reaction 1, and a related mechanism may apply. The reactivity of 1 with HCl (as with H_2) is in marked contrast to the reaction of $RuCl(COEt)(CO)(PPh_3)_2$ with HCl, which gives the hydroxycarbene complex $RuCl_2(CO)(C (OH)Et)(PPh_3)_{2}^{30}$ i.e., protonation occurs at the acyl oxygen rather than carbon as seen with 1. Again, differences in electronegativity of the alkyl and alkenyl groups might account for the reactivity differences. Notably, en route to formation of 7 in reaction 10, a Ru intermediate with a ³¹P singlet at 33.0 ppm was observed, this converting to the 17.0 ppm singlet characteristic of 7; however, we have been unable to detect any associated proton of a carbene hydroxide.30

Conclusions

The kinetics of the solution hydrogenolysis of the sixcoordinate Ru(II) acyl complex $RuCl(COR)(CO)_2(PPh_3)_2$, where R = norbornenyl, to give $RuHCl(CO)_2(PPh_3)_2$ and RCHO reveal that the process occurs via dissociation of a PPh₃ ligand, followed by reaction of the resulting fivecoordinate intermediate with H_2 ; the same pathways pertain to some cobalt acyl systems, studied previously because of their importance in hydroformylation. Activation parameters measured for the Ru system in DMA and toluene are very different; the former reflect a strongly solvated transition state, while the latter are consistent with little involvement of toluene in the transition state and then imply an upper value of 128 kJ mol⁻¹ for the solution Ru-P bond dissociation energy (for mutually trans-disposed phosphines). Relative reactivities of the kinetic intermediates toward H_2 and PPh_3 , and comparison with the behavior of a related Ru(II)-propionyl complex, reveal the importance of electronic effects in the hydrogenolysis step, although it is difficult to distinguish between an oxidative-addition/reductive-elmination $(+H_2)$ -RCHO) pathway and a concerted four-center transitionstate (heterolytic H_2 activation) pathway. The reaction of the norbornenoyl complex with HCl, to give RuCl₂- $(CO)_2(PPh_3)_2$ and RCHO, contrasts with that of the propionyl species, which gives a hydroxycarbene derivative.

An incidental finding is that RuHCl(CO)₂(PPh₃)₂ catalyzes the H_2 -hydrogenation of the norbornene aldehyde to the norbornane aldehyde, albeit slowly at 1 atm of H_2 .

Acknowledgment. We thank the Natural Sciences and Engineering Research Council of Canada for financial support and Johnson Matthey Ltd. for the loan of ruthenium trichloride.

New (Diarylgermyl)lithiums

A. Castel, P. Riviere, J. Satgé,* and H. Y. Ko

Laboratoire de Chimie des Organomineraux, UA 477 du CNRS, Université Paul Sabatier, 31062 Toulouse Cedex, France

Received May 26, 1989

The new (diarylgermyl)lithiums R_2 GeHLi (2; R = phenyl, mesityl) were prepared in good yields by hydrogermolysis reactions of *tert*-butyllithium in THF. The stability of compounds 2 depends on the nature of the R group and the solvent. For R = Ph, in the presence of an amine (Et₃N or Et_2NMe), the same reaction leads to the formation of the polygermanes $H(GePh_2)_n H$ (n = 2-4). The characterization of compounds 2 by IR and ¹H and ¹³C NMR spectroscopy and their complexation with a crown ether are also reported. They are characterized by deuterolysis and alkylation reactions (with MeI and Me_2SO_4). Their germylation reactions with > Ge-Cl reagents constitute a convenient way for synthesizing organohydropolygermanes. Compounds 2 also react with acyl chlorides to give new germyl ketones, $R_2HGeCOR'$, and the unexpectedly stable β -germyl diketone Ph₂Ge(COMes)₂. They add easily to the carbonyl group of aromatic ketones or aldehydes, leading to the corresponding germylated alcohols.

Introduction

The organogermyl alkali-metal compounds R₃GeM (M = Li, Na, K) are very useful in organometallic synthesis, for example for the germylation of organic halides, metal halides, carbonyl compounds, etc.¹⁻⁴

Among them, however, there are only a few reports regarding organogermyl alkali-metal compounds.³⁻⁵ In the case of the lithium series, the only known (organogermyl)lithiums have been postulated in the reaction of organodihydrogermanes with RLi compounds (R = Me). Bu, Ph);⁶ however, in these reactions the authors have

always observed competition between metalation and alkylation reactions.³

In this paper, we report a modification of the hydrogermolysis procedure that allows a more specific synthesis of (diarylgermyl)lithium compounds stabilized by solvent and steric effects.

Results and Discussion

Preparation of R_2GeHLi. Recently, we have reported the synthesis in good yields of stable R₂GeHLi in THF solution from the reaction of R_2GeH_2 with t-BuLi:⁷

$$\begin{array}{ccc} R_{2}GeH_{2}+t\text{-BuLi} \xrightarrow{\text{THF, }T \circ C} & R_{2}GeHLi & (1) \\ 1 & 2 \\ 2a, R = Ph (-40 \circ C, 95\%); \\ 2b, R = Mes (-20 \circ C, 84\%) \end{array}$$

⁽¹⁾ Davies, D. D.; Gray, C. E. Organomet. Chem. Rev., Sect. A 1970, 6, 283.

⁽²⁾ Lesbre, M.; Mazerolles, P.; Satgé, J. The Organic Compounds of Germanium; Wiley: London, 1971.
(3) Rivière, P.; Rivière-Baudet, M.; Satgé, J. Comprehensive Organo-metallic Chemistry; Pergamon Press: Oxford, U.K., 1982; Vol. 2, Chapter 10.

⁽⁴⁾ Vyazankin, N. S.; Razuvaev, G. A.; Kruglaya, O. A. Organometallic Reactions; Wiley-Interscience: New York, 1975; Vol. 5, p 101.
(5) Batchelor, R. J.; Birchall, T. J. Am. Chem. Soc. 1983, 105, 3848.

⁽⁶⁾ Cross, R. J.; Glockling, F. J. Chem. Soc. **1964**, 4125; J. Organomet. Chem. **1965**, 3, 146. (7) Castel, A.; Rivière, P.; Satgé, J.; Ko, Y. H. J. Organomet. Chem.

^{1988, 342,} C1.

Table I. IR and ¹H NMR Data for (Diarylgermyl)lithiums and the Starting Organogermanes

	$\nu(\text{Ge-H}),^a$ cm ⁻¹	¹ H NMR, ^b ppm		
compd		δ(Ge-H)	$\delta(C_6H_5)$ or $\delta(C_6H_2)$	
Ph_2GeH_2 (1a)	2024	5.00	7.10-7.50	
Ph ₂ GeHLi (2a)	2012	4.60	6.80-7.05, 7.45-7.60	
Mes_2GeH_2 (1b)	2040	5.00	6.80	
Mes ₂ GeHLi (2b)	2020	4.40	6.45	
Mes ₂ GeH ₂ (1b)	2060°			
MesoGeHLi (2b)	2000°			

^aSpectra were recorded in THF/pentane solution unless otherwise noted. ^b In THF- d_8 /pentane solution. ^c In Nujol mull.

These metalation reactions require the use of a slight excess of t-BuLi (20–40%) and a low-temperature procedure to avoid competitive alkylation reactions. In the case of (organosilyl)lithium, Tilley and co-workers have recently isolated Mes₂HSiLi(THF)₂⁸ as off-white crystals. Compounds 2 are more difficult to crystallize from the solution but were completely characterized by ¹H and ¹³C NMR spectroscopy and their reactivity. In solution, their stability depends on the solvent used and the nature of R. Compound 2b is stable in such solvents as pentane, THF, and amines. Compound 2a slowly decomposes in THF at 20 °C within 24 h. This decomposition is more effective in the presence of an amine $(Et_3N \text{ or } Et_2NMe)$ and gives di-, tri-, and tetragermyllithiums.^{6,9} The nature of these polygermanes depends mainly on the reaction time. The selective synthesis of di-, tri-, and tetragermanes can be achieved and monitored by GC analysis.

$$Ph_{2}GeH_{2} + t-BuLi \xrightarrow{Et_{3}N} -BuH_{1}-LiH}$$

$$Ph_{2}HGe(GePh_{2})_{n}GeLiPh_{2} \xrightarrow{H_{2}O} Ph_{2}HGe(GePh_{2})_{n}GeHPh_{2} (2)$$

$$n = 0-2$$

If a large excess of t-BuLi (>100%) is used, diphenvlgermane gives (diphenylgermyl)dilithium in good yield:

$$\frac{Ph_2GeH_2 + 2t-BuLi}{la} \xrightarrow{THF, -40 \ ^{\circ}C}_{-BuH} + Ph_2GeLi_2 (56\%) (3)$$

$$\frac{Ph_2GeHLi (37\%) + Ph_2GeLi_2 (56\%) (3)}{4}$$

The yields were determined by alkylation of the Ge-Li bond with use of MeI.

The formation of 4 has been reported¹⁰ only in the reaction of Ph₂GeH₂ with Li in HMPA, with use of a procedure similar to that described for the preparation of Ph₂GeK₂. Recently a new synthesis of Et₂GeLi₂ has been described in the literature.¹¹

IR, ¹H, and ¹³C NMR parameters of (diarylgermyl)lithiums are summarized in Tables I and II, together with those of the starting materials.

The IR data show a ν (Ge-H) displacement to high frequency due to the inductive effect (+I) of the alkali metal. However, the $\Delta \nu (M_{14}-H)$ value observed between R_2GeH_2 and R_2 HGeLi (Nujol mull) is about half of that observed for the silicon series.8 The chemical shifts of Ge-H and the aromatic protons in 2a and 2b in comparison with

 Ľ Ó	4

		¹³ C NMR, ppm					
compd	$solvent^a$	C1	C_2	C_3	C4	o-CH ₃	$p-CH_3$
Ph_2GeH_2	THF	135.0	136.1	129.4	130.1		
Ph ₂ GeHLi	THF	159.4	137.6	127.0	124.1		
Ph ₂ GeHLi	TDA-1	164.9	136.9	125.9	122.3		
Mes ₂ GeH ₂	THF	131.9	144.4	129.5	139.4	24.2	21.5
Mes ₂ GeHLi	THF	153. 9	144.4	127.2	132.6	24.1	21.5
Mes ₂ GeHLi	TDA-1	159.3	143.9	125.9	130.3	25.7	21.1

^a TDA-1 is N(CH₂CH₂OCH₂CH₂OCH₃)₃.

those of the corresponding diarylgermanes are shifted slightly to a lower field ($\Delta \delta \approx 0.4-0.6$ ppm). These observed shifts correlate with a negative charge at the germanium. The ¹³C NMR values seem to confirm this result. The ipso ¹³C resonance for 2a and 2b is shifted drastically to lower field while the para ¹³C resonance is shifted slightly to lower field. The chemical shifts of the meta and para carbons are least affected by lithiation of the arylgermanes. These results are similar to those previously reported^{5,10,12} for other organometallic compounds; they can be attributed to a polarization of the phenyl ring resulting in decreased electron density at the ipso carbon. Such polarization can be caused by a localized negative charge residing on the germanium center, which is consistent with a predominant inductive effect and the absence of a mesomeric (resonance) effect in the germyl anion. An additional feature is the influence of solvent on these chemical shifts (Table II). As previously noted, the chemical shift of the ipso carbon is the most sensitive to interaction with solvent. The dissociation of ion pairs is more effective in polar solvents, and so the negative charge at the germanium is increased.

Complexation of \mathbf{R}_2 GeHLi. The stabilization of 2 by a complexing reagent was examined with tris(3,6-dioxaheptyl)amine, abbreviated TDA-1, known to stabilize $RMgX.^{13}$ We observed only the decomposition of 2 with nucleophilic assistance as described above for R_3N . Treatment of 2 in THF solution with an excess of 12crown-4 gives a new insoluble complex with 1/1 stoichiometry. When 12-crown-4 is used as solvent, a new ^{1}H NMR signal shifted to low field appears, which is probably due to the formation of a complex with 1/2 stoichiometry¹⁴ (eq 4c).

$$\begin{array}{c} R_{2}GeHLi + \left[12\text{-crown-4}\right] & \longrightarrow \\ 2 \\ R_{2}HGe^{-}[Li(12\text{-crown-4})]^{+} & (4) \\ 5a, R = Ph; 5b, R = Mes \\ \hline \\ E_{1_{3}}GeCl} & MeI \\ (b) & (c) \\ R_{2}HGeGeEt_{3} & R_{2}HGeMe & Mes_{2}HGe^{-}[Li(12\text{-crown-4})_{2}]^{+} \\ \hline \\ Ba,b & 7 & 6 \end{array}$$

Germyllithium complexes 5a,b were isolated as powders sensitive toward hydrolysis. Compound 5b seems less stable in solution than 5a, which is probably due to steric

⁽⁸⁾ Roddick, D. M.; Heyn, R. H.; Tilley, T. D. Organometallics 1989, 2, 324.

⁽⁹⁾ Glockling, F.; Hooton, K. A. J. Chem. Soc. 1963, 1849.

⁽¹⁰⁾ Mochida, K.; Matsushige, N.; Hamashima, M. Bull. Chem. Soc. Jpn. 1985, 58, 1443.

⁽¹¹⁾ Bravo-Zhivotovskii, D. A.; Pigarev, S. D.; Vyazankina, O. A. Vyazankin, N. S. Zh. Obshch. Khim. 1987, 57, 2644; J. Ğem. Chem. USSR (Engl. Transl.) 1987, 57, 2356.

⁽¹²⁾ Bravo-Zhivotovskii, D. A.; Kalikhman, I. D.; Pigarev, S. D.; Vyazankina, O. A.; Vyazankin, N. S. Zh. Obshch. Khim. 1987, 57, 239; J. Gem. Chem. USSR (Engl. Transl.) 1987, 57, 210.

⁽¹³⁾ Boudin, A.; Cerveau, G.; Chuit, C.; Corriu, R. J. P.; Reye, C.

Tetrahedron 1989, 45, 171. (14) Bartlett, R. A.; Feng, X.; Olmstead, M. N.; Power, P. P. Phosphorus Sulfur 1987, 30, 245.

hindrance enhancing its lability. The characterization reactions (eq 4a and 4b) of 5a occurred in high yields. When R = Mes (compound 5b), the yields of reactions 4a and 4b were enhanced in comparison with the reactivity of 2 (eq 5).

Reactivity of (Diarylgermyl)lithium. Methyl iodide is a very effective alkylation reagent for the characterization of these organometallic compounds; the reactions proceed at room temperature and lead to the corresponding organogermanes (eq 5).

$$\begin{array}{c|c}
R_2GeHLi + MeI \longrightarrow R_2GeHMe \\
\hline
T \\
D_2O & R = Ph, 7a (68\%); (5) \\
R = Mes, 7b (78\%) \\
\hline
R_2GeHD \longrightarrow IAID_4 \\
\hline
B_2GeCHH \\
\hline
\end{array}$$

Deuterolysis of the germanium-lithium bond is effective but can be used only as a qualitative test since exchange reactions, Ge-H/Ge-D, occur.

Compounds 2 react immediately and almost quantitatively at 20 °C with dimethyl sulfate (eq 6).

$$\begin{array}{ccc} R_{2}GeHLi & \xrightarrow{(1) Me_{2}SO_{4}} \\ 2 & & R_{2}GeHMe \\ 2 & & R = Ph, 7a \ (95\%); \\ R = Mes, 7b \ (95\%) \end{array}$$
(6)

(Organogermyl)lithiums are also very useful intermediates in organometallic synthesis, particularly for the preparation of asymetric hydropolygermanes, which are usually difficult to obtain (eq 7a).

$$R_{2}GeHLi + PhClGeH_{2} R = Ph, 9a (35\%);$$

$$R_{2}GeHLi + PhClGeH_{2} R = Mes, 9b (44\%) (7)$$

$$R_{2}GeH_{2} + [PhHGeClLi] - LiCl (1/n)(PhGeH)_{n}^{15}$$

However, in the case of arylchlorogermanes, the acidic character of the hydrogen atom

leads to a competitive lithiation reaction (eq 7b). The transient (arylchlorogermyl)lithium gives germylene and polygermane through an α -elimination process.¹⁵ This mechanism is supported by the characterization of stabilized phenylchlorogermylene in the reaction between **2a** and phenyldichlorogermane (eq 8).

$$Ph_{2}GeHLi + PhCl_{2}GeH \longrightarrow Ph_{2}GeH_{2} + [PhCl_{2}GeLi]$$

$$2a$$

$$Ph_{Cl} Ge \longrightarrow PhGeCl (8)$$

Phenylchlorogermylene was easily characterized by its 1,4-cycloaddition to 2,3-dimethylbuta-1,3-diene¹⁶ (eq 8).

The reactions of (triorganogermyl)lithium, R_3 GeLi, with carboxylic acid chlorides have been used to prepare acylgermanes.¹⁷ The reaction of an excess of benzoyl chloride with 2a at low temperature products the first-isolated diarylgermyl ketone 10b (eq 9).

$$\begin{array}{c} \text{Mes}_2\text{GeHLi} + \text{PhCOCl} \rightarrow \text{Mes}_2\text{HGeCOPh} + \text{LiCl} \quad (9) \\ \textbf{2b} \qquad \qquad 10b \end{array}$$

 (15) Rivière, P.; Satgé, J.; Soula, D. J. Organomet. Chem. 1974, 72, 329.
 (16) Massol, M.; Rivière, P.; Barrau, J.; Satgé, J. C.R. Seances Acad. Sci., Ser. C 1970, 270, 237. Within the phenyl series, the formation of $(Ph_2Ge)_n$ polymers probably results from partial decomposition of the germyl ketone 10a (eq 10).

$$\begin{array}{c|c} \mathsf{Ph}_2\mathsf{GeHLi} & \xrightarrow{\mathsf{PhCOCi}} & \mathsf{Ph}_2\mathsf{HGeCOPh} + (1/n)(\mathsf{Ph}_2\mathsf{Ge})_n \\ \mathbf{2a} & \mathbf{10a} \end{array}$$

 $Ph_2HGeCOMes + Ph_2Ge(COMes)_2 + Ph_2GeH_2 + (1/n)(Ph_2Ge)_n$ (10) 11 12

With the more sterically hindered 2,4,6-trimethylbenzoyl chloride, the expected reaction occurs in low yield. We also observed the formation of an unexpected germylated β -diketone, which was formed by diarylation of (diphenyl-germyl)dilithium (eq 10) and may be due to the enhancement of the acidic character of the hydrogen attached to germanium in 11. This results from an attractive effect of the acyl group, allowing a transmetalation reaction (eq 10).

Compound 2a also adds to the carbonyl group of aromatic ketones, leading to the corresponding germylated alcohols (eq 11).

$$\begin{array}{ccc} Ph_2GeHLi + Ph_2CO & \xrightarrow{20 \circ C} & Ph_2HGeCPh_2 & \xrightarrow{H_2O} & Ph_2HGeCPh_2 & (11) \\ \hline 2a & OLi & OH \\ & 13a \end{array}$$

We have not observed any interaction reaction between the germanium-hydrogen bond and the carbonyl group to form alkoxygermanes, which usually occurs through radical initiation or in thermolysis¹⁸ (eq 12).

$$Ph_{3}GeH + C \equiv O \xrightarrow{AIBN} Ph_{3}Ge - O - CH$$
(12)

In the case of (dimesitylgermyl)lithium (2b), steric hindrance inhibits this addition reaction:

$$n\operatorname{Mes_2GeHLi}_{2\mathbf{b}} + m\operatorname{Ph_2CO} \xrightarrow{(1) -40 \ ^{\circ}\mathrm{C}}_{(2) \ \mathrm{H_2O}} \operatorname{H}(\operatorname{Mes_2Ge})_2\mathrm{H} + (1/n)(\operatorname{Mes_2Ge})_n + \operatorname{Ph_2CHOH}_{2} + \operatorname{Ph_2CO} (13)$$

Formation of a germylated alcohol is not observed in eq 13, but instead, the unexpected diphenylcarbinol is obtained and also a small quantity of 1,1,2,2-tetramesityldigermane. The formation of these compounds can be explained by a mechanism involving radicals formed by a monoelectronic transfer from the germyllithium **2b** to the ketone as the first step.⁴

With benzaldehyde compounds 2 react at low temperature to form the corresponding germyl alcohols in good yield (eq 14).

$$\begin{array}{c} R_2 \text{GeHLi} + \text{PhCHO} \xrightarrow{(1) -30 \circ \text{C}} \\ 2 \end{array} \xrightarrow{(2) H_2 0} R = \text{Ph}, 14a; R = \text{Mes}, 14b \end{array}$$
(14)

Compounds 14 are thermally unstable.¹⁹ They decompose partially above 100 °C to give benzaldehyde and diorganogermanes 1, according to eq 15.

$$R_{2}HGe - CHPh \xrightarrow{100 \circ C} R_{2}GeH_{2} + PhCHO$$
(15)

$$H - O \qquad 1$$

$$R = Ph, Mes$$

123.

⁽¹⁷⁾ Nicholson, D. A.; Allred, A. L. Inorg. Chem. 1965, 12, 1747.

⁽¹⁸⁾ Rivière, P.; Satgé, J. Bull. Soc. Chim. Fr. 1967, 4039. (19) Rivière, P.; Castel, A.; Satgé, J. J. Organomet. Chem. 1982, 232,

Table III					
polygermane	yield, %				
$H(GePh_2)_2H^{23}$	26				
$H(GePh_2)_3H$	46				
H(GePh ₂) ₄ H	69				
	Table III polygermane H(GePh_2)_2H^{23} H(GePh_2)_3H H(GePh_2)_4H	Table IIIpolygermaneyield, $\%$ $H(GePh_2)_2H^{23}$ 26 $H(GePh_2)_3H$ 46 $H(GePh_2)_4H$ 69			

The proposed mechanism (eq 15) is confirmed by the O-silylation of the OH group, which gives the stable distillable compound 15 (eq 16).

Mes₂HGeCHPh + Me₃SiCI +DBU Mes₂HGeCHPh (16) I OH OSiMe₃ 15

Concluding Remarks

The presence of two functional sites in compounds 2 (germanium-lithium and germanium-hydrogen bonds) makes them very useful reagents in the synthesis of new organohydropolygermanes and functional organogermanes. Their germylation reactions produce intermediates with low-coordinate germanium, as we will describe in a future paper.²⁰

Experimental Section

All manipulations were performed under an inert atmosphere of nitrogen or argon by using standard Schlenk and high-vacuum-line techniques. NMR spectra were recorded on a Varian EM 360 A spectrometer at 60 MHz (¹³C). Infrared spectra were recorded on a Perkin-Elmer 457 infrared spectrometer. Mass spectra recorded on a Ribermag R 1010 or a Varian Mat 311 A spectrometer operating in the electron-impact mode at 70 eV. Gasphase chromatography was done with a Varian Aerograph 1400 (SE 30) instrument, and yields were calculated by using an internal reference (Bu₄Ge). Elemental analyses were done by the "Service Central de Microanalyse du CNRS" (France). The compounds Ph₂GeH₂²¹ and Mes₂GeH₂²² were prepared according to literature procedures.

Ph₂GeHLi (2a). A solution of 4.8 mmol of *t*-BuLi (1.7 M) in pentane was added to a solution of Ph₂GeH₂ (0.92 g, 4 mmol) in THF (4 mL) at -40 °C. The mixture was stirred for 15 min at -20 °C. Analysis by ¹H and ¹³C NMR spectroscopy showed that **2a** had formed exclusively (~95%) (cf. Tables I and II).

Mes₂GeHLi (2b). A solution of 1.4 mmol of t-BuLi (1.7 M) in pentane was added to a solution of Mes₂GeH₂ (0.31 g, 1.0 mmol) in THF (4 mL) at -20 °C. The mixture was stirred for 40 min at -20 °C. Analysis by ¹H and ¹³C NMR spectroscopy showed that **2b** had formed in high yield (~84%) (cf. Tables I and II). Removal of the solvents under vacuum gave a yellow powder, which was washed three times with pentane (5 mL). Attempts to isolate pure **2b** in a solid state were not successful. Compound **2b** hydrolyzed rapidly to give 1b.

In all manipulations, freshly prepared solutions of 2 were used.

Base-Catalyzed Decomposition of 2a. Synthesis of Polygermanes. A solution of 4.8 mmol of t-BuLi (1.7 M) in pentane was added to a solution of Ph₂GeH₂ (0.92 g, 4 mmol) in Et₂NMe (4 mL) at -40 °C. After 5 min the solution was heated to 20 °C. The mixture was stirred for the times indicated in Table III. After hydrolysis, extraction, and concentration, the polygermanes were recovered by recrystallization from ether/methanol (4/1) (cf. Table III). H(GePh₂)₃H: mp 90–92 °C; ¹H NMR (C₆D₆) δ 5.65 (s, 2 H, GeH), 6.90–7.75 (m, 30 H, C₆H₅); mass spectrum m/z 682 (M⁺⁺); IR (Nujol, KBr) 2034 cm⁻¹ (Ge-H). Anal. Calcd for C₃₈H₃₂Ge₃: C, 63.38; H, 4.69. Found: C, 63.15; H, 4.74. H(GePh₂)₄H: mp 130–135 °C; ¹H NMR (C₆D₆) δ 5.67 (s, 2 H, GeH), 6.85–7.75 (m, 40 H, C₆H₅); mass spectrum m/z 910 (M⁺⁺). IR (Nujol, KBr) 2000

(20) Castel, A.; Rivière, P.; Satgé, J.; Ko, Y. H. Unpublished results.
(21) Johnson, O. H.; Harris, D. M. J. Am. Chem. Soc. 1950, 72, 5564.
(22) Rivière, P.; Rivière-Baudet, M.; Satgé, J. In Organometallic Synthesis; King, R. B., Eish, J. J., Eds.; Elsevier: New York, 1988; Vol.

 (23) Rivière, P.; Satgé, J. Synth. React. Inorg. Met.-Org. Chem. 1972, 2, 57. cm⁻¹ (Ge-H). This tetragermane was contaminated by small amounts of di- and trigermanes. Attempts to further purify $H(GePh_2)_4H$ were not successful.

Confirmation of the Formation of LiH. A solution of 4.8 mmol of t-BuLi (1.7 M) in pentane was added to a solution of Ph₂GeH₂ (0.92 g, 4 mmol) in Et₃N (4 mL) at -40 °C. After 15 min at -40 °C and then 2 h at 20 °C, the mixture was concentrated under vacuum. The residue was washed with pentane (10 mL) and dried in vacuo. It was then treated with 3 mL of THF and a solution of Et₃GeCl (0.39 g, 2 mmol) in THF (2 mL). The reaction mixture was heated in a Carius tube for 15 h at 60 °C. Analysis of the solution by GC showed the quantitative formation of Et₃GeH.

Ph₂**GeLi**₂ (4). A solution of 4.8 mmol of t-BuLi (1.7 M) in pentane was added to a solution of Ph₂GeH₂ (0.46 g, 2 mmol) in THF (2 mL) at -40 °C. The mixture was stirred 40 min at -40 °C and then treated with an excess of MeI. After 15 min, the solution was allowed to warm to ambient temperature. After 1 h at 20 °C and hydrolysis, extraction, and concentration under vacuum, analysis of the residue showed the formation of Ph₂GeMe₂²⁴ (56%) and Ph₂GeHMe²⁵ (37%).

Solvation of 2a by 12-crown-4. 12-crown-4 (0.53 g, 3 mmol) was added to a solution of 2a (3 mmol) in THF at -20 °C, giving an yellow oil. Analysis by NMR and GC methods showed the formation of crude 5a (~90%): ¹H NMR (pure) δ 4.70 (s, 1 H, GeH), 3.35 (s, 16 H, OCH₂), 6.70–6.95 and 7.40–7.60 (m, 10 H, C₆H₅); ¹³C NMR (pure) δ 163.2 (C₁), 137.1 (C₂), 126.5 (C₃), 123.1 (C₄); IR (Nujol, KBr, 1993 cm⁻¹) (Ge–H). The product was washed several times with pentane and dried under vacuum, giving the pale yellow solid 5a, which hydrolyzed rapidly in air to give 1a.

Reaction of 5a with Et₃GeCl. A solution of Et₃GeCl (0.20 g, 1 mmol) in THF (1.5 mL) was added to a suspension of **5a** (1 mmol) in pentane (0.5 mL) at 20 °C. The mixture was stirred 30 min at 20 °C. After hydrolysis, extraction, and concentration under vacuum, analysis of the residue by GC and ¹H NMR spectroscopy showed the formation of Ph₂HGeGeEt₃ (68%) and Ph₂GeH₂ (8%). The pure digermane 8a was recovered by distillation: bp 70 °C (5×10^{-2} mmHg); yield 0.22 g (56%); ¹H NMR δ 1.00 (s, 15 H, C₂H₅), 5.17 (s, 1 H, GeH), 6.90–7.15 and 7.30–7.60 (m, 10 H, C₆H₅); IR (pure, KBr) 2000 cm⁻¹ (Ge–H). Anal. Calcd for C₁₈H₂₆Ge₂: C, 55.77; H, 6.77. Found: C, 55.25; H, 6.92.

Reaction of 5a with MeI. 5a (1.5 mmol) was treated with an excess of MeI at 20 °C. After hydrolysis, extraction, and concentration, nearly pure $7a^{25}$ (identified by ¹H NMR) was obtained in 82% yield (0.43 g).

Solvation of 2b by 12-crown-4. 12-crown-4 (0.49 g, 2.8 mmol) was added dropwise to a solution of **2b** (2 mmol) in THF (5 mL). The solution was stirred 1 h at 20 °C and then reduced in volume to 4 mL. Addition of 5 mL of pentane gave a precipitate, which was washed with pentane (10 mL) and dried in vacuo. 5b was so obtained in 17% yield (0.23 g): mp 145-147 °C dec; ¹H NMR (THF-d₈) & 2.05 (s, 6 H, p-CH₃), 2.25 (s, 12 H, o-CH₃), 3.50 (s, 16 H, OCH₂), 4.39 (s, 1 H, GeH), 6.38 (s, 4 H, C₆H₂); IR (THF, KBr) 1980 cm⁻¹ (Ge–H). **5b** was very sensitive to moisture and always contained traces of Mes₂GeH₂. The same reaction was performed with an excess of 12-crown-4: a solution of 2b (1 mmol) was added to a solution of 12-crown-4 (0.49 g, 2.8 mmol) in pentane (0.5 mL). With use of the same procedure, the precipitate so obtained was dissolved in 2 mL of THF and analyzed by ¹³C NMR spectroscopy: $\delta(C_1)$, 157.9 and 159.4; $\delta(C_2)$, 144.3; $\delta(C_3)$, 126.5; $\delta(C_4)$, 131.4; $\delta(o-CH_3)$, 23.3; $\delta(p-CH_3)$, 21.2.

Reaction of 5b with Et₃GeCl. A solution of Et₃GeCl (0.20 g, 1 mmol) and **5b** (0.49 g, 1 mmol) in pentane (1 mL) was stirred at ambient temperature for 30 min. After hydrolysis, extraction, and concentration under vacuum, analysis of the residue by ¹H NMR spectroscopy showed that Mes₂HGeGeEt₃ (8b) had been formed in 98% yield. 8b was then recovered by distillation: yield 0.30 g (64%); bp 198-200 °C (7 × 10⁻² mmHg); ¹H NMR (C₆D₆) δ 1.07 (s, 15 H, C₂H₃), 2.10 (s, 6 H, *p*-CH₃), 2.40 (s, 12 H, *o*-CH₃), 5.40 (s, 1 H, GeH), 6.70 (s, 4 H, C₆H₂); IR (pure, KBr) 2010 cm⁻¹ (Ge-H). Anal. Calcd for C₂₄H₃₈Ge₂: C, 61.09; H, 8.13. Found: C, 61.69; H, 8.15.

⁽²⁴⁾ Nagelberg, S. B.; Reinhold, E. C.; Willeford, B. R.; Bigwood, M. P.; Molloy, K. C.; Zuckerman, J. J. Organometallics 1982, 1, 851.

⁽²⁵⁾ Satgé, J.; Rivière, P. Bull. Soc. Chim. Fr. 1966, 1773.

Reaction of 5b with MeI. With use of the same procedure, a solution of **5b** (1 mmol) in pentane (0.5 mL) and MeI (excess) gave **7b** in 98% yield.

Reaction of 2a with MeI. An excess of MeI (100%) was added to a solution of **2a** (4 mmol) in THF at -40 °C. The mixture was heated to 20 °C. After 1 h and hydrolysis, extraction, and concentration, the residue was analyzed by ¹H NMR spectroscopy and showed that $7a^{25}$ had been formed in 68% yield.

Reaction of 2b with MeI. An excess of MeI (100%) was added to a solution of **2b** (1 mmol) in THF at -10 °C. The mixture was heated to ambient temperature. After 2 h at 20 °C and hydrolysis, extraction, and concentration under vacuum, a white solid identified as **7b** was obtained: yield 0.25 g (78%); mp 90-94 °C; ¹H NMR (C₆D₆) δ 0.80 (d, 3 H, CH₃), 2.10 (s, 6 H, *p*-CH₃), 2.30 (s, 12 H, o-CH₃), 5.50 (q, 1 H, GeH), 6.70 (s, 4 H, C₆H₂), *J*(HC-GeH) = 4 Hz; IR (Nujol, KBr) 2040 cm⁻¹ (Ge-H); mass spectrum *m/z* 328 (M⁺⁺). Anal. Calcd for C₁₉H₂₆Ge: C, 69.77; H, 8.03. Found: C, 69.94; H, 8.07.

Reaction of 2a with D₂O. A solution of **2a** (1 mmol) in THF was hydrolyzed by D₂O at -40 °C and then extracted and concentrated under vacuum. Analysis of the residue by ¹H NMR spectroscopy showed the formation of Ph₂GeHD (C₆D₆): δ 5.10 (t, 1 H, GeH), 6.90–7.20 and 7.20–7.49 (m, 10 H, C₆H₅), *J*(H–Ge–D) = 0.9 Hz.

Ph₂GeHD was prepared by reduction, with use of LiAlD₄ (0.03 g, excess), of a solution of Ph₂GeHCl (0.26 g, 1 mmol) in ether (0.5 mL) at 0 °C. In solution, Ph₂GeHD slowly formed Ph₂GeH₂ over several days at 20 °C.

Reaction of 2 with Me₂SO₄. A solution of R₂GeHLi (1 mmol) in THF was added to an excess of Me₂SO₄ (R = Ph, 20%; R = Mes, 40%) in THF (0.5 mL) at 20 °C. An exothermic reaction was observed. After 3 h at 20 °C, the mixture was hydrolyzed, extracted, and concentrated under vacuum. Analysis of the residue by ¹H NMR spectroscopy showed the formation of 7a in 95% yield and 7b in 95% yield.

Reaction of 2 with PhClGeH₂. A solution of R₂GeHLi (2 mmol) in THF was added to a solution of $PhClGeH_2$ (0.37 g, 2 mmol) in THF (1 mL) at -20 °C. After 20 min at -20 °C, the mixture was heated to ambient temperature and stirred (2 h for 2a, 14 h for 2b) at 20 °C. After hydrolysis, extraction, and concentration under vacuum, analysis of the residue showed the formation of the following compounds: for 2a, 1a (20%), 9a (35%), $H(Ph_2Ge)_2H^{23}$ (5%), (PhHGe)_n¹⁵ (40%); for 2b, 1a (41%), 9b (44%), (PhHGe)¹⁵ (60%). 9a and 9b were identified by comparison with other samples prepared by a different route.²⁰ 9a: bp 150 °C (0.2 mmHg); ¹H NMR (C_6D_6) δ 4.60 (d, 2 H, GeH₂), 5.50 (t, 1 H, GeH), J(HC-GeH) = 4 Hz, 6.90–7.60 (m, 15 H, C₆H₅); IR (pure, KBr) 2050 cm⁻¹ (Ge-H); mass spectrum m/z 380 (M^{•+}). 9b: mp 85-86 °C; ¹H NMR (C₆D₆) δ 2.10 (s, 6 H, p-CH₃), 2.30 (s, 12 H, o-CH₃), 4.75 (d, 2 H, GeH₂), 5.50 (t, 1 H, GeH), J(HC-GeH) = 4 Hz, 6.65 (s, 4 H, C₆H₂), 6.85–7.40 (m, 5 H, C₆H₅); IR (Nujol, KBr) 2050–2060 cm⁻¹ (Ge–H); mass spectrum m/z 464 (M*+). Anal. Calcd for C₂₄H₃₀Ge₂: C, 62.18; H, 6.48. Found: C, 61.99; H, 6.62.

Reaction of 2a with PhCl₂GeH. A solution of **2a** (4 mmol) in THF was added to a solution of PhCl₂GeH (0.89 g, 4 mmol) in ether (2 mL) at -70 °C. After 1 h at -70 °C, the mixture was concentrated under vacuum. The oily residue was washed twice with pentane (4 mL). The pentane solution was evaporated, and the residue, analyzed by ¹H NMR spectroscopy, showed the presence of 1a (43%), H(GePh₂)₂H²³ (33%), and PhCl₂GeH (30%). The viscous oil was treated with an excess of 2,3-dimethylbuta-1,3-diene in benzene (1 mL). The reaction mixture was heated in a Carius tube for 2 h at 80 °C. After concentration, analysis by GC and ¹H NMR methods showed the formation of

in 30% yield.¹⁶

Reaction of 2b with PhCOCI. A solution of **2b** (2 mmol) in THF was added dropwise to a solution of PhCOCI (0.39 g, 2.8 mmol) in ether (1 mL) at -78 °C. After 30 min at -78 °C, the solution was heated to ambient temperature. The reaction was monitored by GC. After 30 min at 20 °C, the mixture was hydrolyzed (NaHCO₃/H₂O), extracted, dried over anhydrous sodium sulfate, and concentrated under vacuum. The residue was crystallized from a mixture of methanol (2 mL) and ether (3 mL) at -30 °C. A yellow solid precipitated, was isolated after decantation, and dried in vacuo, giving 10b: yield 0.48 g (58%); mp 148–154 °C; ¹H NMR (C_6D_6) δ 2.10 (s, 6 H, *p*-CH₃), 2.40 (s, 12 H, *o*-CH₃), 6.50 (s, 1 H, GeH), 6.70 (s, 4 H, C_6H_2), 6.90–7.20 and 7.90–8.20 (m, 5 H, C_6H_5); IR (Nujol, KBr) 2048 (Ge–H), 1643 cm⁻¹ (CO); mass spectrum m/z 418 (M^{*+}). Anal. Calcd for $C_{25}H_{28}$ OGe: C, 71.98; H, 6.78. Found: C, 71.53; H, 6.79.

Reaction of 2a with PhCOC1. A solution of **2a** (3 mmol) in THF was added dropwise to a solution of PhCOC1 (0.51 g, 3.6 mmol) in ether (1 mL) at -78 °C. After 30 min at -78 °C, the mixture was heated to ambient temperature. After 1 h at 20 °C, hydrolysis with an aqueous solution of NaHCO₃, extraction, drying, and concentration in vacuo, analysis of the residue by ¹H NMR spectroscopy confirmed the formation of **10a** (55%) and (Ph₂Ge)_n (~40%). **10a**: ¹H NMR (C₆D₆) δ 5.90 (s, 1 H, GeH), 7.00-7.10, 7.25-7.65, and 7.65-7.90 (m, 15 H, C₆H₅); IR (pure, KBr) 2052 (Ge-H), 1686 cm⁻¹ (CO).

Reaction of 2a with MesCOC1. A solution of **2a** (2 mmol) in THF was added dropwise to a solution of MesCOCl²⁶ (0.44 g, 2.4 mmol) in ether (2 mL) at -78 °C. After 40 min at -78 °C, the mixture was heated to ambient temperature. After 3 h of stirring at 20 °C, it was hydrolyzed (NaHCO₃/H₂O), extracted, dried, over anhydrous sodium sulfate, and concentrated in vacuo. Analysis of the residue by ¹H NMR and GC/MS methods showed the presence of 11 (15%), 1a (15%), 12 (19%), and (Ph₂Ge)_n (~50%). 11: ¹H NMR (C₆D₆) δ 2.00 (s, 6 H, p-CH₃), 2.10 (s, 12 H, o-CH₃), 5.75 (s, 1 H, GeH), 6.48 (s, 2 H, C₆H₂), 6.90-7.60 (m, 10 H, C₆H₅); IR (pure, KBr) 2048 (Ge-H), 1637 cm⁻¹ (CO); mass spectrum m/z 376 (M⁺⁺). 12 was identified by comparison with a sample prepared by a different route (see below).

Synthesis of 12. A solution of MesCOCl (0.73 g, 4 mmol) in ether (2 mL) was added rapidly to a solution of 4 (2 mmol) in THF at -40 °C. After 15 min at -40 °C, the mixture was heated to ambient temperature. The reaction was monitored gy GC. After 3 h of stirring at 20 °C, the reaction mixture was hydrolyzed (NaHCO₃/H₂O), extracted, dried, and concentrated under vacuo. The residue was analyzed by ¹H NMR spectroscopy, which showed the presence of 12 (58%), 1a (13%), and Ph₂GeHCl (14%). Pure compound 12 was recovered by distillation: yield 0.17 g (33%); bp 170 °C (0.2 mmHg); ¹H NMR (C₆D₆) δ 1.90 (s, 6 H, p-CH₃), 2.10 (s, 12 H, o-CH₃), 6.30 (s, 4 H, C₆H₂), 6.75–7.60 (m, 10 H, C₆H₅); IR (pure, KBr) 1637 cm⁻¹ (CO); mass spectrum m/z 522 (M⁺⁺). Anal. Calcd for C₃₂H₃₂O₂Ge: C, 73.73; H, 6.20. Found: C, 73.32; H, 6.27.

Reaction of 2a with Ph₂CO. A solution of **2a** (2 mmol) in THF was added to a solution of Ph₂CO (0.44 g, 2.4 mmol) in ether (2 mL) at ambient temperature. The mixture was stirred for 4 h and then hydrolyzed, extracted, dried, and concentrated in vacuo. Addition of pentane (4 mL) gave a precipitate, which was isolated after eliminating pentane and drying in vacuo. The product was pure **13a**: yield 0.66 g (80%); ¹H NMR (C₆D₆) δ 5.70 (s, 1 H, GeH), 2.15 (s, 1 H, OH), 6.80–7.15 and 7.25–7.50 (m, 20 H, C₆H₅); IR (Nujol, KBr) 2033 (Ge–H), 3362 cm⁻¹ (OH); mass spectrum m/z 412 (M⁺⁺). Anal. Calcd for C₂₅H₂₂GeO: C, 73.08; H, 5.35. Found: C, 72.70; H, 5.30.

Reaction of 2b with Ph₂CO. A solution of **2b** (1 mmol) in THF was added dropwise to a solution of Ph₂CO (0.25 g, 1.4 mmol) in THF (1 mL), and the mixture was refluxed for 2 h. After hydrolysis, extraction, drying, and concentration in vacuo, analysis of the residue by ¹H NMR, IR, and GC methods showed the presence of $(Mes_2HGe)_2^{27}$ (40%), $(Mes_2Ge)_n$ (~60%), Ph₂CHOH (~50%), and the remaining Ph₂CO.

Reaction of 2a with PhCHO. A solution of **2a** (3 mmol) in THF was added dropwise to a solution of PhCHO (0.38 g, 3 mmol) in ether (1 mL) at -30 °C. The mixture was stirred for 30 min at -30 °C and then heated to ambient temperature. After 1 h at 20 °C, it was hydrolyzed, extracted, dried, and concentrated in vacuo. Analyses by ¹H NMR spectroscopy showed that 14a¹⁹ had formed in good yield (87%). The presence of 1a (traces) and PhCH₂OH (13%) was also confirmed.

⁽²⁶⁾ Barnes, R. P. Org. Synth. 1941, 21, 77.

⁽²⁷⁾ Rivière, P.; Castel, A.; Satgé, J.; Guyot, D. J. Organomet. Chem. 1985, 290, C15.

Reaction of 2b with PhCHO. A solution of 2b (1 mmol) in THF was added dropwise to a solution of PhCHO (0.15 g, 1.4 mmol) in ether (1 mL) at -20 °C, and the reaction was monitored by ¹H NMR spectroscopy. The mixture was stirred for 30 min at –20 $^{\circ}\mathrm{C}$ and then hydrolyzed, extracted, dried, and concentrated in vacuo. The residue was treated with pentane (2 mL) at -20°C. After decantation and drying in vacuo, the resulting white powder was identified as pure 14b: yield 0.26 g (62%); mp 78–80 °C; ¹H NMR (C_6D_6) δ 2.10 (s, 6 H, *p*-CH₃), 2.23 and 2.25 (s, 12 H, o-CH₃), 5.20 (d, 1 H, CH), 5.30 (d, 1 H, GeH), J(HC-GeH) = 3 Hz, 6.60 and 6.63 (s, 4 H, C_6H_2), 6.95 (s, 5 H, C_6H_5); IR (Nujol, KBr) 2060 (Ge–H), 3300 cm⁻¹ (OH); mass spectrum m/z 420 (M^{•+}). Anal. Calcd for C₂₅H₃₀GeO: C, 71.69; H, 7.16. Found: C, 71.76; H, 7.58.

The thermal decomposition of 14b was monitored by ¹H NMR spectroscopy with use of a solution of 14b in C_6D_6 that had been heated in a sealed tube for 4 h at 160 °C. The presence of 1b (25%), PhCHO (25%), and 14b (73%) was thereby confirmed. A solution of 14b (0.21 g, 0.5 mmol) in C_6H_6 (2 mL), Mes_3SiCl (0.06 g, 0.55 mmol), and 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) (0.10 g, excess) was stirred for 15 h at 20 °C. After removal of DBU-HCl by filtration, the solution was concentrated in vacuo. 15 was then recovered by distillation: yield 0.11 g (44%); bp 95 °C (4 × 10⁻² mmHg); ¹H NMR (C₆D₆) δ 0.05 (s, 9 H, SiMe₃), 2.05 (s, 6 H, p-CH₃), 2.30 (s, 12 H, o-CH₃), 5.50 (s, 2 H, GeH, CH),²⁸ $6.65 (s, 4 H, C_6H_2), 6.90-7.15 (m, 5 H, C_6H_5); IR (pure, KBr) 2050$ cm⁻¹ (Ge-H). Anal. Calcd for C₂₈H₃₈OSiGe: C, 68.50; H, 7.74. Found: C, 67.83; H, 7.96.

(28) Using $CDCl_3$ as solvent, we observed the expected $\delta(CH)$ and δ (GeH) signals and their coupling: δ 5.20 (d, 1 H, CH) and 5.35 (d, 1 H, GeH), J(HC-GeH) = 3 Hz.

Synthetic Routes to Methylpalladium(II) and Dimethylpalladium(II) Chemistry and the Synthesis of New Nitrogen Donor Ligand Systems

Peter K. Byers and Allan J. Canty*

Chemistry Department, University of Tasmania, Hobart, Tasmania 7001, Australia

Received May 30, 1989

Convenient and widely applicable synthetic routes to methylhalogenopalladium(II), $PdXMe(L_2)$, and dimethylpalladium(II) complexes, PdMe₂(L₂), have been developed, including complexes of triphenylphosphine and a wide range of bidentate nitrogen donor ligands. These routes involve either the generation of Pd^{II}Me_n species at low temperature from methyllithium reagents and trans-PdCl₂(SMe₂)₂ followed by addition of ligand, PdIMe(2,2'-bipyridyl) being synthesized through the oxidative-addition reactivity of Pd₂(dba)₃(CHCl₃), or the facile synthesis of complexes with the reagents [PdIMe(SMe₂)]₂ and [PdMe₂- $(pyridazine)]_n$ in organic solvents at ambient temperature. These reagents [r unive($sine_2$)]₂ and [r unive($sine_2$]]₂ and [r unive($sine_2$]]₂ and [r unive($sine_2$]]₂ a ligands are described, containing 1-methylimidazol-2-yl (mim) and pyridin-2-yl (py) groups in $(mim)_2C=CH_2$ and (py)(mim)C=CH₂ as relatives of planar ligands such as 2,2'-bipyridyl and mim, py, and pyrazol-1-yl (pz) groups in (py)(mim)CH₂, (py)(mim)CHMe, (mim)₂CH₂, (mim)₂CHMe, and (pz)(mim)CH₂ as relatives of ligands such as (py)₂CH₂ and (pz)₂CH₂. Methylpalladium(II) complexes of unsymmetrical bidentate ligands exhibit isomerism; e.g., isomers of PdIMe{(py)(mim)C=O} occur in the ratio 9:1, where the dominant isomer has the pyridine ring trans to methyl. The ligands with methane bridges, e.g. (pz)(py)CH₂, ethane bridges, e.g. (pz)₂CHMe, and propane bridges, e.g. (py)₂CMe₂, form complexes PdMe₂(L₂) and PdIMe(L₂) that exhibit variable-temperature NMR spectra indicating boat-to-boat inversion of the chelate ring, but complexes of (mim)₂CHMe and (py)(mim)CHMe appear to adopt only the conformation with the methyl group axial and adjacent to palladium.

Introduction

Palladium and its compounds are widely used in catalysis and organic synthesis, $^{1\mbox{-}5}$ and the organometallic chemistry of palladium involving Pd–C σ bonds has been focused primarily on the divalent oxidation state with phosphine-based ligands.^{1,6-8} Nitrogen donor complexes involve predominantly studies of cyclometalation and intramolecular coordination systems, 5,9 which also have applications for organic synthesis. 5,10 The intramolecular coordination systems usually involve Pd^{II}-C(sp²) bonds,^{5,9} although some Pd-C(sp³) systems are known, e.g. four- and five-membered palladacycle rings in [Pd(CHMeCH- $MeNMe_2$)($NHMe_2$)₂]⁺¹¹ and $[Pd(CH_2(C(CO_2Et)_2) CHCH_2NMe_2)(\mu-Cl)]_2$,¹² respectively. Palladacyclopentadiene complexes, e.g. Pd[C(CO₂Me)]₅(bpy),¹³ 2,2'-

biphenyldiyl complexes, e.g. PdC₁₂H₈(bpy),¹⁴ and some

⁽¹⁾ Maitlis, P. M. The Organic Chemistry of Palladium; Academic

⁽¹⁾ Mattins, F. M. The Organic Chemistry of Fundation, readding Press: London, 1971; Vol. 2.
(2) Tsuji, J. Organic Synthesis with Palladium Compounds; Springer-Verlag: West Berlin, 1980.
(3) Trost, B. M. In Comprehensive Organometallic Chemistry; Wilkinson, G., Stone, F. G. A., Abel, E. W., Eds.; Pergamon Press: New York, 1982; Vol. 8, Chapter 57.
(4) Hock B. F. Pollodium Reagents in Organic Synthesis; Academic

⁽⁴⁾ Heck, R. F. Palladium Reagents in Organic Synthesis; Academic Press: London, 1985.

⁽⁵⁾ Ryabov, A. D. Synthesis 1985, 233.
(6) Reference 1, Vol. 1.
(7) Hartley, F. R. In ref 3, Vol. 6, Chapter 39.
(8) Maitlis, P. M.; Espinet, P.; Russell, M. J. H. In ref 3, Vol. 6,

Chapter 38.4.

⁽⁹⁾ Newkome, G. R.; Puckett, W. E.; Gupta, V. K.; Kiefer, G. E. Chem. Rev. 1986, 86, 451.

⁽¹⁰⁾ For recent examples: Maassarani, F.; Pfeffer, M.; Le Borgne, G.

Organometallics 1987, 6, 2029, 2043. (11) Arnek, R.; Zetterberg, K. Organometallics 1987, 6, 1230. (12) Weinberg, E. L.; Hunter, B. K.; Baird, M. C. J. Organomet. Chem.

^{1982, 240, 95.} (13) (a) Moseley, K.; Maitlis, P. M. J. Chem. Soc., Dalton Trans. 1974, S. Takahashi, Y.: Ishii, Y. J. Organomet. (b) Ito, T.; Hasegawa, S.; Takahashi, Y.; Ishii, Y. J. Organomet. Chem. 1974, 73, 401.