

Under similar conditions azadigermiridine 8^{9c} did not react with dimethyl acetylenedicarboxylate or acetylene
in the presence of $Pd(PPh_3)_4$ or $PdCl_2(PPh_3)_2$. But, in the presence of $Pd(PPh_3)_4$ or $PdCl_2(PPh_3)_2$.

thiadigermirane $9^{9a,b}$ reacted with acetylene in the presence of a catalytic amount of $Pd(PPh_3)_4$ or $PdCl_2(PPh_3)_2$ at 80 ^oC cleanly to produce the adduct 11^{19} in 44-54% yield (eq **5).** In contrast to the reactions of digermirane 1 the adduct 11 obtained is the insertion product of acetylene into the Ge-S bond. No products of the insertion into the Ge-Ge bond were obtained. The reaction of selenadigermirane 10^{9a,b} with acetylene under similar conditions gave the corresponding addition product **12** (eq **5).20** A simple

adducts 11 and **12** (Scheme IV). We tried to proof the intervention of an intermediate such as **13.** However, attempts to isolate Pd-containing intermediates in stoichiometric reactions were not successful, so the chemistry in Scheme IV is only a suggestion.

Acknowledgment. This research was supported by a Grant-in-Aid for Scientific Research (No. 63106003) from the Ministry of Education, Science, and Culture of Japan. We thank T. Kawai and *Y.* Nagai, Eisai Co., Ltd., for the X-ray analysis of compound **6.**

Supplementary Material Available: Detailed information concerning IR, MS, and analytical data of new compounds (3 pages). Ordering information is given on any current masthead page.

Inversion of Stereochemistry at the Carbon Bound to Iron in Cyclopropane Formation from *threo* **-C,H,(CO),FeCHDCHDCH,S(CH,)CBH,+**

Charles P. Casey' and Laura J. Smith

McElvain Laboratory of Organic Chemistry Department of Chemistry, Universiw of Wisconsin Madison, Wisconsin 53706

Received June 5, 1989

Summary: **Upon heating at 65 'C,** *fhreo-C5H5-* **(CO),FeCHDCHDCH2S(CH3)C,H5+CF3SO3- is converted to** *cis* - **1,2-dideuteriocyclopropane with inversion** *of* **stereochemistry at the carbon bound to** iron.

The reaction of electrophilic carbene complexes with alkenes leads to the formation of cyclopropanes¹ with complete retention of alkene stereochemistry.² Since electron-rich alkenes have enhanced reactivity, electrophilic addition of the carbene carbon to the least substituted alkene carbon has been proposed to lead to a transition state with substantial positive charge at the carbon γ to the metal center. Cyclopropane formation can then be completed by carbon-carbon bond formation between C_{α} and C_{γ} by one of two stereochemically differentiated modes of ring closure (Scheme I). Net retention of stereochemistry at C_{α} could occur by nucleophilic attack of iron at the electrophilic γ -carbon to produce a cationic metallacyclobutane which then reductively eliminates cy clopropane.³ Net inversion of stereochemistry at C_{α} could occur via a W-shaped transition state in which the electrophilic γ -carbon attacks the backside of the C_{α}-Fe bond.

⁽¹⁸⁾ The mechanism of the palladium(I1)-catalyzed insertions of ace- tylenes into the Ge-Ge bond of **1** is of some interest. As reported earlier a Pd(0) species. An experiment in which 1 was treated with a stoichiometric amount of $PdCl_2(PPh_3)_2$ confirmed that this was the case. The reaction produced two products, palladadigermetane and $\text{ClAr}_2\text{Ge--C}$ H2-GeAr2Cl **(7),** in about a **1:l** ratio. It would appear that an initial reaction of 1 with $\text{PdCl}_2(\text{PPh}_3)_2$ reduces the latter to $\text{Pd}(\text{PPh}_3)_2$ and forms **7.** The coordinatively unsaturated Pd(PPh3)2 then inserts into the *GeGe* bond of **1.** Compound **7:** colorless crystals, mp **119-121** "C; 'H NMR **(500** 8 H, CH₂), 2.56 (s, 2 H, GeCH₂Ge), 2.77 (dq, $J = 7.4$, 14.8 Hz, 8 H, CH₂), 6.97 (d, $J = 7.7$ Hz, 8 H, Ar), 7.22 (t, $J = 7.7$ Hz, 4 H, Ar); ¹³C NMR (125 MHz, CDCl₃) δ 15.2 (q, CH₃), 28.0 (t, GeCH₂Ge), 29.1 MHz, CDCl3) **6 0.92** (t, *J* = **7.4** Hz, **24** H, CH,), **2.51** (dq, *J* = **7.4, 14.8** Hz,

⁽¹⁹⁾ Compound 11: colorless crystals; mp 174-175 °C; ¹H NMR (60 MHz, CDCl₃) δ 2.10 (s, 12 H, CH₃), 2.21 (br s, 24 H, CH₃), 6.62 (br s, 8 H, Mes), 6.95 (AB, $J_{AB} = 8.4$ Hz₂, $\Delta \nu_{AB} = 30$ Hz₂, 2 H, HC=CH); Mes), 128.9 (d, Mes), 129.2 (d, C=C), 135.8 (s, Mes), 138.0 (s, Mes), 138.2
(s, Mes), 140.2 (d, C=C), 143.3 (s, Mes), 143.9 (s, Mes).
(20) Compound 12: colorless crystals, mp 114–120 °C; ¹H NMR (60 **(125** MHz, CDCla) 6 **20.8 (4,** CHI), **25.1 (4,** CHs), **25.2 (q,** CH3), **128.8** (d,

MHz, CDCl₃) δ 2.13 (s, 12 H, CH₃), 2.21 (s, 24 H, CH₃), 6.63 (br s, 8 H, Mes), 7.41 (AB, J_{AB} = 10.2 Hz, Δ ν_{AB} = 25.0 Hz, 2 H, CH==CH); ¹³C NMR (125 MHz, CDCl3) 6 20.8 (q, CH3), 20.9 (q, CH₃), 25.3 (q, CH₃), 25.5 (q, CH₃), 128.8 (d, Mes), 128.9 (d, Mes), 134.3 (d, C=C), 136.1 (s, Mes), 136.2 (d, C=C), **137.9** *(8,* Mes), **138.2 (s,** Mes), **143.2 (s,** Mes), **143.8 (s,** Mes).

⁽¹⁾ Brookhart, M.; Studabaker, W. B. *Chem. Reu.* **1987,87, 411.**

⁽²⁾ Alkene stereochemistry was partially lost in one case. Brookhart, M.; Kegley, S. E.; Husk, G. R. Organometallics 1984, 3, 650.

(3) (a) Puddephatt, R. J. Coord. Chem. Rev. 1980, 33, 149. (b) Hanks, T. W.; Jennings, P. 1. W.; Jennings, P. W.J. Am. Chem. Soc. 1361, 109, 3023. (c) Al-Essa,
R. J.; Puddephatt, R. J.; Tipper, C. F. H.; Thompson, P. J. J. Organomet.
Chem. 1978, 157, C40. (d) Irwin, W. J.; McQuillin, F. J. Tetrahedron
Lett. 196

Inversion of stereochemistry at a carbon bound to a metal in cyclopropane formation has been seen previously in the solvolysis of 1.3-tin mesylates and related compounds.⁴

In an attempt to model the transition state for cyclopropane formation from metal carbene complexes, we studied the reaction of $C_5H_5(CO)_2Fe(CH_2)_3Br$ with Ag⁺ and found that generation of an electrophilic center γ to iron led to cyclopropane formation. 5 Here we report that thermolysis of $\dot{C}_5H_5(CO)_2Fe(CH_2)_3S(CH_3)C_6H_5^+$ (1) also leads to cyclopropane formation. In addition, use of stereochemically labeled sulfonium salts establishes that cyclopropane formation occurs with inversion of stereochemistry at the carbon bound to iron.6

 $C_5H_5(\rm CO)_2Fe(CH_2)_3SC_6H_5$ (2)⁷ was prepared from the reaction of $\mathrm{Na^+}[C_5H_5(CO)_2Fe]^-$ (2.3 mmol) with **(p-CH3C6H4)S03(CH2)3sc6H5 (3)8** (1.9 mmol) in THF at 0° C. Iron sulfide 2 was isolated in 63% yield as a dark yellow, low melting oil (mp 15-20 "C). Methylation of 2 (3 mmol) with 1 equiv of $CF_3SO_3CH_3$ in CH_2Cl_2 at room temperature produced the sulfonium salt $C_5H_5(CO)_2Fe$ - $(\text{CH}_2)_3\text{S}(\text{CH}_3)C_6\text{H}_5^+\text{CF}_3\text{SO}_3^-$ (1-CF₃SO₃) as a thick red oil in 35% isolated yield.⁹

The neat triflate salt $1-CF_3SO_3$ was generated in situ from the reaction of 2 with 0.95 equiv of $CF_3SO_3CH_3$ and heated to 65 $\rm{^{\circ}C}$ to generate cyclopropane in 62% yield.¹⁰ Similarly, 1 -CF₃SO₃ generated in situ in CH₂Cl₂ gave cyclopropane upon heating at 65 "C.

(4) (a) Kuivila, H. G.; Scarpa, N. M. J. Am. Chem. Soc. 1970, 92, 6990.
(b) Davis, D. D.; Chambers, R. L.; Johnson, H. T. J. Organomet. Chem.
1970, 25, C13. (c) Davis, D. D.; Black, R. H. J. Organomet. Chem. 1974, 82, C30. (d) Davis, D. D.; Johnson, H. T. J. Am. Chem. Soc. 1974, 96, 7576. (e) McWilliam, D. C.; Balasubramanian, T. R.; Kuivila, H. G. J. Am. Chem. Soc. 1978, 100, 6407. (f) Fleming, I.; Urch, C. J. Tetrahedron Lett. 198 1985, 285, 173. (h) Kadow, J. F.; Johnson, C. R. Tetrahedron Lett. 1984, 25, 5255. (i) Peterson, D. J.; Robbins, M. D. Tetrahedron Lett. 1972, 2135. (j) Peterson, D. J.; Robbins, M. D.; Hansen, J. R. J. Organomet.

Chem. **1974,** *73,* **237. (5)** Casey, C. **P.;** Smith, L. J. Organometallics **1988, 7,2419.**

(6) Brookhart has found inversion of stereochemistry at the carbon bound to iron of **C5H5(C0)2FeCHDCHDCH(OCH3)C6H5** in cyclopropane

formation and has informed us of his results prior to publication.
Brookhart, M.; Liu, Y. Organometallics 1989, 8, 1569.
(7) For 2: ¹H NMR (200 MHz, acetone-d_e) δ 7.33-7.11 (m, C₆H_s), 4.90
(s, C₆H_s), 2.92 (

CH₂); IR (hexane) 2011 (s), 1957 (s), 1927 (w) cm⁻¹; HRMS calcd for (M
- 2CO)⁺, C₁₄H₁₈FeS 272.0322, found 272.0316.
(8) (a) Nambara, T.; Matsuhisa, N. *Yakugaku Zasshi* 1963, 83, 642
(*Chem. Abstr.* 1963, 59, 741 D. *G.;* Langler, R. F.; Morse, R. H.; Sandoval, D. N. Can. *J. Chem.* **1979,** *57,* **1206.**

(9) For 1-CF3S03: 'H NMR **(500** MHz, acetone-de) 6 **8.20-7.73** (m, C6H5), **4.92** *(8,* C5H6), **3.20** (m, CHzS), **3.47** *(8,* CH,), **1.82 (m,** CHZ), **1.40** (m, FeCH2); 13C('H} NMR **(126** MHz, acetone-d,) 6 **218.9** (CO), **138.1** $\overline{\text{(C_{ijmo})}}$, 132.2, 129.0 $\overline{\text{(C_{ortho,meta})}}$, 124.1 $\overline{\text{(C_{para})}}$, 86.7 $\overline{\text{(C_{jH_5})}}$, 49.5 $\overline{\text{(CH_2S)}}$, 32.3 $\overline{\text{(CH_2)}}$, 26.4 $\overline{\text{(CH_3)}}$, -1.0 $\overline{\text{(FeCH_2)}}$; IR (hexane) 2005 (w), 2001 (s), 1950 (s) cm⁻

(10) Cyclopropane was identified by ¹H NMR $(\delta 0.13 \text{ in } C_6D_6)$, IR (gas: **3100,3022, 1027, 866** cm-'), and GC/MS.

To determine the stereochemistry of cyclopropane formation, we synthesized stereospecifically labeled threo- $C_5H_6(CO)_2FeCHDCHDCH_2SC_6H_5$ (2-d₂). Reduction of acetylene- d_2 with chromous chloride produced pure trans-1,2-dideuterioethylene¹¹ containing no infrared-detectable¹² cis-CHD=CHD or CHD=CH₂. Reaction of the trans-CHD=CHD with bromine in water gave the erythro-bromohydrin, BrCHDCHDOH,13 which was cyclized with 1 M NaOH to *trans-*1,2-dideuteriooxirane $(4)^{14}$ in 41% yield (23% from ethylene). Epoxide **4** was opened with ((phenylthio)methyl)lithium to give erythro- $HOCHDCHDCH_2SC₆H₅ (5)¹⁵$ in 57% yield. Alcohol 5 was converted to the tosylate $3-d_2^{16}$ with tosyl chloride in pyridine (92%). Finally, reaction of tosylate $3-d_2$ with the $Na+ [C_5H_5(CO)_2Fe]$ gave threo-2-d₂^{17,18} which was purified by column chromatography (82 *9'0* 1.

Reaction of the labeled iron sulfide threo-2- d_2 (120 mg; 0.36 mmol) with neat methyl triflate (0.32 mmol) followed by thermolysis of the sulfonium salt at 65 "C for 6 h produced **cis-1,2-dideuteriocyclopropane** in 45% yield as the only detectable volatile product (Scheme 11). **1,2-** Dideuteriocyclopropane was identified by ¹H NMR (δ 0.12) and GC/MS, which established that the product was greater than 97% d_2 . The stereochemistry of the cyclopropane was shown to be cis by gas-phase infrared spectroscopy, which exhibited bands at 2279, 1038, and 846 cm-' that are characteristic of **cis-1,2-dideuteriocyclo-**

(13) The procedure of Pricellb was modified as suggested by Brook-hart: **150** mL **of** a **0.19** M solution of bromine in water was added to **0.02**

mol of trans-CHD=CHD at room temperature. **(14)** For **4:** 'H NMR **(200** MHz, c&) 6 **0.54; IR** (gas) **3023,2241,1742,**

1227, 1110, 916, 889, 878, 817, 750 cm⁻¹.

(15) For 5: ¹H NMR (200 MHz, CDCl₃) δ 7.36–7.10 (m, C₆H₅), 3.68 (br

d, J = 6 Hz, CHDO), 2.97 (br d, J = 8 Hz, CH₂S), 1.80 (br q, J = 8 Hz,

CHD), 1.50 (br s, OH); (t, $J_{CD} = 19 \text{ Hz}$, \overline{CHD}), 30.1 (CH₂S); IR (film) 3352, 2922 cm⁻¹; HRMS calcd for C₉H₁₀D₂OS 170.0734, found 170.0730.
(16) For 3-d₂: ¹H NMR (200 MHz, CDCl₃) δ 7.8–7.7, 7.4–7.2 (C₆H₅, **129.1, 128.9** $(C_{\text{ortho}, \text{meta}})$, **125.9** (C_{para}) , **60.9** $(t, J_{\text{CD}} = 21 \text{ Hz}, \text{CHDO})$, **31.2**

 C_6H_4), 4.13 (br d, $J = 6$ Hz, CHDO), 2.91 (br d, $J = 8$ Hz, CH₂S), 2.44 (s, CH₃), 1.90 (br q, J = 8 Hz, CHD); ¹³C^{[1}H] NMR (126 MHz, CDCl₃)
5 144.8, 135.4, 133.0, 129.8, 129.6, 129.0, 127.8, 126.3 (C_{ary}), 68.2 (t, J_{CD}
= 23 Hz, CHDO), 29.6 (CH₂S), 28.0 (t, J_{CD} = 20 Hz, CHD), 21. **324.0822,** found **324.0823.**

(17) For 2-d₂: ¹H NMR (200 MHz, acetone-d₆) δ 7.32-7.14 (m, C₆H₅),
4.91 (s, C₅H₆), 2.91 (br d, $J = 6$ Hz, CH₂S), 1.73 (m, CHD), 1.43 (m,
FeCHD); ¹³C₁^HH₁ NMR (126 MHz, acetone-d₆) δ 218.8 (C 1967 (s) cm⁻

(18) Similar reactions occur with clean inversion of stereochemistry at carbon: (a) Bock, P. L.; Boschetto, D. J.; Rasmussen, J. R.; Demers, J. P.; Whitesides, G. M. J. *Am. Chem. SOC.* **1974,96,2814.** (b) Whitesides, G. M.; Boschetto, D. J. *J. Am. Chem. SOC.* **1971, 93, 1529.**

^{(11) (}a) Nicholas, P. P.; Carroll, R. T. J. Org. Chem. 1968, 33, 2345.
(b) Price, C. P.; Spector, R. J. Am. Chem. Soc. 1966, 88, 4171.
(12) Major IR bands for trans-CHD—CHD^{11a} appear at 1298, 987, and

⁷²⁷ cm-*, for cis-CHD=CHD'" at **1342** and **842** cm-', and for CHD=CH2 at **1402, 1000, 943,** and **808** cm-'. Brondsema, P. Ph.D. Dissertation, University of Wisconsin-Madison, **1984.**

propane. Bands corresponding to the trans isomer at 2271 , 1024 , 1041 , and 849 cm^{-1} were absent.¹⁹ This result 1024, 1041, and 849 cm⁻¹ were absent.¹⁹ demonstrates that cyclopropane formation occurs with inversion of stereochemistry at the carbon bound to iron. This result supports a mechanism involving backside attack of the electrophilic γ -carbon at the iron-carbon bond through a W-shaped intermediate and is inconsistent with a mechanism involving a metallacyclobutane intermediate.

Earlier we had attempted to explain the formation of cis cyclopropanes from (CO)5W=CHPh and *cis-* $CH₃HC=CHCH₃$ or $(CH₃)₂C=CHCH₃$ by a mechanism involving interaction of the ipso carbon of the aryl ring on C_{α} with the more substituted alkene carbon followed by conversion to a metallacycle and reductive elimination.²⁰ The results here demonstrating inversion of stereochemistry at the α -carbon strongly suggest that this explanation is incorrect. Since this constitutes our second retraction of explanations for the stereochemistry of the product cyclopropanes, we are reluctant to offer a third at this time.

Acknowledgment. We wish to thank Maurice Brookhart for informing us of his related work prior to publication and Jerome Berson for providing IR spectra of *cis*and **trans-dideuteriocyclopropane.** Financial support from the National Science Foundation is gratefully acknowledged.

Registry No. 1-CF₃SO₃, 122171-43-1; 1-d₂, 122171-48-6; 2, 4, 13482-13-8; **5,** 122171-40-8; Na+[CSHS(CO),Fe]-, 122171-45-3; (R*,S*)-BrCHDCHDOH, 80236-19-7; cyclopropane, 75-19-4; acetylene-d₂, 1070-74-2; trans-1,2-dideuterioethylene, 1517-53-9; **((phenylthio)methyl)lithium,** 13307-75-0; cis-1,2-dideuteriocyclopropane, 122211-66-9. 122171-44-2; 2- d_2 , 122171-46-4; 3, 71350-90-8; 3- d_2 , 122171-41-9;

(19) (a) Pedersen, L. D. Ph.D. Dissertation, Yale University, 1975. (b) Berson, J. A.; Pedersen, L. D.; Carpenter, B. K. *J. Am. Chem. SOC.* **1976,** *98,* **122.**

(20) Casey, C. **P.; Polichnowski,** S. **W.; Shusterman, A. J.; Jones,** *C.* **R. J.** *Am. Chem. SOC.* **1979, 101, 7282.**

Reactions of

Chioro((tri-2,4,6-ferf -butyiphenyi)imino)phosphane with Anionic Transition-Metal Complexes: Stable Metallolminophosphanes and Evidence for Terminal Aminophosphinidene Complexes

Edgar Niecke, * **Joachlm Heln, and Martin Nieger**

Anorganisch-Chemisches Znstitut der Universitat Bonn Gerhard-Domagk-Strasse I, 0-5300 Bonn 1, FRG

Received April IO, 1989

Summary: Reaction of $\left[\frac{\text{(Cl)}\text{P}=\text{N}(2,4,6-(t-Bu)_{3}C_{6}H_{2})}{(1,4,4,4,4)\right]}\right]$ with $[(\eta^5\text{-Me}_5G_5)(CO)_2Fe]K$ affords the stable metallo- iminophosphane $[(\eta^5\text{-Me}_5C_5)(CO)_2\text{FeP}=\text{N}(2,4,6-(t Bu)$ ₃ C_6H_2] (3), the structure of which was determined by X-ray crystallography. Rearrangement of the tungsten compound $[(\eta^5\text{-Me}_5C_5)_{,2}W(H)(PN(2,4,6-(t-Bu)_3C_6H_2)]$ (6) via a 1,3-hydrogen shift results in the formation of the terminal aminophosphinidene complex $[(\eta^5\text{-Me}_5\text{C}_5)_2\text{WPN}$ - $(H)(2,4,6-(t-Bu)₃C₆H₂)$ (7), identified spectroscopically.

A variety of iminophosphane complexes is known,' demonstrating the versatility of phosphorus-element p π systems as ligands. So far only η^1 -coordination to one metal fragment has been observed with the imino-

2291
\n**Scheme I**
\n1 +
$$
[L(CO)_2M]K
$$

\n $-KCI$
\n $L(CO)_2M$
\n2: $L = Cp, M = Fe$
\n3: $L = Cp, M = Fe$
\n4: $L = Cp, M = Ru$

phosphane acting as a two-electron donor via the lone pair at the phosphorus atom. However, organometal-substituted iminophosphanes of the type $L_nMP=NR$, i.e. the P=N moiety acting **as** one-electron donor, have so far only been postulated as intermediates² or could only be detected spectroscopically due to decomposition at room temperature as for $L_nM = (R_3P)(CO)Ni^{3}$ Here, we report on the first stable metalloiminophosphanes, $L(CO)₂MP=MAr$ (L $=$ Cp (η^5 -C₅H₅), M = Fe, Ru; L = Cp* (η^5 -C₅Me₅), M = Fe; $Ar = 2,4,6-t-Bu₃C₆H₂$, the synthesis of which had been prompted by the recent discovery of the chloroiminophosphane **l.*** This concept is analogous to the preparation of $[Cp*(CO)_2FeP=C(SiMe_3)_2]^5$ from $[ClP=C (SiMe₃)₂$, and thus, after phosphavinyl complexes and metallodiphosphenes,⁶ organometal-substituted iminophosphanes have become accessible.

In a typical preparation a pentane solution of **1** (1.63 g, **5** mmol) was added to a solution of an equimolar quantity of $[Cp*(CO)_2Fe]K$ in tetrahydrofuran at 0 °C. After being warmed to room temperature, the dark brown reaction mixture was stirred for 15 h and filtered and the filtrate evaporated to dryness. Recrystallization from petroleum ether (bp 40-60 "C) at -30 "C afforded dark brown **3.7** [Attempts to prepare P-metalated iminophosphanes from anionic group VIB transition-metal complexes [L- $(CO)_3M\dot{M}'$ (L = Cp, Cp*; M = Cr, Mo, W; M' = Li, Na, K) failed so far due to the thermal instability of the resulting products. Only ³¹P NMR spectroscopic evidence could be obtained for a tungsten compound assumed to be $[Cp*(CO)₃WP=NAr]$ ($\delta = 754$ ppm), which decomposes rapidly at temperatures above -40 "C.] The reactions with $[Cp(CO)₂Fe]K$ and $[Cp(CO)₂Ru]K$ were performed analogously and furnished products **2** and **4,** respectively. In the 31P(1H]NMR spectra the signals for **2, 3,** and **4** are found, as expected, at extremely low field, viz. $\delta = 717$, 787, and 688 ppm $(H_3PO_4$ external, C_6D_6), respectively. These low-field shifts are accounted for by the organo-

- **(3) Gudat, D.; Niecke, E.** *J. Chem. SOC., Chem. Commun.* **1987, 10. (4) Niecke,** E.; **Nieger, M.; Reichert, F.** *Angew. Chem., Int. Ed. Engl.* 1988, 27, 1715.
- **(5) Gudat, D.; Niecke, E.; Arif, A. M.; Cowley, A. H.; Quashie,** S. *Organometallics* **1986,5, 593.**
- **(6) Weber, L.; Reizig, K.; Bungardt, D.; Boese, R.** *Organometallics* **1987, 6, 110. (7) Data for compounds 2, 3, and 4: MS** (EI, **70 eV,** *m/e* **(relative**

^{(1) (}a) Scherer, O. J.; Konrad, R.; Guggolz, E.; Ziegler, M. L. Angew.
Chem., Int. Ed. Engl. 1982, 21, 297. (b) Scherer, O. J.; Kerth, J. Asselmann, R. Sheldrick, W. S. Angew. Chem., Int. Ed. Engl. 1983, 22, 984. **(c) Arif, A. M.; Cowley, A. H.: Pakulaki. M.** *J. Am. Chek. SOC.* **1985,107. 2553.**

⁽²⁾ Gudat, D.; Niecke, E.; Krebs, B.; Dartmann, M. *Organometallics* **1986, 5, 2376.**

intensity)); ¹H NMR (δ , C_eD₈); ¹³C[¹H] (δ , C_eD₈); ³¹P[¹H] (δ , C_eD₈); IR (cm⁻¹, pentane). 2: IR 2037 s, 1983 s; MS 467 (<1, M⁺), 346 (2, M⁺ - 2CO 6); ¹H 1.4 (s, 18 H, o -tBu), 1.6 (s NMR data for the 2,4,6^{-t}-Bu₃C₈H₂ groups of compounds 2 and 4 are very similar to those observed for 3.