propane. Bands corresponding to the trans isomer at 2271 , 1024 , 1041 , and 849 cm^{-1} were absent.¹⁹ This result 1024, 1041, and 849 cm⁻¹ were absent.¹⁹ demonstrates that cyclopropane formation occurs with inversion of stereochemistry at the carbon bound to iron. This result supports a mechanism involving backside attack of the electrophilic γ -carbon at the iron-carbon bond through a W-shaped intermediate and is inconsistent with a mechanism involving a metallacyclobutane intermediate.

Earlier we had attempted to explain the formation of cis cyclopropanes from (CO)5W=CHPh and *cis-* $CH₃HC=CHCH₃$ or $(CH₃)₂C=CHCH₃$ by a mechanism involving interaction of the ipso carbon of the aryl ring on C_{α} with the more substituted alkene carbon followed by conversion to a metallacycle and reductive elimination.²⁰ The results here demonstrating inversion of stereochemistry at the α -carbon strongly suggest that this explanation is incorrect. Since this constitutes our second retraction of explanations for the stereochemistry of the product cyclopropanes, we are reluctant to offer a third at this time.

Acknowledgment. We wish to thank Maurice Brookhart for informing us of his related work prior to publication and Jerome Berson for providing IR spectra of *cis*and **trans-dideuteriocyclopropane.** Financial support from the National Science Foundation is gratefully acknowledged.

Registry No. 1-CF₃SO₃, 122171-43-1; 1-d₂, 122171-48-6; 2, 4, 13482-13-8; **5,** 122171-40-8; Na+[CSHS(CO),Fe]-, 122171-45-3; (R*,S*)-BrCHDCHDOH, 80236-19-7; cyclopropane, 75-19-4; acetylene-d₂, 1070-74-2; trans-1,2-dideuterioethylene, 1517-53-9; **((phenylthio)methyl)lithium,** 13307-75-0; cis-1,2-dideuteriocyclopropane, 122211-66-9. 122171-44-2; 2- d_2 , 122171-46-4; 3, 71350-90-8; 3- d_2 , 122171-41-9;

(19) (a) Pedersen, L. D. Ph.D. Dissertation, Yale University, 1975. (b) Berson, J. A.; Pedersen, L. D.; Carpenter, B. K. *J. Am. Chem. SOC.* **1976,** *98,* **122.**

(20) Casey, C. **P.; Polichnowski,** S. **W.; Shusterman, A. J.; Jones,** *C.* **R. J.** *Am. Chem. SOC.* **1979, 101, 7282.**

Reactions of

Chioro((tri-2,4,6-ferf -butyiphenyi)imino)phosphane with Anionic Transition-Metal Complexes: Stable Metallolminophosphanes and Evidence for Terminal Aminophosphinidene Complexes

Edgar Niecke, * **Joachlm Heln, and Martin Nieger**

Anorganisch-Chemisches Znstitut der Universitat Bonn Gerhard-Domagk-Strasse I, 0-5300 Bonn 1, FRG

Received April IO, 1989

Summary: Reaction of $\left[\frac{\text{(Cl)}\text{P}=\text{N}(2,4,6-(t-Bu)_{3}C_{6}H_{2})}{(1,4,4,4,4)}\right]$ with $[(\eta^5\text{-Me}_5G_5)(CO)_2Fe]K$ affords the stable metallo- iminophosphane $[(\eta^5\text{-Me}_5C_5)(CO)_2\text{FeP}=\text{N}(2,4,6-(t Bu)$ ₃ C_6H_2] (3), the structure of which was determined by X-ray crystallography. Rearrangement of the tungsten compound $[(\eta^5\text{-Me}_5C_5)_{,2}W(H)(PN(2,4,6-(t-Bu)_3C_6H_2)]$ (6) via a 1,3-hydrogen shift results in the formation of the terminal aminophosphinidene complex $[(\eta^5\text{-Me}_5\text{C}_5)_2\text{WPN}$ - $(H)(2,4,6-(t-Bu)₃C₆H₂)$ (7), identified spectroscopically.

A variety of iminophosphane complexes is known,' demonstrating the versatility of phosphorus-element p π systems as ligands. So far only η^1 -coordination to one metal fragment has been observed with the imino-

2291
\n**Scheme I**
\n1 +
$$
[L(CO)_2M]K
$$

\n $-KCI$
\n $L(CO)_2M$
\n2: $L = Cp, M = Fe$
\n3: $L = Cp, M = Fe$
\n4: $L = Cp, M = Ru$

phosphane acting as a two-electron donor via the lone pair at the phosphorus atom. However, organometal-substituted iminophosphanes of the type $L_nMP=NR$, i.e. the P=N moiety acting **as** one-electron donor, have so far only been postulated as intermediates² or could only be detected spectroscopically due to decomposition at room temperature as for $L_nM = (R_3P)(CO)Ni^{3}$ Here, we report on the first stable metalloiminophosphanes, $L(CO)₂MP=MAr$ (L $=$ Cp (η^5 -C₅H₅), M = Fe, Ru; L = Cp* (η^5 -C₅Me₅), M = Fe; $Ar = 2,4,6-t-Bu₃C₆H₂$, the synthesis of which had been prompted by the recent discovery of the chloroiminophosphane **l.*** This concept is analogous to the preparation of $[Cp*(CO)_2FeP=C(SiMe_3)_2]^5$ from $[ClP=C (SiMe₃)₂$, and thus, after phosphavinyl complexes and metallodiphosphenes,⁶ organometal-substituted iminophosphanes have become accessible.

In a typical preparation a pentane solution of **1** (1.63 g, **5** mmol) was added to a solution of an equimolar quantity of $[Cp*(CO)_2Fe]K$ in tetrahydrofuran at 0 °C. After being warmed to room temperature, the dark brown reaction mixture was stirred for 15 h and filtered and the filtrate evaporated to dryness. Recrystallization from petroleum ether (bp 40-60 "C) at -30 "C afforded dark brown **3.7** [Attempts to prepare P-metalated iminophosphanes from anionic group VIB transition-metal complexes [L- $(CO)_3M\dot{M}'$ (L = Cp, Cp*; M = Cr, Mo, W; M' = Li, Na, K) failed so far due to the thermal instability of the resulting products. Only ³¹P NMR spectroscopic evidence could be obtained for a tungsten compound assumed to be $[Cp*(CO)₃WP=NAr]$ ($\delta = 754$ ppm), which decomposes rapidly at temperatures above -40 "C.] The reactions with $[Cp(CO)₂Fe]K$ and $[Cp(CO)₂Ru]K$ were performed analogously and furnished products **2** and **4,** respectively. In the 31P(1H]NMR spectra the signals for **2, 3,** and **4** are found, as expected, at extremely low field, viz. $\delta = 717$, 787, and 688 ppm $(H_3PO_4$ external, C_6D_6), respectively. These low-field shifts are accounted for by the organo-

- **(3) Gudat, D.; Niecke, E.** *J. Chem. SOC., Chem. Commun.* **1987, 10. (4) Niecke,** E.; **Nieger, M.; Reichert, F.** *Angew. Chem., Int. Ed. Engl.* 1988, 27, 1715.
- **(5) Gudat, D.; Niecke, E.; Arif, A. M.; Cowley, A. H.; Quashie,** S. *Organometallics* **1986,5, 593.**
- **(6) Weber, L.; Reizig, K.; Bungardt, D.; Boese, R.** *Organometallics* **1987, 6, 110. (7) Data for compounds 2, 3, and 4: MS** (EI, **70 eV,** *m/e* **(relative**

^{(1) (}a) Scherer, O. J.; Konrad, R.; Guggolz, E.; Ziegler, M. L. Angew.
Chem., Int. Ed. Engl. 1982, 21, 297. (b) Scherer, O. J.; Kerth, J. Asselmann, R. Sheldrick, W. S. Angew. Chem., Int. Ed. Engl. 1983, 22, 984. **(c) Arif, A. M.; Cowley, A. H.: Pakulaki. M.** *J. Am. Chek. SOC.* **1985,107. 2553.**

⁽²⁾ Gudat, D.; Niecke, E.; Krebs, B.; Dartmann, M. *Organometallics* **1986, 5, 2376.**

intensity)); ¹H NMR (δ , C_eD₈); ¹³C[¹H] (δ , C_eD₈); ³¹P[¹H] (δ , C_eD₈); IR (cm⁻¹, pentane). 2: IR 2037 s, 1983 s; MS 467 (<1, M⁺), 346 (2, M⁺ - 2CO 6); ¹H 1.4 (s, 18 H, o -tBu), 1.6 (s NMR data for the 2,4,6^{-t}-Bu₃C₈H₂ groups of compounds 2 and 4 are very similar to those observed for 3.

Figure 1. Structure of [Cp*(CO),FeP=NAr] **(3)** showing the atom numbering scheme. Important bond lengths (pm) and angles (deg): P1-Fel, 220.5 (5); P1-N1, 156.4 (12); N1-C1, 140.8 *(7);* Fel-Pl-N1,115.4 (5); P1-Nl-Cl, 119.8 (9). The atoms C12, C15, Fel, P1, N1, C1, C4, C9, and C10 are lying in a mirror plane.

metallic substituents in that they inductively destabilize the HOMO (n_p) , thus increasing the paramagnetic shift contribution. Moreover, this exemplifies once more the increased σ -donor strength going from Cp- to Cp*-ligated metal fragments.

An X-ray structure analysis of **38** revealed some informative features: In contrast to the cis configuration in 1, the metalloiminophosphane displays a trans configuration in the solid state. The reduction of s character of the PN bond is demonstrated by the lengthening of this bond to 156 pm (cf. 149 pm for **I),** which corresponds to a double bond, and establishes an essentially sp²-hybridized P atom. This is further corroborated by the Fe-P-N and the P-N-C1 angles, 115° and 120°, respectively. The relatively large valence angle at phosphorus, the largest found in $trans\text{-}\text{iminophosphanes}, ^ 9$ has to be attributed to the iron fragment being a very effective σ -donor since steric reasons cannot be put forward. In any case replacing a σ -acceptor (Cl) by a σ -donor effects a drastic change of the electronic constitution.

As in $[Cp*(CO)_2FeP=PAr]^6$ the iminophosphane ligand in **3** can also be viewed as one leg of a distorted threelegged piano-stool arrangement. The FeP bond length of 220 ppm, though lying in the range of single bond distances,¹⁰ appears somewhat shortened in comparison to 226.0 pm found in the above diphosphenyl complex. This implies a weak intramolecular donor/acceptor interacraction of filled metal d orbitals with the $\pi^*_{P=N}$ -orbital.

In a heterogeneous reaction, 1 has also been treated with the lithiated **bis(pentamethylcyclopentadieny1)** dihydrido species of molybdenum and tungsten 11 at ambient temperatures. Examination of the ${}^{31}P{}_{1}^{1}H{}_{1}^{1}NMR$ spectra of the reaction mixtures strongly suggests the formation of the terminal aminophosphinidene complexes **7** and **8.** Support

for this proposal is gained from comparison of their spectroscopic data¹² with those of the compounds having been obtained by Lappert et al.¹³ Thus the chemical shift values of 770 and 663 ppm for **7** and **8,** respectively, and in the case of tungsten the coupling to phosphorus $(1-J (^{183}W^{31}P) = 147$ Hz) are clearly indicative of the abovementioned class of complexes. Moreover, theoretical investigations¹⁴ have shown that for phosphinidenes bearing stabilizing π -donors in the α -position (e.g. H₂N-P being of course isomeric to HN=PH) a planar singlet ground state is favored. An aminophosphinidene moiety thus should combine quite favorably with an electron-deficient $"Cp"_{2}W$ metallocene" fragment with its "bent-off" cyclopentadienyl rings (cf. $\mathrm{Cp{*}_{2}WH_{2}}$).

The formation of **7** and **8** might involve the intermediacy of hydridometalloiminophosphanes, which would then undergo 1,3-hydrogen shift to rearrange to the final products. Such a possible intermediate, **6,** has been shown to exist for $M = W$ by a low-temperature NMR experiment. The signal of **6** (754 ppm) slowly decreases while the signal of **7** increases on warming a sample very slowly from -40 °C to room temperature. Rearrangements of this type involving groups of high migratory aptitude such as H **or** Me3Si are not uncommon in this field of chemistry, e.g. for certain diphosphatriazenes and alkyliminophosphanes to produce the corresponding aminodiphosphenes and aminophosphaalkenes, respectively.¹⁵

The above-mentioned compounds, however, have so far defied all attempts of purification or isolation, thus rendering impossible unequivocal characterization, especially by means of X-ray diffraction.

Further efforts to achieve full characterization are therefore currently in progress, as are further studies concerning the reactivity of 1 toward transition-metal complexes.

Acknowledgment. We are grateful to the Deutsche Forschungsgemeinschaft and the Fonds der Chemischen Industrie for a scholarship (to J.H.).

Registry No. 1, 117688-09-2; **2,** 122172-05-8; **3,** 122172-06-9; $[Cp*(CO)_2Fe]K$, 59654-59-0; $[Cp(CO)_2Fe]K$, 60039-75-0; [Cp- $(CO)_2Ru]K$, 84332-45-6; $[Cp*(CO)_3WP=NAr]$, 122188-66-3; $Cp_2 * Mo(H)Li$, 122172-10-5; $Cp_2 * W(H)Li$, 122172-11-6. **4,** 122172-07-0; **6,** 122188-49-2; **7,** 122172-08-1; **8,** 122172-09-2;

Supplementary Material Available: Tables of final atomic coordinates, isotropic thermal parameters, and bond lengths and angles *(5* pages); a listing final observed and calculated structure factors (8 pages). Ordering information is given on any current masthead page.

(15) Lysek, M. Dissertation, Bielefeld, 1987.

⁽⁸⁾ Some crystal data for 3 are as follows: $C_{30}H_{44}FeNO_2P$, $M = 537.5$, tetragonal, space group $P4/mcc$ (No. 124); $a = 1980.0$ (7) pm, $c = 1785.5$ (7) pm, $V = 7.001$ nm³, $Z = 8$, $d_{\text{valid}} = 1.04$ g cm⁻³, μ (Mo K $\$ $2\theta_{\text{max}} = 45^\circ$. Of these, 1259 reflections (IF) > 4 σ (P)) were used to solve (direct methods) and refine (174 parameters) the structure of 3. Nonhydrogen atoms were refined aniosotropically. $R = 0.116$ $(R_w = 0.100; w = \sigma^2(P) + 0.001F^2)$. The nonsatisfactory *R* value is due to decomposition of the crystal during measurement. No suitable single crystals were available for a low-temperature X-ray structure determination. Solvent was not identified.

⁽⁹⁾ Markovskii, L. N.; Romanenko, V. D.; Ruban, A. V. *Chemie* acyclischer doppeltkoordinierter *Phosphoruerbindungen:* Kiew, 1988 and references cited therein.
(10) Corbridge, D. E. C. The Structural Chemistry of Phosphorus;

⁽¹⁰⁾ Corbridge, D. E. C. The Structural Chemistry *of* Phosphorus; Elsevier: Amsterdam, 1974.

⁽¹¹⁾ Francis, B. R.; Green, M. L. H.; Luong-thi, T.; Moser, G. A. *J. Chem. Soc.,* Dalton Trans. 1976, 1339.

^{(12) 7: &}lt;sup>13</sup>C^{{1}H} δ 76.0 (C₅H₅}; ³¹P{¹H} δ 770; ³¹P δ 770 (d, J = 7 Hz). 8:
¹³C{¹H} δ 71.6 (C₅H₅, J(WC) = 5 Hz); ³¹P{¹H} δ 663 (J(WP) = 147 Hz); ³¹P
 δ 663 (d, J = 5 Hz).

c 603 (u, *o* – 5 r1z).

(13) Hitchcock, P. B.; Lappert, M. F.; Leung, W.-P. *J. Chem. Soc., Chem. Commun.* 1987, 1282.

⁽¹⁴⁾ Trinquier, G.; Bertrand, G. *Inorg.* Chem. 1985, *24,* 3842.