Multidentate Lewis Acids. Structure of the 1:2 Complex of a BMentate Titanium Trichloroalkoxide with Pinacolone

Benoit Bachand,¹ Francine Bélanger-Gariépy, and James D. Wuest^{*}

Dgpartement de Chimie, Universitg de Montrgal, Montrgal, Qugbec, H3C 3J7 Canada

Received May 29, 7990

Summary: Treatment of the bis(trimethylsilyl) ether of racemic ($1\alpha,2\beta,3\alpha$)-3-methyl-1,2-cyclohexanediol with 2 equiv of TiCl, yields the titanium trichloroalkoxide 2, a bidentate Lewis acid. An X-ray crystallographic study of its 1:2 complex with pinacolone has shown that the OTiCI, groups are equatorial and are doubly bridged by chloride, and each binds a single pinacolone to form an approximately octahedral complex. Compound 2 therefore incorporates dual acidic sites that **allow** two basic substrates to be bound in close proximity.

We have established that suitable bidentate Lewis acids can form complexes in which a carbonyl oxygen bridges both electrophilic sites (eq 1).^{2,3} These complexes promise

to be useful in synthesis because the carbonyl substrate is more susceptible to nucleophilic attack than when it is bound to simple monodentate Lewis acids.⁴ Moreover, the stereochemistry of addition should be easier to control, since adducts of bidentate Lewis acids will have a more restricted range of conformations. During recent efforts to devise bidentate Lewis acids that exploit these advantages, we have found that the chiral zirconium trichloroalkoxide 1 and related compounds can be made easily from the corresponding diols.⁵ Unfortunately,

(1) Fellow of the Natural Sciences and Engineering Research Council of Canada, 1986-1990.

conformational mobility allows the $OZrCl₃$ groups of compound 1 to become diaxial and avoid engaging in cooperative binding.^{5c} In this communication, we describe the behavior of a related compound in which two Lewis acidic sites maintain close proximity.

Standard procedures⁶ transformed racemic $(1\alpha,2\beta,3\alpha)$ -3-methyl-1,2-cyclohexanediol⁷ into the corresponding bis(trimethylsily1) ether, which was then converted into the potentially bidentate titanium trichloroalkoxide **2** by the addition of **2** equiv of TiC1, at **-78** $^{\circ}$ C.⁸ Earlier studies have established that titanium trichloroalkoxides are typically monomeric in solution⁹ and bind **2** equiv of ketones, giving *mer* octahedral complexes

⁽²⁾ Beauchamp, **A.** L.; **Olivier,** M. J.; Wuest, J. D.; Zacharie, B. Or-*ganometallics* 1987, *6,* 153-156.

⁽³⁾ For other recent work on multidentate Lewis acids, see: Nadeau, F.; Simard, M.; Wuest, J. D. *Organometallics* 1990,9, 1311-1314. Dohmeier, C.; Mattes, R.; Schnöckel, H. J. Chem. Soc., Chem. Commun. 1990,
358–359. Kaufmann, D.; Boese, R. Angew. Chem., Int. Ed. Engl. 1990,
29, 545–546. Chujo, Y.; Tomita, I.; Saegusa, T. Macromolecules 1990, 23,
667–689. L.; Huber, B.; Müller, G*. Chem. Ber.* 1989, *122,* 31–36. Jung, M. E.; Xia,
H. *Tetrahedron Lett.* 1988, 29, 297–300. Kaufmann, D. *Chem. Ber*. 1987, 120,901-905. Khan, M. **A.;** Peppe, C.; Tuck, D. *G. Organometallics* 1986, *5,* 525-530.

⁽⁴⁾ Wuest, J. D.; Zacharie, B. *J. Am. Chem. SOC.* 1985,107,6121-6123.

^{(5) (}a) Sharma, V.; Simard, M.; Wuest, J. D. *Inorg. Chem.,* submitted for publication. (b) Bélanger-Gariépy, F.; Hoogsteen, K.; Sharma, V.; Wuest, J. D. *Inorg. Chem.*, submitted for publication. (c) Galeffi, B.; Simard, M.; Wuest, J. D. *Inorg. Chem.*, 1990, 29, 955–958. (d) Galeffi, B.;

Simard, M.; Wuest, J. D. *Inorg. Chem.* 1990, 29, 951-954.

(6) Lasocki, Z. Synth. *Inorg. Met-Org. Chem.* 1973, 3, 29-35.

(7) Lepoittevin, J.-P.; Benezra, C. J. Med. Chem. 1988, 29, 287-291.

Robinson, P. L.; Evans, S. A

Figure **1. ORTEP** drawing of the structure of the 1:2 pinacolone adduct of bidentate titanium trichloroalkoxide **2.** The ellipsoids correspond to 33% probability, and selected hydrogen atoms are shown as spheres of arbitrary size.

in which one ligand is trans to the alkoxy group.^{5c,10,11} We hoped that the methyl group in compound **2** would impose an all-equatorial conformation and thereby force the Lewis acidic sites together, preventing them from binding the normal complement of four ligands and ensuring cooperative behavior. In fact, addition of 4 equiv of 3,3-dimethyl-2-butanone (pinacolone) and then pentane to a suspension of compound **2** in toluene produced an 81% yield of crystals of a complex containing only 2 equiv of pinacolone.12 A similar procedure also converted the analogue **3** into a crystalline 1:2 pinacolone complex, demonstrating that the methyl group does not actually play a crucial role.

An X-ray crystallographic study revealed that the 1:2 adduct of compound **2** has the partially disordered structure shown in Figure $1.^{13}$ Selected interatomic distances, bond angles, and torsion angles are listed in Table

- **(11)** For related studies of complexes of TiCl, with ketones, **see:** Turin, E.; Nielson, R. M.; Merbach, A. E. *Inorg. Chim. Acta* **1987,134,67-78, 79-85.** Marcos, B.; Amaudrut, J.; Devin, C. J. *Chem.* Res., *Miniprint* **1977, 1901-1914.**
- **(12)** The crystals consist of bidentate titanium trichloroalkoxide **2,** pinacolone, and toluene in a 1:2:0.5 ratio: mp 95-115 °C dec; IR (Nujol mull) 1655, 1140, 1085, 1045, 1030, 730, 395, 350 cm⁻¹; ¹H NMR (300 MHz,
CDCl₃, 25 °C) *ò* 1.11 (m, 1 H), 1.29 (s, 18 H), 1.30 (m, 2 H), 1.41 (d, 3 H), 1.74 (m, 3 H), 2.00 (m, 1 H), 2.36 (s, toluene), 2.65 (s, 6 H), 4.99 (t, 1 H), 5.45 (m, 1 H), 7.15–7.30 (m, toluene); ¹³C NMR (75.4 MHz, CD₂Cl₂, 0 °C) 6 **18.52, 21.60, 22.60, 26.06, 26.28,31.69,32.37,38.98,47.07, 100.33,106.09,** 125.43, 128.36, 129.17, 138.16, 232.64. Anal. Calcd for C₁₉H₃₆Cl₆O₄Ti₂.
0.5C₇H₈: C, 39.56; H, 5.91. Found: C, 39.43; H, 6.03.

(13) (a) Crystallographic data: triclinic, space group $P\bar{1}$, $a = 11.381$
(6) Å, $b = 12.186$ (15) Å, $c = 13.054$ (15) Å, $\alpha = 75.92$ (10)°, $\beta = 76.46$
(14)°, $\gamma = 68.99$ (14)°, $V = 1617.6$ Å³, $d_{calc} = 1.402$ g cm⁻³ Enraf-Noniue **CAD-4** diffractometer waa used to **collect 5684** independent reflections at 173 K with Mo K $\bar{\alpha}$ radiation ($\lambda = 0.71069$ Å). Full-matrix least-squares refinement of 2949 reflections ($I \geq 3.00\sigma(I)$) converged at $R = 0.060$ and $R_w = 0.046$. Corrections were applied for Lorentz and polarization effects, but not for absorption. The structure was solved by direct methods (SHELXS86) and difference-Fourier calculations (SHELX76). All non-hydrogen atoms were refined anisotropically by full-matrix least-squares procedures. (b) The toluene of crystallization is partially disordered and is not shown in Figure **1.** Disordered models were used to describe both bound pinacolones. In one, **three** seta of methyl carbons attached to **C(12)** were defined and assigned occupancies of **0.33,** and two methyl carbons attached to **C(11)** were refined and fixed at occupancies of 0.66 (C(10)) and 0.33 (C(30)). In the other pinacolone, peaks around
C(42) were grouped into two sets defining reasonable *tert*-butyl groups.
Peaks corresponding to the remaining carbon atoms were also grouped Peaks corresponding to the remaining carbon atoms were also grouped
into two sets (C(40), C(41) and C(50), C(51)) that gave refined populations
of 0.66 and 0.33, respectively.

I. These data confirm that the cyclohexane ring adopts a normal chair conformation with equatorial OTiC1, groups. These groups are doubly bridged by chloride, and each binds a single pinacolone to form an approximately octahedral complex. Each ketone is trans to an alkoxy group and is primarily σ -bonded. The average lengths of terminal Ti-C1 bonds (2.261 (3) **A),** bridging Ti-C1 bonds (2.494 (3) **A),** alkoxy Ti-0 bonds (1.713 **(5) A),** and carbonyl Ti-0 bonds (2.106 (6) Å) are closely similar to those found in related compounds. $14,15$ Furthermore, strong oxygen p-titanium d π -bonding helps produce a typically large average alkoxy C-0-Ti angle (158.4 **(5)')** and carbonyl C= \tilde{O} ...Ti angle (150.2 (11)^o).¹⁶ In general, the structure resembles those of dimeric, chloride-bridged 1:l adducts of TiC14 with esters except that bidentate acid **2** forces substrates to be bound on the same side of the approximate Ti_2Cl_6 plane.¹⁵

The crystalline 1:2 pinacolone complex of titanium trichloroalkoxide 2 was dissolved in $CD₂Cl₂$ to give a solution of nominal 0.13 M concentration. At -85 °C, its ¹H and 13C NMR spectra showed the presence of a single major species with equatorial substituents and two nonequivalent bound pinacolones. Small amounts $(~5\%)$ of the 1:2 adduct of TiC1, with pinacolone could also be detected. These observations suggest that complexes of the bidentate titanium trichloroalkoxide **2** have similar structures in solution and in the solid state but that some redistribution occurs in solution, particularly at low concentrations.

Although the adjoining OTiCl₃ groups of compound 2 do not in fact engage in cooperative binding of ketones, their interaction via chloride bridging creates dual acidic sites that allow two bases to be bound in close proximity. This novel juxtaposition may allow compound **2** to act **as** a host for suitable bidentate guests or as an effective template for the reductive coupling of carbonyl compounds¹⁷ or for the photodimerization of α , β -enones.¹⁸ We are also exploring the possibility that carbonyl compounds less hindered or more basic than pinacolone may in fact bridge both Lewis acidic sites.

Acknowledgment. This work was funded by the Natural Sciences and Engineering Research Council of Canada, the Ministère de l'Éducation du Québec, and Merck Frosst. In addition, we are grateful to Sylvie Bilodeau and Dr. M. T. Phan Viet of the Regional High-Field NMR Laboratory for helping us record our low-tempera-

(15) Bassi, I. **W.;** Calcaterra, M.; Intrito, R. *J. Organornet. Chem.* **1977,**

127, 305–313. Brun, L. Acta Crystallogr. 1966, 20, 739–749.
(16) For references, see: Huffman, J. C.; Moloy, K. G.; Caulton, K. G.
Inorg. Chem. 1988, 27, 2190–2192. Chisholm, M. H.; Rothwell, I. P. In *Comprehensive Coordination Chemistry;* Wilkinson, *G.,* Gillard, R. D., McCleverty, J. A., Eds.; Pergamon Press: New York, 1987; Vol. 2, Chapter 15.3. Latesky, S. L.; Keddington, J.; McMullen, A. K.; Rothwell, I. P.; Huffman, J. C. *Inorg. Chem.* 1985, 24, 995–1001.

(17) For recent references, see: Pons, J.-M.; **Santelli,** M. J. *Org. Chem.*

1989,54,877-884. (18) Lewis, **F.** D.; Barancyk, S. V. *J. Am. Chem. SOC.* **1989, 111, 8653-8661.** Oaawa, T.: Masui, Y.: Oiima. S.: Suzuki, H. Bull. *Chem. SOC. Jpn.* **1987,60;423-425.**

⁽IO) Bachand, B.; Wuest, J. D. Unpublished observations.

⁽¹⁴⁾ Albanese, J. A.; Staley, D. L.; Rheingold, A. L.; Burmeister, J. L. Inorg. Chem. 1990, 29, 2209–2213. Troyanov, S. I.; Mach, K. J. Organomet. Chem. 1990, 389, 41-46. Riediker, M.; Hafner, A.; Piantini, U.; Rihs, G.; Togni, A. *Angew.* Chem., *Int. Ed. Engl.* **1989,** *28,* **499-500.** Floriani, C.; Corazza, F.; Leaueur, W.; Chiesi-Villa, A.; Guastini, C. *Angew. Chem., Int. Ed. Engl.* **1989,28,66-67.** Oppolzer, W.; Rodriguez, I.; Blagg, J.; Bernardinelli, G. *Helu. Chim. Acta* **1989,72,123-130.** Utko, J.; Sobota, P.; Lis, T. J. *Organomet. Chem.* **1987,334, 341-345.** Maier, **G.;** Seipp, U.; Boese, R. *Tetrahedron Lett.* **1987,28,4515-4516.** Bott, S. *G.;* Coleman, A. W.; Atwood, J. L. *J. Chem. Soc., Chem. Commun.* **1986,610-611.** Poll, T.; Metter, J. 0.; Helmchen, *G. Angew.* Chem., *Int. Ed. Engl.* **1985, 24,112-114.** Haaae, W.; Hoppe, H. Acta *Crystallogr., Sect. B* **1968, B24, 281-282.** Watenpaugh, K.; Caughlan, C. N. *Inorg. Chem.* **1966,** *5,* **1782-1786.**

ture 'H and 13C NMR spectra.

Registry No. 2, 129493-36-3; 2.2 (pinacolone).¹/₂C₇H_a, 129493-40-9; **3,** 129493-37-4; 3+2(pinacolone), 129493-38-5; TiCl₄.2(pinacolone), 129493-41-0; (\pm)-(1 α ,2 β ,3 α)-3-methyl-1,2**cyclohexanediol[bis(trimethylsilyl** ether)], 129493-35-2.

Supplementary Material Available: Tables containing atomic coordinates and equivalent isotropic temperature factors, complete bond lengths and angles, anisotropic thermal parameters, and fixed hydrogen atom coordinates (9 pages); a table of **observed** and calculated structure factors (21 pages). Ordering information is given on any current masthead page.

Deprotonation of a Cp" Methyl Group by an Iridium Anilide: Formation, Structure, and Solution Dynamics of an η^4 **-Tetramethylfulvene Complex**

David S. Glueck and Robert **G.** Bergman"

Department of Chemistry, University of California, Berkeley, California 94 720 Received July 5, 7990

Summary: The new iridium amide complex Cp*IrPPh₃-(Me)(NHPh) (1, Cp⁺ = η^5 -C₅Me₅) reacts with 1,2-bis(diphenylphosphino)ethane (dppe) to give PPh₃, aniline, and the tetramethylfulvene complex $(\eta^4$ -C₅Me₄CH₂)Ir(dppe)Me **(4),** which has been characterized by X-ray crystallography and by variable-temperature NMR spectroscopy. Deprotonation of $[Cp*Ir(dppe)Me]$ ⁺I⁻ (7) with KNHPh or KOBu' also gives 4, suggesting that the anilide ligand is displaced from 1 as an anion, which immediately deprotonates a Cp" methyl group. The fact that deprotonation of $7-d_3$ (prepared from Cp^{*} Ir(dppe) (6) and CD₃I) gives *44,* demonstrates that **the** Cp" methyl is the kinetic site of deprotonation even though it is more remote than the Ir-bound methyl from the positively charged metal center.

We report the synthesis of the amide complex $Cp*IrPPh_3(Me)(NHPh)$ (1, Scheme I, $Cp* = \eta^5-C_5Me_5$) and its unusual reaction with 1,2-bis(diphenylphosphino)ethane (dppe) to form $(\eta^4$ -C₅Me₄CH₂)Ir-(dppe)Me **(4),** the first structurally characterized example of an η^4 -tetramethylfulvene complex.¹ The anilide ligand in 1 appears to be displaced **as** an anion, which selectively deprotonates a Cp* methyl group to give **4.**

Reaction of $Cp*IrPPh_3(\text{Me})(Cl)^2$ with LiNHPh in THF at **85** "C for **3-4** h gives 1 in 80% yield. Anilide 1 reacts with PPh₂Me to give PPh₃ and $Cp*Ir(PPh₂Me)(Me)$ -(NHPh) **(2).3** When 1 is treated with the chelating phosphine dppe in C_6D_6 or toluene- d_8 , PPh₃, aniline, and the title complex **4** are formed; a transient species, presumably $Cp*Ir(\eta^1-dppe)(Me)(NHPh)$ (3, Scheme I) appears to be an intermediate. After 1 h the ³¹P{¹H} NMR spectrum of the reaction mixture shows two doublets ($J_{\text{P-P}}$ $= 33$ Hz) assigned to 3, one at δ 5.5 (coordinated P) and the other at δ -9.8 (dangling P), in addition to signals due to PPh,, **1,** and **4.** After **24** h compounds 1 and **3** are consumed and the NMR spectra show only the fulvene

details will be reported separately.³
(3) Glueck, D. S.; Bergman, R. G. Submitted for publication.

complex **4** and aniline. Compound **4** can be separated from $PPh₃$ by fractional crystallization and isolated as orange crystals in **50-75%** yield.

The crystal structure4 of **4** (an **ORTEP** diagram is shown in Figure 1) demonstrates that the Cp* has been depro-

0276-7333/90/2309-2862\$02.50/0 *0* 1990 American Chemical Society

⁽¹⁾ For leading references to examples of fulvene η^6 coordination, see:
(a) Kolle, U.; Kang, B.-S.; Thewalt, U. J. Organomet. Chem. 1990, 386,
267. (b) Schock, L. E.; Brock, C. P.; Marks, T. J. Organometallics 1987,
6 (f) For an example of η^4 coordination, see: Parkin, G.; Bercaw, J. E.
Polyhedron 1988, 7, 2053. (g) For η^2 coordination, see: Werner, H.; Crisp, G. T.; Jolly, P. W.; Kraus, H.-J.; Kruger, C. Organometallics 1983,

⁽⁴⁾ Crystals were grown from **toluene/hexamethyldisiloxane** at **20 OC.** Crystal data for 4: $C_{\text{ST}}H_{41}IrP_2$, $I2/a$, $V = 6304$ (3) \mathbf{A}^8 , Mo K α ($\lambda = 0.70926$ Å), $\mu_{\text{calc}} = 43.4 \text{ cm}^{-1}$, $d_{\text{calc}} = 1.56 \text{ g cm}^{-3}$, $a = 20.625$ (4) Å, $b = 17.188$ (3) Å, $c = 17.810$ (3) Å, $\beta = 93.14$ $F^2 > 3\sigma(F^2)$ were $R = 3.8\%$, $R_w = 4.5\%$, and GOF = 1.67. The *R* value for all 4109 data was 6.1%. Details of the structure determination are provided as supplementary information.