center of symmetry, however, in contrast to the related complex $[\tilde{Rh}_2(CO)_2(\mu-\eta^5-C_5H_4PPh_2)_2]$.⁶ If the two Pt atoms, the two P atoms, and the centroids of the two cyclopentadienyl rings are considered to form a six-membered ring, the molecule may be said to adopt a distorted-boat conformation. The distortion is such that the two P-Pt-Ph angles differ by 10°, for example. This unsymmetrical structure persists in solution at low temperature for both 1a and 1b, as evidenced by multinuclear magnetic resonance measurements (Table I). Thus, for example, the ³¹P¹H NMR spectrum of 1a at -55 °C consists of two doublets, each exhibiting both short- and long-range coupling to ¹⁹⁵Pt. Warming to 25 °C results in broadening of these signals, followed by coalescence, and heating to 100 °C produces a single, very broad resonance; decomposition occurs above this temperature, so a fast-exchange limiting spectrum is not obtained. Similar results are obtained for solutions of 1b.

When a CH_2Cl_2 solution of 1a is treated with carbon monoxide (1 atm) at ambient temperature, the 16-electron complex $[Pt_2Me_2(CO)_2(\mu-\eta^1-C_5H_4PPh_2)_2]$ (2a) is obtained as a yellow solid in 90% yield (eq 2). Coordination of CO

is accompanied by an η^5 to η^1 rearrangement of the cyclopentadienyl moiety,⁹ and the face-to-face square-planar complex exists as that isomer in which the carbonyl and methyl groups lie mutually trans to one another.¹⁰ This reaction is unusual in that an 18-electron complex gains a CO ligand but simultaneously becomes coordinatively unsaturated. In contrast to the case for 1a, the NMR spectra of 2a exhibit single methyl, carbonyl, and phosphorus resonances. The analogous reaction of 1b produces an insoluble solid.¹¹

Addition of 6-10 equiv of CNBu^t to a CH₂Cl₂ solution of 1a or 1b results in cleavage of the Pt-Cp linkages and generation of a monomeric complex of the form trans- $[PtR(CNBu^{t})_{2}(Ph_{2}PC_{5}H_{4})]$ (3a, R = Me; 3b, R = Ph).¹² The ³¹P{¹H} NMR spectra of **3a** and **3b** exhibit ${}^{1}J_{PtP}$ values around 1500 Hz, consistent with the P atom lying trans to R,¹³ and the ¹H and ¹³C{¹H} NMR spectra exhibit only

(9) O'Connor, J. M.; Casey, C. P. Chem. Rev. 1987, 87, 307–318. (10) NMR data (δ) for 2a-0.6CH₂Cl₂ in CDCl₃ solution: ¹H NMR CH₃ 0.65 (d, ³J_{PH} = 7 Hz, ²J_{PtH} = 63 Hz), C₅H₄ 4.90 (d, ³J_{PH} = 13 Hz, ²J_{PtH} = 148 Hz), 6.28 (m), 6.60 (m), and 7.40 (m), CH₂Cl₂ 5.32 (0.6 molecules per dimer by integration); ¹³C[¹H] NMR CH₃ 4.0 (d, ²J_{PC} = 7 Hz, ¹J_{PtC} = 564 Hz), C₅H₄ 60.5 (dd, ²J_{PC} = 57 Hz, 22 Hz), 120.5 (d, J_{PC} = 13 Hz), 134.4 (d, J_{PC} = 10 Hz), and 145.2 (d, J_{PC} = 1103 Hz); ³¹P[¹H] NMR 12.5 (¹J_{PtP} = 2659 Hz). Anal. Calcd for C_{38.8}H_{35.2}Cl_{1.3}O₂P₂P₂t₂: C, 45.20; H, 3.46. Found: C, 45.01; H, 3.56. IR (ν (CO), KBr pellet): 2050 cm⁻¹ due

(11) The IR spectrum of this solid exhibits a band at 2056 cm⁻¹ due to $\nu(CO)$. The compound may be the phenyl analogue of 2a or an oligomeric form.

(12) Selected NMR data (δ , CDCl₃ solution) for **3a**: ¹H NMR CH₃ 0.65 (d, ³J_{PH} = 6 Hz, ²J_{PH} = 58 Hz), C(CH₃)₃ 1.10 (s), C₅H₄ 6.32 (s) and 6.34 (s); ¹³C[¹H] NMR CH₃ -12.5 (d, ²J_{PC} = 70 Hz, ¹J_{PtC} = 391 Hz), C(CH₃)₃ 29.5 (s), C(CH₃)₃ 58.2 (s), C₅H₄ 92.3 (d, J_{PC} = 74 Hz), 110.0 (d, J_{PC} = 15 Hz), and 116.0 (d, J_{PC} = 17 Hz); ³¹P[¹H] NMR 2.5 (¹J_{PtP} = 1568 Hz). **3a** loses CNBu^t on attempted isolation and so has not been obtained as an loses CNBu' on attempted isolation and so has not been obtained as an analytically pure material. Selected NMR data (δ , CDCl₃ solution) for 3b: ¹H NMR C(CH₃)₃ 1.10 (s), C₆H₄ 6.40 (m) and 6.47 (m); ¹³C[¹H] NMR C(CH₃)₃ 29.1 (s), C(CH₃)₃ 58.4 (s), C₆H₄ 90.5 (d, J_{PC} = 74 Hz), 110.4 (d, J_{PC} = 16 Hz), and 116.3 (d, J_{PC} = 17 Hz); ³¹P[¹H] NMR -2.1 (¹J_{PLP} = 1484 Hz). Anal. Calcd for C₃₃H₃₇N₂PPt: C, 57.64; H, 5.38; N, 4.07. Found: C, 57.17; H, 5.38; N, 4.40. (13) Anderson, G. K.; Clark, H. C.; Davies, J. A. Inorg. Chem. 1981, 00 2007 acti

20, 3607-3611.

two and three signals, respectively, for the C_5H_4 group, which suggests that the cyclopentadienyl group is uncoordinated. We formulate the complexes as zwitterions, having a formal positive charge on platinum and a negative charge associated with the cyclopentadienyl ring. Complex 3a and the isonitrile analogue of 2a, namely [Pt₂Me₂- $(CNBu^{t})_{2}(\mu - \eta^{1} - C_{5}H_{4}PPh_{2})_{2}]$, are in dynamic equilibrium in solution, 2a being favored in the absence of excess isonitrile. Thus, when a benzene solution of 1a is treated with 2 mol equiv of CNBu^t (1 mol equiv per Pt) [Pt₂Me₂- $(CNBu^{t})_{2}(\mu - \eta^{1} - C_{5}H_{4}PPh_{2})_{2}]$ is formed in near-quantitative yield, as evidenced by NMR spectroscopy.¹⁴

Complexes 1 and 2 represent suitable substrates for studying dinuclear elimination reactions from complexes in which the organic fragments are constrained in one molecule but are attached to different metal centers, and these and related reactions will be discussed elsewhere.

Acknowledgment. Financial support from the University of Missouri-St. Louis is gratefully acknowledged. M.L. thanks Mallinckrodt Inc. for a graduate fellowship.

Supplementary Material Available: ³¹P¹H NMR spectrum of 1a in CDCl₃ solution at -55 °C and tables of crystal data, data collection, and solution and refinement parameters, atomic coordinates, bond distances and angles, anisotropic displacement coefficients, and hydrogen atom coordinates (10 pages); a table of observed and calculated structure factors (31 pages). Ordering information is given on any current masthead page.

Preparation and Chemical Reactivities of the Tungsten Allenyl Complex CpW(CO)₃CH=C=CH₂

Rai-Shing Keng and Ying-Chih Lin*

Department of Chemistry, National Taiwan University Taipei, Taiwan 10764, Republic of China

Received January 13, 1989

Summary: The tungsten propargyl complex CpW-(CO)₃CH₂C=CH (1; Cp = η^5 C₅H₅) readily converts to the η^{1} -allenyl complex CpW(CO)₃CH==C==CH₂ (2) when dissolved in benzene or heated in CH₃CN. A rough estimation of the energy of activation for such a process possibly indicates 1,3-tungsten sigmatropic rearrangement. The reaction of tetracyanoethylene with 1 or 2 occurs readily in both cases to give the complex CpW- $(CO)_3C_5H_3(CN)_4$ (3) with a cyclopentene ring bonded to W in a η^1 fashion. At 70 °C, complex 2 reacts with Fe₂- $(CO)_8(\mu$ -CH₂) to produce a tungsten-substituted trimethylenemethane iron carbonyl complex, CpW(CO)₃(µ- η^4 -C₄H₅)Fe(CO)₃ (4). The structure assignment of complex 4 is based on spectroscopic data.

The chemistry of organometallic complexes containing one or more M–C σ bonds has long been a subject of interest.¹ However, due to its rarity, chemical reactivities

 $[\]begin{array}{c} \hline (14) \text{ Selected NMR data } (\delta) \text{ for } [\text{Pt}_2\text{Me}_2(\text{CNBu}^{t})_2(\mu-\eta^1\text{-}C_5\text{H}_4\text{PPh}_2)_2] \\ (\text{CDCl}_3 \text{ solution}): \ \ ^1\text{H} \text{ NMR } \text{CH}_3 \ 0.50 \ (\text{d}, \ ^3J_{\text{PH}} = 6 \ \text{Hz}, \ ^2J_{\text{PtH}} = 62 \ \text{Hz}), \\ \text{C}(\text{CH}_3)_3 \ 0.88 \ (\text{s}), \ \text{C}_5\text{H}_4 \ 5.18 \ (\text{d}, \ ^3J_{\text{PH}} = 12 \ \text{Hz}, \ ^2J_{\text{PtH}} = 141 \ \text{Hz}), \ 6.22 \ (\text{m}), \\ \text{and } 6.40 \ (\text{m}) \ (\text{remaining signal obscured}); \ ^{13}\text{C}[^{1}\text{H}] \ \text{NMR } \text{CH}_3 \ -1.0 \ (\text{d}, \ ^2J_{\text{PC}} \\ = 7 \ \text{Hz}, \ ^{1}J_{\text{PtC}} = 541 \ \text{Hz}), \ \text{C}(\text{CH}_3)_3 \ 29.6 \ (\text{s}, \ ^{3}J_{\text{PtC}} = 32 \ \text{Hz}), \ \text{C}(\text{CH}_3)_3 \ 54.6 \\ (\text{s}, \ ^{1}J_{\text{PtC}} \ \text{not observed}); \ ^{31}\text{P}[^{1}\text{H}] \ \text{NMR } 12.6 \ (^{1}J_{\text{PtP}} = 3028 \ \text{Hz}). \end{array}$

^{(1) (}a) Collman, J. P.; Hegedus, L. S.; Norton, J. R.; Finke, R. G. Principles and Applications of Organotransition Metal Chemistry; University Science Books: Mill Valley, CA, 1987; p 94, and references therein.

of the transition-metal η^1 -allenyl complexes are less known. The iron allenyl complex² CpFe(CO)₂(η^1 - σ -CH=C=CH₂) was first thought to be a propargyl complex with a η^{1} - σ - $CH_2C = CH$ ligand. It was later pointed out that the relatively large coupling constant between the methylene and methyne protons could only be derived from the allenyl π -interaction.³ Recently, Seyferth⁴ reported that the reaction of propargyl bromide with diiron anion yields products by which one can infer the presence of an allenyl ligand. In this communication, we report the isolation of a tungsten propargyl complex, its transformation to the corresponding allenyl complex, and the chemical reactivities of the latter compound.

The reaction of the tungsten anion $CpW(CO)_3^-$ with propargyl bromide at room temperature gave the bright yellow complex $CpW(CO)_3CH_2C = CH (1)^5$ as the major product (yield 76%). The C=C stretching of 1 appeared as a weak absorption peak at 2088 cm⁻¹ in the IR spectrum.⁶ In the ¹H NMR spectrum, a small coupling constant of 2.8 Hz was observed for the four-bond coupling ${}^{4}J$ of the methylene and methyne protons. In the ${}^{13}C$ NMR spectrum, the peak attributed to the methylene group was observed in the upfield (-33.3 ppm) region. Complex 1 in the solid state is unstable, even at low temperature, but is stable in CH₃CN solution. When dissolved in C_6D_6 , complex 1 readily undergoes tautomerization to form $CpW(CO)_3(\eta^1-CH=C=CH_2)$ (2)⁷ in a 100% NMR yield (91% isolated yield). Complex 2 could also be prepared from the thermolysis of 1 in acetonitrile. A much broader absorption peak at 1926 cm⁻¹ was observed in the IR spectrum, most likely due to the overlapping of the characteristic absorption of the allenyl group^{3,6a} with that of ν_{CO} . In the ¹H NMR spectrum, particularly diagnostic is a relatively large ${}^{4}J$ coupling between the methylene and methyne protons (6.7 Hz). This is very similar (6.5 Hz) to that observed previously for the iron compound $CpFe(CO)_2CH = C = CH_2^2$ Both protons show a coupling to the W atom with coupling constants, J_{WH} , of 4.3 (α) and 2.7 (γ) Hz. In the ¹³C NMR spectrum, the peak attributed to the methylene group was observed in the downfield (48.6 ppm) region. Unlike the ¹H NMR system, only the α carbon is coupled to the W atom with a coupling constant of 47 Hz. It is interesting that while the two parent molecular ion peaks are both absent, the mass spectra of 1 and 2 show distinctly different fragmentation patterns. The primary cleavage for 2 occurs at the M-CO bond,

(2) Jolly, P. W.; Pettit, R. J. Organomet. Chem. 1968, 12, 491. (3) (a) Johnson, M. D.; Mayle, C. J. Chem. Soc. D. 1969, 192. Several π -allenyl systems are known: (b) Wojcicki, A. Adv. Organomet. Chem. 1974, 12, 31. (c) Lennon, P.; Madhavarao, M.; Rosan, A.; Rosenblum, M. J. Organomet. Chem. 1976, 108, 93. (d) Benaim, J.; Merour, J. Y. F. Roustan, J. L. Tetrahedron Lett. 1971, 983. (e) Casey, C. P.; Austin, E.
A. J. Am. Chem. Soc. 1988, 110, 7106 and references therein.
(4) Seyferth, D.; Womock, G. B.; Ancher, M.; Dewan, J. C. Organo-

metallics 1989, 8, 430.

metallics 1989, 8, 430. (5) Spectroscopic data for 1: IR (THF) 3298 (ν_{CH}), 2088 ($\nu_{C=C}$), 2020 and 1920 (ν_{CO}) cm⁻¹; ¹H NMR (CD₃CN) δ 5.57, 2.18 (t, $J_{HH} = 2.8$ Hz, CH), 1.90 (d, CH₂, $J_{HW} = 3.8$ Hz); ¹³C NMR (CD₃CN) δ 231.2 ($J_{WC} = 130$ Hz), 219.6 ($J_{WC} = 159$ Hz) (3 CO's), 94.3 (Cp), 92.0 (-C=), 68.4 (CH), -33.3 (CH₂, $J_{CW} = 30$ Hz); mass spectrum m/e 335 (M⁺ - CH₂CCH), 307 (M⁺ - CH₂CCH - CO), 279 (M⁺ - CH₂CCH - 2CO). Anal. Calcd for C₁₁H₈O₃W: C, 35.51; H, 2.17. Found: C, 35.78; H, 2.09. (6) (a) Silverstein, R. M.; Bassler, G. C.; Morrill, T. C. Spectrometric Identification of Organic Compounds, 4th ed.; Wiley: New York, 1980;

(6) (a) Silverstein, R. M.; Bassler, G. C.; Morrill, T. C. Spectrometric Identification of Organic Compounds, 4th ed.; Wiley: New York, 1980; p 209. (b) Thomasson, J. E.; Robinson, P. W.; Ross, D. A.; Wojcicki, A. Inorg. Chem. 1971, 10, 2130. (c) Jolly, P. W.; Pettit, R. J. Organomet. Chem. 1968, 12, 491. (d) King, R. B. Inorg. Chem. 1963, 2, 531. (7) Spectroscopic data for 2: IR (C_6H_6) 2023 (s) and 1926 (s, br) (ν_{CO}) cm⁻¹; ¹H NMR (C_6D_6) δ 5.47 (t, $J_{HH} = 6.7$ Hz, $J_{WH} = 4.3$ Hz, CH) 4.51 (s, Cp), 4.06 (d, $J_{WH} = 2.7$ Hz, CH₂); ¹³C NMR (C_6D_6) δ 228.6 ($J_{WC} = 128$ Hz), 216.2 ($J_{WC} = 154$ Hz) (3 CO's), 209.1 (=C=), 92.5 (Cp), 62.2 (CH₂), 48.6 ($J_{WC} = 47$ Hz, CH); mass spectrum m/e 346 (M⁺ - CO), 318 (M⁺ - 2CO), 290 (M⁺ - 3CO). Anal. Calcd for C₁₁H₈O₃W: C, 35.51; H, 2.17. Found: C, 35.94; H, 2.29.

Scheme I

whereas for 1, it occurs at the M-propargyl bond. No (M $-CO)^+$ fragment (m/z = 346, W = 186) could be detected for 1, possibly indicating a stronger M-C(allenyl) bond relative to the M-C(propargyl) bond.⁸

Two possible pathways for the transformation of 1 to 2 are 1,3-hydrogen and 1,3-tungsten sigmatropic rearrangement.⁹ On the basis of the ready transformation of 1 at room temperature in C_6D_6 , it seems likely that 2 is formed by a 1,3-tungsten sigmatropic rearrangement of 1. This hypothesis was supported by the NMR monitoring of formation of 2. Kinetic studies of the isomerization were carried out by ¹H NMR spectroscopy in CDCl₃ solution. A very rough estimate¹⁰ of the value of energy of activation is in the range of 19 (C_6D_6) to 23 (CDCl₃) kcal/mol. The 1,3-hydrogen shift in propene has been found by ab initio calculations to proceed via an antarafacial transition state, whose energy is close to 93 kcal/mol.¹¹ For many substituted-propargyl-metal complexes, no such transformation has been observed. This is probably due to steric effects.

Treatment of 1 with tetracyanoethylene (TCNE) at room temperature for 15 min gave, in greater than 95% isolated yield, the air-stable adduct 3 as yellow crystals. A reaction of 2 with TCNE was similarly carried out in benzene and gave the spectroscopically identical product with slightly less yield (80% isolated). Such metal-assisted [3 + 2] cyclization¹² has been previously observed for

^{(8) (}a) Heppert, J. A.; Thomas-Miller, M. E.; Scherubel, D. M.; Ta-(o) (a) reppert, J. A.; Thomas-Miller, M. E.; Scherubel, D. M.; Ta-gusagawa, F.; Morgenstern, M. A.; Shaker, M. R. Organometallics 1989, 8, 1199. (b) Casey, C. P.; Polichnowski, S. W.; Tuinstra, H. E.; Albin, L. D.; Calabrese, J. C. Inorg. Chem. 1978, 17, 3045. (c) Jolly, W. L. Modern Inorganic Chemistry; McGraw-Hill: New York, 1984; p 52. (d) Casey, C. P.; Brukhardt, T. J.; Bunell, C. A.; Calabrese, J. C. J. Am. Chem. Soc. 1977, 99, 2127.
(a) (a) Built der T. F. A. (a) A. (b) A. (c) Built der T. F. (c) A. (c) Built der T. (c) A. (c)

^{(9) (}a) Rutledge, T. F. Acetylenes and Allenes; Reinhold: New York, (9) (a) Rutledge, T. F. Acetylenes and Allenes; Reinhold: New York, 1969; Chapter 1. (b) Overman, L. E.; Marlowe, K.; Clizbe, A. Tetrahedron Lett. 1976, 599. (c) Spangler, C. W. Chem. Ber. 1979, 76, 187. (10) The corresponding rate constants for the isomerization of 1 are 3.67×10^{-3} , 4.96×10^{-3} , and 6.62×10^{-3} min⁻¹ at 310, 317, and 324 K, respectively. However, careful examination of the NMR tube revealed heldender in the interval of the total barrier of the NMR tube revealed the decomposition of 1 to an unidentified solid, not detected by NMR spectroscopy, at temperatures above 310 K. The energy of activation was, therefore, estimated roughly from $E_a^+ = -RT \ln (0.693/(At_{1/2}))$, assuming $A = 10^{11}$

^{(11) (}a) Clark, T. J. Am. Chem. Soc. 1987, 109, 6838. (b) Clark, T. J. Am. Chem. Soc. 1989, 111, 761. (c) Bourner, D. G.; Brammer, L.; Green, M.; Orpen, A. G.; Reeve, C.; Schaverien, C. J. J. Chem. Soc., Chem. M.; Orpen, A. G.; Reeve, C.; Schaverlen, C. J. J. Chem. Soc. Chem. Soc. Chem. Soc. Chem. J. Commun. 1985, 1409. (d) Rodwell, W. R.; Bouma, W. J.; Radom, L. Int. J. Quantum Chem. 1980, 18, 107. (e) Bernardi, F.; Robb, M. A.; Schelgel, H. B.; Tonachini, G. J. Am. Chem. Soc. 1984, 106, 1198. (12) (a) Rosenblum, M.; Giering, W. P. J. Am. Chem. Soc. 1971, 93, 5299. (b) Raghu, S.; Rosenblum, M. J. Am. Chem. Soc. 1973, 95, 3060.

 ⁽c) Rosenblum, M. Acc. Chem. Res. 1974, 7, 122. (d) Cutler, A.; Ehntholt,
 D.; Giering, W. P.; Lennon, P.; Raghu, S.; Rosan, A.; Rosenblum, M.;
 Tancrede, J.; Wells, D. J. Am. Chem. Soc. 1976, 98, 3495.

Figure 1. Contour plot of the ${}^{1}H-{}^{1}H$ long-range COSY (A) and ${}^{1}H-{}^{13}C$ correlation (B) spectra of complex 4. In A, all of the cross peaks, with the exception of those at (2.84, 1.93) and (2.66, 1.53), are due to coupled protons with coupling constants smaller than 0.7 Hz (not obvious from the 1D spectra). By a comparison of A and B, it is clear that mutually coupled proton pairs at 1.53, 2.66 and 1.93, 2.84 ppm are due to W coupling.

 $CpFe(CO)_2(CH=C=CH_2)$. The spectroscopic data¹³ for 3 suggest that the crystalline product is $CpW(CO)_{3}C_{5}H_{3}$ -(CN)₄. The ¹H NMR spectrum for 3 contains the expected singlet C_5H_5 resonance and 2:1 doublet/triplet resonances; the observed coupling constant of 1.5 Hz is typical of ${}^{4}J$ couplig of allylic type. The ${}^{13}C$ NMR signal at δ 147.1 is assigned to the α -carbon on the basis of ¹⁸³W satellites (J_{WC} = 63 Hz). Compared with the spectroscopic data of 1 and 2, the chemical shift is relatively downfield and the coupling constant J_{WC} is slightly larger. A single-crystal X-ray diffraction analysis of 3 provided an unambiguous structural assignment and will be reported separately.

The addition of 2 to a solution of the methylene-bridged iron complex $Fe_2(CO)_8(\mu$ -CH₂)¹⁴ results in the formation of the tungsten-substituted trimethylenemethane iron complex CpW(CO)₃(μ - η^4 -C₄H₅)Fe(CO)₃ (4)¹⁵ at 70 °C (see Scheme I). Complex 1 reacts with $Fe_2(CO)_8(\mu$ -CH₂) in a similar fashion, since at this temperature, complex 1 readily converts to 2. The presence of the substituted trimethylenemethane ligand in 4 is indicated by the NMR data and FAB mass spectrum discussed below. Other researchers have observed similar formation of the trimethylenemethane ligand upon the reaction of allene with $Fe_2(CO)_8(\mu\text{-}CH_2).^{14}~$ To our knowledge this is the first reported instance of an iron complex with a metal-substituted trimethylenemethane ligand. The NMR spectroscopic data for 4 are sufficiently similar to those for many substituted trimethylenemethane ligands¹⁶ so as to imply a similar structure. Complex 4 shows two sets of ¹H NMR doublets in the δ 1.5–2.9 spectral region due to a W coupling (coupling constant 1-3 Hz). The room-temperature ¹³C NMR spectrum indicates that only three CO's, possibly on Fe, of 4 are fluxional. At -20 °C, the C atoms of the CO ligands of 4 appear as six signals with equal intensities. The assignments in the ¹H NMR spectra and the connection between ¹³C¹H and ¹H NMR spectra are confirmed by the 2D NMR¹⁷ spectra as shown in Figure The FAB mass spectrum of 4 shows an envelope of 1. parent molecular ion peaks, the distribution of which is in good agreement with the natural abundance of tungsten isotopes.

Further reactivities of these metal propargyl and allenyl complexes are currently under investigation.

Acknowledgment. This research has been supported by the National Science Council (NSC) of the Republic of China. The NMR instruments used were funded by the NSC Instrumentation Program. We thank reviewers for helpful comments and Peter Schwabland for reading the text.

Registry No. 1, 54761-81-8; 2, 123880-91-1; 3, 123880-92-2; 4, 123902-62-5; TCNE, 670-54-2; CpW(CO)3⁻, 12126-17-9; Fe₂- $(CO)_8(\mu$ -CH₂), 73448-09-6; propargyl bromide, 106-96-7.

⁽¹³⁾ Spectroscopic data for 3: IR (KBr) 2255 (ν_{CN}), 2029, 1962, and 1909 (ν_{CO}) cm⁻¹; ¹H NMR (CD₃COCD₃) δ 6.02 (s, 5 H, Cp), 5.92 (t, J_{HH} = 1.5 Hz, —CH), 3.86 (d, CH₂, J_{HH} = 1.5 Hz); ¹³C NMR (CD₃COCD₃) δ 226.0 (J_{WC} = 122 Hz), 218.4 (J_{WC} = 147 Hz) (3 CO's), 147.1 (α -C, J_{WC} = 63 Hz), 128.5 (—CH), 113.0, 111.9 (4 CN's), 94.1 (Cp), 59.5 (–CH₂), 52.4,

<sup>b3 H2), 128.5 (=CH), 113.0, 111.9 (4 CN's), 94.1 (CP), 59.5 (-CH₂), 52.4,
46.8 (2 C(CN)₂'s); mass spectrum m/e 502 (M⁺), 474 (M⁺ - CO), 418 (M⁺ - 3CO). Anal. Calcd for C₁₇H₈N₄O₃W: C, 40.80; H, 1.60; N, 11.20.
Found: C, 40.87; H, 1.32; N, 11.34.
(14) (a) Sumner, C. E., Jr.; Collier, J. A.; Pettit, R. Organometallics
1982, 1, 1350. (b) Kao, S. C.; Lu, P. P. Y.; Pettit, R. Organometallics
1982, 1, 911. (c) Jones, M. D.; Kemmitt, R. D. W. Adv. Organomet. Chem.
1987, 2729. (d) Bouston L: Cadiot P. C. B. Scances Acad. Sci. Sci.</sup> 1987, 27, 279. (d) Roustan, J.; Cadiot, P. C. R. Seances Acad. Sci., Ser. C 1968, 268, 734. (e) Seyferth, D.; Anderson, L. L.; Davise, W. M. Organometallics 1989, 8, 1371.

⁽¹⁵⁾ Spectroscopic data for 4: IR (KBr) 2043, 2015, 1967, 1933, and 1910 (ν_{CO}) cm⁻¹; ¹H NMR (C₆D₆) δ 4.51 (s, 5 H, Cp), 2.84 (d, 1 H, J_{HH} = 3.1 Hz, =-CH), 2.66 (d, 1 H, J_{HH} = 4.6 Hz), 1.93 (d, 1 H, J_{HH} = 3.1 Hz, =-CH), 1.75 (s, 1 H, CH), 1.52 (d, 1 H, J_{HH} = 4.6 Hz); ¹³C NMR (C₆D₆) δ 228.8, 219.0, 216.0 (3 CO's), 213.4 (br, 3 CO), 115.4 (=-C=), 93.0 (Cp) δ 202.8, 219.0, 216.0 (3 CO's), 213.4 (br, 3 CO), 115.4 (=-C=), 93.0 (Cp) 56.8 (J_{CW} = 59 Hz, -CH=>), 58.7 (CH₂), 56.5 (CH₂); mass spectrum (FAB experiment was carried out on a JEOL JMSHX-110 mass spectrometer by the use of nitrobenzyl alcohol matrix) m/z 528 (M⁺) and fragment ions corresponding to the consecutive loss of six CO's.

⁽¹⁶⁾ Aumann, R.; Melchers, H. D.; Weidenhaupt, H. J. Chem. Ber.

^{(13) 120, 17.} (17) Homonuclear long-range COSY 2D spectra were recorded with the sequence $90^{\circ}-t_1-\tau-45^{\circ}-t_2$ (FID) at 300 K on a Bruker AM 300WB spectrometer, with 16 scans for each of the 128 t_1 values. The r value was set to 0.16 s to emphasize coupling constants less than 0.7 Hz. Unshifted sine-bell filtering was used in both t_1 and t_2 . Heteronuclear correlation spectra were recorded with use of the standard XHCORR pulse sequence at 300 K, with 128 scans for each of the 128 t_1 values. Sine-bell filtering, 90° shifted, was used in both t_1 and t_2 . Both spectra are of the same data size $(1K \times 512)$ and are presented in the magnitude mode.