are valuable precursors to a variety of cyclic compounds, including iodolactones¹⁰ and α , β -unsaturated γ -lactones.¹²

Acknowledgment. We are grateful to British Petroleum and to the Natural Sciences and Engineering Research Council of Canada for support of this research.

(12) King, G. S.; Wright, E. S. *J. Chem. SOC., Perkin Trans. I* **1974, 1499.**

Organotransltlon-Metal Complexes of Multldentate Ligands. 11. Synthesis, Structure, and Reactivity of **the First Intramolecular Coordlnation Compound with a Weakly Bound** n^2 **-Arene¹**

Kom-Bel Shiu' and Chang-Chuan Chou

Department of Chemistry National Cheng Kung University Tainan, Taiwan 70101, Republic of China

Sue-Leln Wang and Shl-Chen We1

Department of Chemistry National Tsing Hua University Hsinchu, Taiwan 30043, Republic of China Received September 26, 1989

Summary: Thermolysis of (PhHCPz'₂)Mo(CO)₄ (1) in DME gives (PhHCPz'₂)Mo(CO)₃ (2) (Pz' = 3,5-dimethylpyrazol-1-yl): comparison of the structural details of the two compounds and the reactivity of **2** show that this compound is the first example containing an intramolecularly coordinated η^2 -arene ligand.

Though the intramolecular η^2 -bound arenes of transition metals were proposed 19 years ago as plausible intermediates prior to the activation of the aromatic carbon-hydrogen bonds, which is often referred to as "ortho metalation",² all the reports concerning the activation available today center on the intermolecular η^2 -bound ligands.³ If difficulty in isolating the intermediates can be attributed to the facile formation of a nearly unstrained four- or five-membered ring through the proximity effect,⁴ suitable adjustments may bring an electrophilic center close sterically to one π -bond of a more distant phenyl fragment so that the internal η^2 -arene intermediates can be isolated by virtue of the high kinetic or thermodynamic energy barrier which may be required for converting the intermediates into the unfavorable six-or-more-membered ortho metalated complexes (Scheme I). Since the elec-

(2) Parshall, G. W. *Acc. Chem. Res.* **1970,** *3,* **139. (3)** (a) Harman, W. D.; Sekine, M.; Taube, H. *J. Am. Chem.* **SOC. 1988,** 110, **5725** and references cited therein. (b) Harman, W. D.; Taube, H. *Ibid.* **1988,** 110, **7555.**

Figure 1. Structure of $(\text{PhHCPz}_2)\text{Mo(CO)}_3$ (2) illustrating the atomic numbering scheme. Thermal ellipsoids are drawn at the 50% probability level. Selected bond lengths (Å) and bond angles *50%* probability level. Selected bond lengths **(A)** and bond angles (deg) are as follows: $Mo-C(1)$, 1.941 (4); $Mo-C(2)$, 1.897 (5); **Mo-C(3), 1.928 (5); Mo-N(l), 2.292 (3); Mo-N(3), 2.265 (3); C(31)-C(32), 1.394 (6); C(32)4(33), 1.377 (6); C(33)-C(34), 1.378** *(7);* **C(34)-C(35), 1.360 (6); C(35)-C(36), 1.395 (6); C(36)-C(31),** 1.402 (6); Mo. C(31), 2.766 (4); Mo. C(36), 2.840 (4); *LC*(1)-Mo-**C(3), 86.8 (2); LN(l)-Mo-N(3), 79.5 (1); LMo-N(1)-N(2), 115.6** (2) ; $\angle M_0-N(3)-N(4)$, 116.4 (2); $\angle N(1)-N(2)-C(4)$, 117.0 (3); $\angle N-$ **(3)-N(4)-C(4), 116.7 (3).**

tron-deficient compound $(H_2CPz'_2)Mo(CO)_3$ (Pz' = 3,5dimethylpyrazol-1-yl) is apparently involved as an intermediate in the formation of the product compound $[(H_2CPz'_2)Mo(CO)_3]_2$, obtained from thermolysis of $(H_2\tilde{C}Pz_2)M_0(CO)_4$,^{1c} this recognition has prompted us to attempt to isolate the intermediates using the bulkier bidentate ligands $RR'CPz'_{2}$ with $R = R'$ = arene. We hope that the larger ligand would impede dimerization of the intermediates and increase the probability of a bonding interaction between one π -bond of an arene in RR'CPz'₂ and the electron-deficient metal center. Here we wish to report our preliminary results showing that the first intramolecular coordination compound with a weakly bound η^2 -arene is indeed isolable by application of the strategy. We believe that it may have general applicability in the preparation of the intramolecular η^2 -arene compounds, the probable precursors leading to the ortho metalated complexes. Furthermore, our results also imply that the intramolecular attachment of an η^2 -arene can prevent the reported replacement of the binding arene by stronger nucleophiles in the $[Os(NH₃)₅(\eta^2\text{-}arene)]^{2+}$ complexes.^{3b}

Thermolysis of $(\text{PhHCPz}_2)\text{Mo(CO)}_4$ (1) in DME induced decarbonylation, giving $(PhHCPz'_2)Mo(CO)_3(2)^5$

⁽¹⁾ (a) Part **1:** Shiu, K.-B.; Vong, W.-J. *J. Chin. Chem.* **SOC.** *(Taipei)* 1987, 34, 195. (b) Part 2: Shiu, K.-B.; Chang, C.-J. *Ibid.* 1987, 34, 297.
(c) Part 3: Shiu, K.-B.; Liou, K.-S. *Ibid.* 1988, 35, 187. (d) Part 4: Shiu, K.-B.; Lee, L.-Y. *J. Organomet. Chem.* 1988, 348, 357. (e) Part 5: G.-H.; Vong, W.-J. *Organometallics* 1989, 8, 1219. (h) Part 8: Shiu, K.-B.;
Liou, K.-S.; Wang, S.-L.; Cheng, C. P.; Wu. F.-J. *J. Organomet. Chem.*
1989, 359, C1. (i) Part 9: Shiu, K.-B.; Shen, F.-M.; Wang, S.-L.; Wei, S. *Ibid.* **1989, 372, 251.** fi) Part **10:** Shiu, K.-B.; Liou, K.-S.; Wang, S.-L.; Wei, S.-C. *Organometallics,* in press.

^{(4) (}a) Parshall, G. W. *Catalysis (London)* 1977, *I*, 335. (b) Bruce, M.
I. *Angew. Chem., Int. Ed. Engl.* 1977, 16, 73. (c) Newkome, G. R.;
Puckett, W. E.; Gupta, V. K.; Kiefer, G. E. *Chem. Rev.* 1986, 86, 451. (d) Omae, I. *J. Organomet. Chem. Libr.* **1986,18,1;** *Coord. Chem. Rev.* **1988, 83, 137.**

^{(5) (}a) Preparation of 1: A solution containing $PhHCPz'_{2}$ (1.27 g, 4.55 mmol) and $Mo(CO)_{6}$ (1.18 g, 4.47 mmol) in DME (30 mL) was refluxed for 1.5 h. The solvent was then removed under vacuum. Recrystallization of the solid residue from CH_2Cl_2/h exame produced yellow-green blocks
of 1 in typical yields of 85%. Anal. Calcd for $C_{21}H_{20}MoN_4O_4$: C, 51.64;
H, 4.14; N, 11.47. Found: C, 51.66; H, 4.13; N, 11.52. ¹H NMR (23 °C,
 (50 mL) was refluxed for 70 h, giving an orange-yellow suspension. The suspension was cooled and filtered and the residue washed with 5 mL of CH_2Cl_2 and dried, yielding 1.22 g (88%). Anal. Calcd for $C_{2p}H_{20}M_0O_3$:

C o

Scheme I

as shown in Scheme I. Both structural and chemical data for 1 and $2^{6,7}$ strongly support that 2 is the compound with a weakly bound n^2 -arene.

The molecular structures for 1 and **2** are depicted formally as I and **11,** respectively, in Scheme I; the ORTEP drawing of **2** is shown in Figure 1, while that of 1 is deposited as supplementary material. Thus, it is quite obvious that there is not any kind of bonding contact between the molybdenum atom and the phenyl fragment and all six C-C bond lengths of the fragment are not significantly different from the average value of 1.373 **A.** However, this feature is only maintained for three such bonds, C(32)- C(33) (1.377 (6) **A),** C(33)-C(34) (1.378 (7) A), and **C-** (34)-C(35) (1.360 (6) **A),** in **2** (Figure 1). The other three bond lengths of 1.394 (6) **A** for C(32)-C(31), 1.402 (6) **A** for C(31)-C(36), and 1.395 (6) **A** for C(36)-C(35) are significantly longer than 1.373 **A.** Hence, it is likely that the perturbed phenyl ring is caused by some sort of bonding interaction present between the metal atom and the phenyl fragment in the formally electron-deficient compound **2.**

(7) We added Hz and P(OM& separately to the solution of **2** and obtained different results: **(1)** A stirred solution of **2 (0.46** g, **1.0** mmol) dissolved in **50** mL of CHzCIz was bubbled with Hz at room temperature for **3** h. Since a solution IR spectrum indicated no sign of reaction, the solvent was removed and the resulting solid dissolved in 100 mL of THF.
This solution was bubbled with H_2 in a 50 °C water bath for 3 h. A
solution IR spectrum also showed no reaction. THF was then removed
for recovery and dried under vacuum to give 0.55 g (95%) of the product. Anal. Calcd
for C₂₂H₂₉MoPN₄O₆: C, 47.26; H, 5.01; N, 9.59. Found: C, 46.92; H, 5.02;
N, 9.42. ¹H NMR (23 °C, acetone-d₆, 100 MHz): δ 7.66 (s, 1 H) In fact, a comparison between interatomic distances, 2.766 **A** for Mo...C(31), 2.840 **A** for Mo..C(36), and 2.916 **As** for Mo...H(36), and the expected sum of the van der Waals radii,⁹ ca. 3.6 Å for $Mo^0 \cdots C(sp^2)$ and ca. 3.1 Å for $Mo^0 \cdots H$, led us to believe that there does exist a weak bonding $interaction¹⁰$ between the molybdenum atom and one olefinic bond of the phenyl fragment in 2. The η^2 -bonded C(31)-C(36) is lengthened by 0.029 (6) Å. This value is much smaller than that (0.047 (6) **A)** found in bis(tricyclohexylphosphine)(1,2- η^2 -anthracene)nickel(0).^{12b} Since the angles LMo-N-N are 123.6 **(2)** and 125.0 (2)" for **1** and 115.6 (2) and 116.4 (2)" for **2** and the angles LN-N-C are 121.4 (3) and 121.3 (3)^o for 1 and 117.0 (3) and 116.7 (3)^o for 2, we believe that the more folded boat, $C(N-N)₂Mo$, in **2** relative to that in **1** increases the inherent ring strain, inhibiting any strong η^2 -coordination (Scheme I).

The weak η^2 -binding in 2 can find supporting evidence from the responses of $\overline{2}$ toward H₂ and $\overline{P}(OMe)_3$:⁷ (1) at room temperature or 50 "C, **2** resists oxidative addition of H_2 , showing the coordinatively saturated nature¹³ of the molybdenum atom in **2;** (2) compound **2** reacts readily with $P(OME)_{3}$ to give $(PhHCPz')/Mo(CO)_{3}[P(OME)_{3}]$, indicating that the binding is not strong.

Acknowledgment. Financial support from the National Science Council of the Republic of China is gratefully acknowledged.

(13) Collman, **J.** P.; Hegedus, L. *S.;* Norton, J. R.; Finke, R. G. *Principles and Applications of Organotransition Metal Chemistry;* Univer-sity Science Books: Mill Valley, CA, **1987;** p **85.**

⁽⁶⁾ (a) Crystal data for **1:** *a* = **9.718 (2) A,** *b* = **14.198 (4) A,** *c* = **16.076** (4) \hat{A} , $\hat{\beta} = 96.62$ (2)^o, $V = 2203$ (1) \hat{A}^3 , $Z = 4$, $d_{\text{caled}} = 1.472$ g/cm³ in space group $P2_1/n$. A total of 3198 unique intensities were collected by using Mo K α radiation, $2^{\circ} \leq 2\theta \leq 50^{\circ}$, of which 2538 with $I > 3\sigma(I)$ were used in the final refinement. Final residuals were $R = 0.034$ and $R_w = 0.037$.

(b) Crystal data for 2: $a = 9.582$ (2) Å, $b = 14.684$ (6) Å, $c = 14.224$ (4) \hat{A} , β = 92.89 (2)°, $V = 1999$ (1) \hat{A}^3 , $Z = 4$, $d_{\text{caled}} = 1.530$ g/cm³ in space group *P2,/n.* A total of **3544** unique intensities were collected by using Mo $\mathbf{\hat{K}}\alpha$ radiation, $2^{\circ} \leq 2\theta \leq 50^{\circ}$, of which 2532 with $I > 3\sigma(I)$ were used in the final refinement. Final residuals are $R = 0.032$ and $R_w = 0.033$.

⁽⁸⁾ This distance is a calculated value on the assumption of the ideal position of the hydrogen atom on a phenyl group at a C-H bond length of **0.96 A.** A longer distance of **2.966 A** is calculated at C-H = **0.92 A.**

⁽⁹⁾ Pauling, L. *The Nature of The Chemical Bond,* 3rd ed.; Cornell University Press: Ithaca, NY, **1960.**

⁽¹⁰⁾ The Mo^o-C(sp²) bonds typical of alkene are about 2.4 Å long.¹¹
(11) (a) Connop, A. H.; Kennedy, F. G.; Knox, S. A. R.; Mills, R. M.;
Ridging, G. H.; Woodward, P. J. Chem. Soc., Chem. Commun. 1980, 518.
(b) Cott

characterized by X-ray crystallography. See: (a) Browning, J.; Green, M.; Penfold, B. R.; Spencer, J. L.; Stone, F. G. A. J. Chem. Soc., Chem. Commun. 1973, 31. (b) Brauer, D. J.; Kruger, C. Inorg. Chem. 1977, 16, 884. (c) **1849.**

Supplementary Material Available: ORTEP drawing of 1 and tables of crystal data, fractional atomic coordinates, isotropic or equivalent thermal parameters, anisotropic thermal parameters for non-hydrogen atoms, and bond lengths and angles for 1 and **2** (13 pages). Ordering information is given on any current masthead page.

Synthesis of Novel Dipiatinum Complexes Containing the (Dlpheny1phosphino)cyciopentadienyl Ligand

Gordon K. Anderson, *^{1a} Minren Lin,^{1a} and **Michael Y. Chiang^{1b}**

Departments of Chemistry, University of Missouri-St. Louis *St. Louis, Missouri 63 12 1, and Washington University St. Louis, Missouri 63130*

Received September 28, 1989

Summary: The reactions of [PtCIR(cod)] with TIC₅H₄PPh₂ yield the novel dimeric complexes $[Pt_2R_2(\mu-\eta^5-C_5H_4PPh_2)_2]$ $(1a, R = Me; 1b, R = Ph)$. The structure of 1b has been determined by X-ray diffraction, and the molecule does not possess the expected center of symmetry. This lack of a symmetry element persists in solution at low temperatures for both compounds. Treatment of **la** with carbon monoxide yields the face-to-face dimer [Pt,Me,- $(CO)_{2}(\mu \cdot \eta^{1} \cdot C_{5}H_{4}PPh_{2})_{2}$] (2a), in which an η^{5} to η^{1} rearrangement of the cyclopentadienyl group has occurred. Reaction of **la** or **lb** with CNBu' yields [PtR(CNBu'),- $(Ph_2PC_5H_4)$, in which the C_5H_4 unit is uncoordinated. The intermediate $[Pt_2Me_2(CNBu^{\dagger})_2(\mu-\eta^{\dagger}-C_5H_4PPh_2)_2]$ has been characterized spectroscopically.

The **(dipheny1phosphino)cyclopentadienyl** ligand (dppc) has been used as a heterodifunctional ligand in the construction of both homo- and heteronuclear dimetallic compounds.²⁻⁶ We have recently employed dppc, and the related **dicyclopentadienylphenylphosphine** group, in the preparation of mixed-metal species containing zirconium and platinum.' We report here our preliminary results involving the use of dppc in the synthesis of novel organoplatinum dimers.

When a benzene solution of $[PtClR(cod)]$ $(R = Me, Ph;$ $cod = 1,5$ -cyclooctadiene) is allowed to react with 1 mol equiv of TlC₅H₄PPh₂² at 25 °C under an argon atmosphere, a precipitate of thallium chloride is formed. After filtration through a short alumina column, concentration of the solution and addition of petroleum ether provides $[Pt_2R_2(\mu - \eta^5 - C_5H_4PPh_2)_2]$ (1a, R = Me; 1b, R = Ph) as a

yellow solid in up to 80% yield (eq 1). Complexes 1a and
\n
$$
P_{h_2}
$$

Figure 1. ORTEP drawing of $[Pt_2Ph_2(\mu-\eta^5-C_5H_4PPh_2)_2]$ (1b), showing the atom labeling scheme. Selected bond distances **(A)** and angles (deg) include the following: $Pt1-P1 = 2.198 (1)$, $Pt2-P2 = 2.200 (2)$, $Pt1-C1 = 2.350 (3)$, $Pt1-C2 = 2.392 (3)$, $Pt1-C3 =$ 2.446 (4), Pt1-C4 = 2.303 (4), Pt1-C5 = 2.335 (4), Pt2-C24 = 2.380 (4) , Pt2-C25 = 2.370 (4) , Pt2-C26 = 2.308 (6) , Pt2-C27 = 2.445 (5), Pt2-C28 = 2.474 (5), P1-C24 = 1.808 *(5),* P2-Cl = 1.803 (4), Pt1-C6 = 2.025 (4), Pt2-C29 = 2.018 (4), P1-C12 = 1.832 (5), $P1-C18 = 1.818(4)$, $P2-C35 = 1.829(3)$, $P2-C41 = 1.825(4)$; $P1-Pt1-C6 = 96.8(1), P2-Pt2-C29 = 87.0(2), Pt1-P1-C24 =$ 112.4 (1), $Pt2-P2-C1 = 111.0$ (1).

^aChemical shifts are in ppm relative to Me₄Si (¹H, ¹³C), H_3PO_4 $(3P)$, or K_2PtCl_4 ($195Pt$), positive shifts representing deshielding. Coupling constants are in hertz. b The second J_{PtP} value is unresolved.

lb have been characterized by their 'H, 13C, 31P, and 195Pt **NMR** spectra, and the structure of **lb** has been determined by single-crystal X-ray crystallography (Figure 1).8

The molecular structure of **lb** reveals a dimeric framework in which the dppc ligands are bound in a "head-totail" fashion. The molecule does not possess the expected

^{(1) (}a) University of Missouri—St. Louis. (b) Washington University.

(2) Casey, C. P.; Bullock, R. M.; Fultz, W. C.; Rheingold, A. L. Organometallics 1982, J, 1591–1596. Casey, C. P.; Bullock, R. M.; Nief, F. J. Am. Chem

metallics 1985. *4.* 1218-1220. (3) Rausch, **M.'D.;** Edwards, B. H.; Rogers, R. D.; Atwocd, J. L. J. *Am.*

Chem. SOC. 1983, *105,* 3882-3886.

⁽⁴⁾ Tikkanen, W.; Fujita, **Y.;** Petersen, J. L. *Organometallics* 1986,5, 888-894. . -

⁽⁵⁾ DuBois, **D.** L.; Elgenbrot, C. W.; Miedaner, A.; Smart, J. C.; Hal- (6) He, **X.;** Maisonnat, A.; Dahan, F.; Poilblanc, R. *Organometallics* tiwanger, R. C. *Organometallics* 1986,5, 1405-1411.

^{1987, 6, 678-680.}

⁽⁷⁾ Anderson, *G.* K.; Lin, M. *Organometallics* 1988, **7,** 2285-2288.

⁽⁸⁾ Crystal data for 1b: $C_{46}H_{38}P_2Pt_2$; space group \overline{PI} ; cell dimensions $a = 10.256$ (4) Å, $b = 13.693$ (5) Å, $c = 14.687$ (7) Å, $\alpha = 95.52$ (3)°, $\beta = 109.68$ (3)°, $\gamma = 101.87$ (3)°; $Z = 2$; $V = 1869.7$ (13) scanning technique and graphite-monochromated Mo $K\alpha$ radiation $(\lambda = 0.71073 \text{ A})$. The structure was solved by using the SHELXTL PLUS program. All non-hydrogen atoms were located and refined anisotropically. Hydrogen atom positions were calculated and were refined isotropically with use of the Riding model. Refinement with the 6759 unique observed reflections with $F > 6.0\sigma(F)$ converged at $R = 0.0221$ and $\tilde{R}_{w} = 0.0266$.