigerwald, M. L.;
Grubbs, R. H. J. Am. Chem. Soc. 1985, 107, 3377. (b) Jordan, R. F.;
Bajgur, C. S.; Willet references therein.

⁽⁸⁾ For **la:** Anal. C, H, Cl. Mol wt calcd: 1146. Found: 1113 (isothermal distillation in benzene). ¹H NMR (benzene- d_6 , 22 °C, 300 (isothermal distillation in benzene). ¹H NMR (benzene- d_6 , 22 °C, 300 MHz): δ 0.28 (s, 27 H, SiMe₃), 1.06 (m, 2 H, CH₂Si), 1.84 (s, 15 H, C_p*), δ 8 (SiMe₃), 4.39 (SiMe3), 4.39 (SiMe3), 4.39 (SiMe3), 4.39 (s, $C_5\hat{M}\hat{e}_5$). $28\text{Si}^1\text{H}$ } NMŘ (benzene- d_6 , 59.6 MHz, 22[']°C): δ -71.49 (Si(SiMe₃)₃), -12.45 (Si(SiMe₃)₃). UV-vis (pentane, nm): 222 ($\epsilon = 15000$ M⁻¹ cm⁻¹), 257 ($\epsilon = 14000$ M⁻¹ cm⁻¹).

⁽⁹⁾ $C_{42}H_{92}C_{4}Si_{8}Zr_{2}$: triclinic, $P\bar{1}$, $a = 9.247$ (4) Å, $b = 12.643$ (6) Å, $c = 14.519$ (6) Å, $\alpha = 79.64$ (3)°, $\beta = 81.25$ (3)°, $\gamma = 75.33$ (4)°; $V = 1605$ (1) \AA^3 ; $Z = 1$; $\mu = 6.58 \text{ cm}^{-1}$; Mo K α radiation $(\lambda = 0.71073 \text{ Å})$. Of 6815 reflections collected (3° $\leq 2\theta \leq 50^{\circ}$), 5666 were independent ($R_{\text{int}} = 4.07\%$) and 3653 were considered observed ($F > 6.0\sigma$ $R_{\rm wF} = 5.31\%$.

⁽¹⁰⁾ Engelhardt, **L.** M.; Papasergio, R. **I.;** Raston, C. L.; White, A. H. Organometallics **1984,** 3, **18. (11)** (a) C-H agostic interactions: Brookhart, M.; Green, M. L. H. *J.*

Organomet. Chem. 1983, 250, 395. (b) A β-CSi bond agostic interaction
is reported for [Cp₂Ti(CSiMe₃—CPhMe)]⁺: Eisch, J. J.; Piotrowski, A.
M.; Brownstein, S. J.; Gabe, E. J.; Lee, F. L. *J. Am. Chem. Soc.* 1985, 107

only ca. 10 h. This reaction is relatively clean (by **'H** NMR in benzene- d_6), and pure 2 can be isolated in ca. 50% yield as yellow crystals from pentane.12 In the absence of light no product is formed after **5** days, indicating that insertion requires photochemical activation of CpCp*Zr[Si- $(SiMe₃)₃$]Cl. The UV-vis spectrum of CpCp*Zr[Si- $(SiMe₃)₃$]Cl exhibits an absorption at 461 nm ($\epsilon = 500$ L $mol⁻¹$ cm⁻¹), and use of cutoff filters has determined that the corresponding electronic transition gives rise to the observed photochemistry. The quantum yield for this reaction $(\lambda = 380 - 470 \text{ nm})$, benzene- d_6) in the presence of excess ethylene is 2.5, suggesting a radical chain mechanism initiated by homolytic cleavage of a M-Si bond.13

Compound 1 is remarkably stable for an alkyl complex with β -hydrogens, very little decomposition being observed after 3 days at 80 °C (by ¹H NMR in benzene- d_6). Future work will involve further development and study of this insertion chemistry. Preliminary experiments show that $Cp^*Cl_2ZrSi(SiMe_3)$ ₃ is unreactive toward styrene, propene, and $Me₃SiCH=CH₂$ and that $Cp*Cl₂HfSi(SiMe₃)₃$ is inert toward diphenylacetylene and 1-hexene.

Acknowledgment is made to the Air Force Office of Scientific Research, Air Force Systems Command, **USAF,** for support of this work under Grant No. AFOSR-88-0273 and to the DoD University Research Instrumentation Program (Grant DAAL03-87-G-0071) for funds to purchase an X-ray diffractometer. The **U.S.** Government is authorized to reproduce and distribute reprints for Governmental purposes. T.D.T. thanks the Alfred P. Sloan Foundation for a research fellowship (1988-1990).

Supplementary Material Available: A listing of crystal, data collection, and refinement parameters and tables of positional and thermal parameters, bond lengths, bond angles, anisotropic thermal parameters, and hydrogen atom coordinates for **la** (9 pages); a table of observed and calculated structure factors for **la** (21 pages). Ordering information is given on any current masthead page.

A Palladadigermetane: Palladium-Catalyzed Insertion Reactions of Digermiranes

Takeshi Tsumuraya and Wataru Ando"

Department of Chemistry, The University of Tsukuba Tsukuba, Ibaraki 305, Japan

Received May 1, 1989

Summary: **The palladium-catalyzed reactions** of **digermirane 1 with dimethyl acetylenedicarboxylate and acetylene give the ring expansion products 2 and 3. Reaction** **with methyl acrylate gives the rearranged product 4. In** the stoichiometric reaction of 1 with Pd(PPh₃)₄, pallada**digermetane 6 is isolated as a stable compound. 6 reacts with dimethyl acetylenedicarboxylate, acetylene, and methyl acrylate to yield 2, 3, and 4, respectively. The similar palladium-catalyzed reactions of thia- and selenadigermiranes 9 and 10 with acetylene give the ring expansion products 11 and 12, respectively.**

One of the most interesting reactions of the Si-Si bond of the reactive disilanes is the transition-metal-catalyzed insertion of unsaturated hydrocarbons, and numerous papers have been published so $far.^{1-7}$ In spite of these studies, no interest has been shown in the transitionmetal-catalyzed insertion of unsaturated compounds into the Ge-Ge bond. 8 Recently, we reported the preparation and chemical properties of a digermirane and its heterocyclic analogues. $9,10$ We report here the novel palladiumcatalyzed ring-expansion reactions of a digermirane and thia- and selenadigermiranes. We also report the stoichiometric reaction of the digermirane with $Pd(PPh₃)₄$ to yield a palladadigermetane as stable red crystals.

When a benzene solution of digermirane **1,9c** dimethyl acetylenedicarboxylate, and $Pd(PPh₃)₄$ (10 mol %) was heated to reflux for 45 h under an argon atmosphere, a crystalline product identified as digermacyclopentene **2,''** a insertion product of the acetylene into the Ge-Ge bond,

Pd(II) complexes such as $PdCl_2(PPh_3)_2$ and $PdCl_2(PhCN)_2$ and $\text{NiCl}_2(\text{PPh}_3)_2$ catalyzed the insertion of the acetylene into the Ge-Ge bond of the digermirane **1** equally, giving the adduct **2.** Unsubstituted acetylene also reacted with

(3) (a) Watanabe, H.; Kobayashi, M.; Higuchi, K.; Nagai, Y. *J. Orga*nomet. Chem. 1980, 186, 51. (b) Watanabe, H.; Kobayashi, M.; Saito, M.;
Nagai, Y. J. Organomet. Chem. 1981, 216, 149. (c) Watanabe, H.; Saito,
M.; Sutou, N.; Kishimoto, K.; Inose, J.; Nagai, Y. J. Organomet. Chem. **1982,225, 343.**

(4) Carlson, C. W.; West, R. *Organometallics* **1983,2, 1801. (5)** Seyferth, D.; Goldman, E. W.; Escudie, J. *J. Organomet. Chem.* **1984,271, 337.**

(6) Jzang, T. T.; Liu, C. S. *Organometallics* **1988, 7, 1271** and refer- ences cited therein.

(7) (a) Ito, **Y.;** Nishimura, S.; Ishikawa, M. *Tetrahedron* Lett. **1987, 28, 1293.** (b) Ito, **Y.;** Matsuura, T.; Murakami, M. *J. Am. Chem. SOC.* **1988, 110, 3692.**

Ge-Sn bond have been reported, see: Piers, E.; Skerlj, R. T. *J. Chem.* Soc., *Chem. Commun.* **1987, 1025.**

(9) (a) Ando, W.; Tsumuraya, T. Tetrahedron Lett. 1986, 27, 3251. (b) Tsumuraya, T.; Sato, S.; Ando, W. Organometallics 1988, 7, 2015. (c) Ando, W.; Tsumuraya, T. Organometallics 1988, 7, 1882.

(10) (a) Batcheller, S. A.; Masamune, S. Tetrahedron Lett. 1988, 29, 3383. (b) Masamune, S.; Batcheller, S. A.; Park, J.; Davis, W. M.; Yamashita, O.; Ohta, Y.; Kabe, Y. J. Am. Chem. Soc. 1989, 111, 1888.

(11) Compound **2:** colorless crystals; mp **173-174** "C; 'H NMR (60 MHz, CDClJ 6 **0.87** (t, *J* = **7** Hz, **24** H, CH,), **1.30 (s, 2 H,** GeCH,Ge), 2.50 (q, J = 7 Hz, 16 H, CH₂), 3.53 (s, 6 H, OMe), 6.9–7.4 (m, 12 H, Ar);
¹³C NMR (25 MHz, CDCl₃) δ 11.5 (t, GeCH₂Ge), 15.1 (q, CH₃), 30.3 (t, CH,), **51.8** (9, OMe), **125.9** (d, Ar), **128.8** (d, Ar), **141.2** (s, Ar), **147.8 (s,** Ar), **157.9** *(8,* Ar), **169.9 (s,** C=C).

0276-7333/89/2308-2286\$01.50/0 *0* 1989 American Chemical Society

⁽¹²⁾ For 2: Anal. C, H. ¹H NMR (benzene- d_6 , 22 °C, 300 MHz): δ 0.34 (s, 27 H, SiMe₃), 1.08 (m, 2 H, CH₂Si), 1.40 (m, 2 H, ZrCH₂), 1.71 (s, 15 H, Cp*), 5.90 (s, 5 H, Cp). UV-vis (pentane, nm): 225 (ϵ = 600

cm⁻¹), 329 (ϵ = 1000 M⁻¹ cm⁻¹).
(13) (a) Lehnig, M.; Neumann, W. P. J. Organomet. Chem. **1975**, 97,
375. (b) Kühlein, K.; Neumann, W. P.; Becker, H. P. *Angew. Chem., Int*. *Ed. Engl.* **1967, 6, 876.** (c) Bennett, **S.** W.; Eaborn, C.; Jackson, R. A,; Pearce, R. *J. Organomet.* **Chem. 1968,15, P17.** (d) Fields, R.; Haszeldine, R. N.; Hubbard, A. F. J. *Chem. SOC.* C **1971, 3838.**

⁽¹⁾ (a) Sakurai, H.; Kamiyama, Y.; Nakadaira, Y. *J. Am. Chem. SOC.* **1975,97,931.** (b) Sakurai, H.; Kamiyama, Y.; Nakadaira, Y. *Chem. Lett.* **1975,887.** (c) Sakurai, H.; Kobayashi, T.; Nakadaira, Y. *J. Organomet. Chem.* **1978, 162, C43.**

⁽²⁾ (a) Okinoshima, H.; Yamamoto, K.; Kumada, M. *J. Am. Chem. SOC.* **1972, 94, 9263.** (b) Tamao, K.; Hayashi, T.; Kumada, M. J. *Orga-nomet. Chem.* **1976,114, C19.**