greatest preference. However, the presence of significant steric interactions can also lead to additional variations in preferences, notably for cyclic dienyl species, and further studies will be required to better understand the extent of these contributions.

Acknowledgment. R.D.E. is grateful to the National Science Foundation for support of this work and to Prof.

John Gladysz for helpful discussions.

Supplementary Material Available: Tables of thermal and hydrogen atom parameters, least-squares plane data, and atomic parameters for the atoms in $Os(C_5H_5)(2,4-C_7H_{11})$, $Ru(2,4-C_7H_{11})(2,4-C_7H_{12})(CO)^+BF_4^-$, $Ru(2,4-C_7H_{11})(CO)_2(PEt_3)^+BF_4^-$, $Ru(2,4-C_7H_{11})_2^+BF_4^-$, $Ru(2,4-C_7H$

Diastereoselective Ligand and Vertex Substitutions in Bimetallic Bridged Alkyne Clusters: X-ray Crystal Structure of $(\mu_2$ -endo-2-Propynylborneol)hexacarbonyldicobalt

Michael F. D'Agostino, Christopher S. Frampton, and Michael J. McGlinchey*

Department of Chemistry, McMaster University, Hamilton, Ontario, Canada L8S 4M1

Received November 27, 1989

Enantiomerically pure dicobalt μ -alkyne clusters that possess diastereotopic Co(CO)₃ vertices can be synthesized by the treatment of (propargyl alcohol)Co₂(CO)₆ with menthol or borneol or by the reaction of Co₂(CO)₈ with *endo*-2-propynylborneol. Ligand substitution reactions with phosphines occur with some degree of diastereoselectivity to give mixtures of monosubstituted complexes. Moreover, diastereoselective replacement of a metal vertex by isolobal groups, (C₅H₄R)M(CO)₂, where M = Mo, W, has been observed. The hexacarbonyldicobalt complex, 6, of *endo*-2-propynylborneol has been synthesized and characterized by X-ray crystallography. The crystals are orthorhombic of space group P2₁2₁2₁ with a = 12.136 (3) Å, b = 12.682 (2) Å, c = 13.652 (3) Å, V = 2101 (1) Å³, $D_c = 1.51$ g cm⁻³, and $D_m = 1.49$ g cm⁻³ for Z = 4 and $R_1 = 0.0546$ and $R_2 = 0.0567$ for 3713 unique reflections ($R_1 = 0.0437$ and $R_2 = 0.0463$ for 2953 reflections with $I > 2.5\sigma(I)$).

Introduction

It has been recently reported that mixed metal clusters, such as 1, that bear a chiral substituent derived from a natural product are readily synthesizable on the multigram scale.^{1,2} In these molecules, the two tricarbonylcobalt vertices are rendered diastereotopic and so, in principle, should be differently susceptible to attack by incoming ligands. Indeed, we have shown that use of bulky phosphines can lead to a small degree of chiral discrimination. The diastereotopic character of these vertices was readily demonstrated by the incorporation of a bidentate ligand, e.g., $Ph_2PCH_2CH_2PPh_2$, yielding 2, which exhibited two distinct phosphorus resonances in the ³¹P NMR spectrum.¹ Moreover, a recent note from Nicholas' laboratory³ describes elegant work whereby reaction of triphenylphosphine with a racemic mixture of chiral (propargy) $alcohol)Co_2(CO)_6$ clusters leads to preferential diastereomer formation; this prompts us to report the results of our own studies, which demonstrate the generality of this phenomenon for $(R*C \equiv CR)Co_2(CO)_6$ complexes in which R* is a chiral substituent derived from a natural product.⁴

It is clear that there exists some tendency for preferential attack by an incoming ligand because of the intrinsic diastereotopic nature of the metal vertices. However, one might also envisage an extension of this concept to include the direct replacement of only one $Co(CO)_3$ vertex by an isolobal metal fragment, thus generating enantiomerically pure, chiral heterobimetallic clusters without the need to

⁽⁴⁾ First reported at the Third Chemical Congress of North America, Toronto, Canada, June 4–10, 1988.

resort to time-consuming diastereomer separations. To this end, we have prepared several enantiomerically pure dicobalt μ -alkyne clusters and examined not only ligand substitutions but also complete vertex replacement processes on these compounds.

⁽¹⁾ Clark, D. T.; Sutin, K. A.; McGlinchey, M. J. Organometallics 1989, 8, 155.

 ⁽²⁾ Blumhofer, R.; Vahrenkamp, H. Chem. Ber. 1986, 119, 683.
 (3) Bradley, D. H.; Masood, A. K.; Nicholas, K. M. Organometallics 1989, 8, 554.

Figure 1. View of 6 showing the atom numbering scheme.

Results and Discussion

(a) Cluster Syntheses. During the course of this project, three different enantiomerically pure dicobalt μ -alkyne clusters were used as chiral starting materials upon which ligand or vertex substitutions were attempted. Two of these dicobalt species were synthesized by following the same general route as was used by Schreiber⁵ and involves the incorporation of a natural product into an existing bimetallic cluster. As shown in Scheme I, the reaction of $Co_2(CO)_8$ with propargyl alcohol generates in good yield the μ -alkyne species 3 bearing a hydroxymethyl substituent; subsequent treatment with a CH₂Cl₂ solution of either (1R,2S,5R)-(-)-menthol or (1S)-endo-(-)-borneol in the presence of an acid catalyst (HBF₄·Et₂O) over a 4-Å molecular sieve gives the enantiomerically pure ether clusters 4 and 5, respectively.

The second route to chiral clusters involved the reaction of dicobalt octacarbonyl with an alkyne derivative of a natural product. In this instance, we elected to position

Table I. Crystal Data for [(Co(CO)₃)₂(C₁₃H₁₉OH)]

Table 1. Crystal .	
formula	$C_{19}H_{20}O_7CO_2$
fw	478.23
system	orthorhombic
systematic absences	$h00, h \neq 2n; 0k0, k \neq 2n; 00l, l \neq 2n$
space group	$P2_{1}2_{1}2_{1}$ (No. 19)
a, Å	12.136 (3)
b, Å	12.682 (2)
c, Å	13.652 (3)
V, Å ³	2101 (1)
Z	4
$D_{\rm cl} {\rm g} {\rm cm}^{-3}$	1.51
$D_{\rm m}$, g cm ⁻³	1.49
F(000)	978.80 (976)
μ (Mo K α), cm ⁻¹	16.75 (15.37)
final $R_1, R_2^{a,d}$	0.0546, 0.0567
weighting scheme	$w = (\sigma^2 F + 0.001833F^2)^{-1}$
error in observn of unit wt ^b	1.0713
highest peak, e Å ⁻³ ; location	0.67; 0.2029, 0.0016, 0.9815°
lowest peak, e Å ⁻³	-0.50

 ${}^{a}R_{1} = \sum_{i} ||F_{0}| - |F_{c}|| / \sum_{i} |F_{0}|; R_{2} = (\sum_{i} w(|F_{0}| - |F_{c}|)^{2} / \sum_{i} wF_{0}^{2})^{1/2}$. ${}^{b}S = (\sum_{i} w(|F_{0}| - |F_{c}|)^{2} / (m - n))^{1/2}$. m = number of reflections, n = number of variables. ${}^{c}1.15$ Å from Co(2). ${}^{d}R_{1}$, R_{2} for 2953 reflections with $I > 2.5^{*}(I)$ 0.0437, 0.0463, respectively.

the chiral entity closer to the cobalt vertices when forming the resulting bimetallic μ -alkyne cluster. This was accomplished by allowing the propynyl anion to react with (1R)-(+)-camphor.⁶ The presence of the bulky dimethyl bridge causes the alkyne anion to approach from the lower face of the molecule, thus generating *endo*-2-propynylborneol. Subsequent addition of Co₂(CO)₈ led to the desired molecule 6.

These clusters, along with all of the others reported herein, were fully characterized by using a variety of techniques including ¹³C, ¹H, and ³¹P NMR spectroscopies as well as IR spectroscopy, mass spectrometry, and elemental analyses. Furthermore, in an attempt to gain an understanding of the steric factors involved in these substitution reactions, the structure of the chiral dicobalt cluster 6 was determined X-ray crystallographically.

(b) X-ray Crystal Structure of 6. Reddish-black prismatic crystals of 6 were grown from dichloromethane/hexane. Figure 1 shows a view of the molecule showing the atom numbering scheme, while a stereoview of the unit cell contents viewed down b appears as Figure 2. The crystallographic data for molecule 6 are collected

⁽⁵⁾ Schreiber, S. L.; Klimas, M. T.; Sammakia, T. J. Am. Chem. Soc. 1987, 109, 5749.

⁽⁶⁾ Capmau, M-L.; Chodkiewicz, W.; Cadiot, P.; Fayet, A.-M. Bull. Soc. Chim. Fr. 1968, 8, 3233.

Figure 2. Stereoview of the unit cell contents of 6; the view is down the b axis.

Table II. Positional Parameters (×10 ⁴) and U_{eo} (Å ² × 10 ⁴)
for [(Co(CO) ₃) ₂ (C ₁₃ H ₁₉ OH)] with Standard Errors in
Paranthasas

atom	x	У	z	$U_{eq}{}^a$
Co(1)	1184.9 (5)	1375.9 (5)	9602.8 (4)	398
Co(2)	1291.6 (5)	-564.2(5)	9692.2 (5)	419
C(1)	-1790 (4)	-674 (3)	8905 (3)	355
O(1)	-1448 (3)	662 (3)	10163 (2)	490
C(2)	-1153 (3)	352 (3)	9183 (3)	326
C(3)	-1609 (4)	1161 (4)	8417 (4)	450
C(4)	-2415 (4)	500 (4)	7796 (4)	481
C(5)	-1717 (4)	-246 (5)	7168 (4)	531
C(6)	-1311 (4)	-1064 (4)	7930 (3)	457
C(7)	-2939 (4)	-233 (4)	8554 (4)	475
C(8)	-3688(5)	-1081 (5)	8096 (4)	634
C(9)	-3638 (4)	343 (5)	9314 (4)	613
C(10)	-1828 (5)	-1505 (4)	9715 (4)	569
C(11)	90 (3)	297 (3)	9134 (3)	338
C(12)	959 (4)	339 (4)	8545 (3)	402
C(13)	1330 (5)	329 (5)	7491 (4)	618
C(14)	406 (4)	2528(4)	9272 (4)	492
C(15)	2570 (5)	1733 (4)	9211 (4)	527
C(16)	1169 (5)	1560 (4)	10914 (4)	570
C(17)	2781 (5)	-616 (5)	9780 (6)	767
C(18)	1065 (5)	-1843 (4)	9156 (4)	639
C(19)	802 (5)	-822 (4)	10934 (74)	578
O(2)	-102 (3)	3248 (3)	9080 (3)	660
O (3)	3421(3)	1952 (4)	8926 (4)	803
O(4)	1211(5)	1678 (4)	11737 (3)	947
O (5)	3701 (4)	-634 (5)	9826 (6)	1259
O(6)	914 (5)	-2638 (3)	8821 (4)	1072
O(7)	479 (5)	-986 (4)	11693 (4)	985

 $^{a}U_{eq} = \frac{1}{3}(U_{11} + U_{22} + U_{33}).$

in Tables I-III and reveal that the alkynedicobalt moiety adopts the characteristic pseudotetrahedral core typical of such clusters. As shown in Figure 1, the Co_2C_2 cluster is indeed attached to the borneol at the endo-2 position, thus confirming that the attack by the propynyl anion at the ketonic carbon in camphor had occurred on the less hindered face. The bonding within the cluster fragment is rather reminiscent of that previously reported⁷ for (t-BuC=CBu-t) $Co_2(CO)_6$, 7, in which the alkyne substituents are sterically demanding. Thus, for 6 and 7, the Co-Co distances are 2.467 (1) and 2.463 (1) Å, respectively. The average Co-CO and CoC-O distances (1.811 and 1.129 Å for 6; 1.805 and 1.133 Å for 7) are also similar. The cobalt-alkyne-carbon bonds average to 1.985 and 1.996 Å for 6 and 7, respectively, but the alkyne carbon-carbon bonds are rather short at 1.327 Å for 6 and 1.335 Å for 7. These values may be compared to those for clusters bearing less bulky substituents in which alkyne carbon-carbon distances normally range from 1.35 to 1.38 Å.8-12 In alk-

Figure 3. View along the C(2)-C(11) bond in 6 showing the approximately staggered orientation of this "ethane-type" fragment.

yne-dimetal cluster complexes, the RC=CR moiety is no longer linear, and in 6 the substituents are bent back by $\approx 35^{\circ}$. Furthermore, in 6 the bulk of the substituents leads to a twisting of the C(12)-C(13) bond relative to the C-(11)-C(2) vector; this dihedral angle is 11.7° . Figure 3 depicts a view along the C(2)-C(11) bond and shows the "staggered ethane type" conformation adopted by this fragment. The dihedral angle C(1)-C(2)-C(11)-C(12)would be 60° for perfect staggering and is 80.4° in 6. An interesting point is the orientation of the α -hydroxy substituent, which is directed between the two cobalt atoms. We are aware of only two other crystallographically characterized systems of this type.^{3,13} In both cases, the hydroxy group is oriented in a similar fashion to that found in 6, and one might speculate that there is an interaction between the hydroxyl moiety and the cobalt atoms.

(c) Substitutions with Phosphines. As a continuation of our previous work on reactions of phosphines with carbyne-capped trimetallic tetrahedral clusters,¹ each of the bimetallic clusters, viz., 4-6, was subjected to ligand substitution reactions involving a variety of phosphines. It is possible to replace a carbonyl ligand in the cobalt cluster with a phosphine by using any one of a number of

⁽⁸⁾ Sly, W. G. J. Am. Chem. Soc. 1959, 81, 18.
(9) Brown, D. A. J. Chem. Phys. 1960, 33, 1057.

⁽¹⁰⁾ Bailey, N. A.; Mason, R. J. Chem. 1998, 1990, 53, 1057.
(10) Bailey, N. A.; Mason, R. J. Chem. Soc. A 1968, 1293.
(11) Hota, N. K.; Patel, H. A.; Carty, A. J.; Mathew, M.; Palenik, G. J. J. Organomet. Chem. 1971, 32, C55.
(12) Seyferth, D.; Spohn, R. J.; Churchill, M. R.; Gold, K.; Scholer, F. R. J. Organomet. Chem. 1970, 23, 237.

⁽¹³⁾ Jaouen, G.; Tondu, S. Personal communication. The cluster characterized by X-ray crystallography was [17β-hydroxy-19-norpregna-4,9,11-trien-20-yn-3-one][Co₂(CO)₆].

Table III. Selected Bond Lengths (Å) and Bond Angles (deg) for [(Co(CO)₃)₂(C₁₃H₁₉OH)], with Estimated Standard Deviations in Parentheses

	(i) Cobalt C	coordination				
Co(1)-Co(2)	2.467(1)					
Co(1)-C(11)	2.011 (4)	Co(2) - C(11)	1.976 (4)			
$C_0(1) - C(12)$	1.973 (4)	$C_0(2) - C(12)$	1.982 (5)			
$C_0(1) - C(14)$ $C_2(1) - C(15)$	1.798 (6)	$C_0(2) - C(17)$	1.814 (6)			
$C_0(1) - C(15)$ $C_0(1) - C(16)$	1.821 (6)	$C_0(2) = C(18)$ $C_0(2) = C(10)$	1.801(6) 1.925(4)			
CO(1) - C(16)	1.806 (6)	CO(2) = C(19)	1.828 (4)			
C(11)-Co(1)-C(12)	38.9 (2)	C(11)-Co(2)-C(12)	39.2 (2)			
C(11)-Co(1)-C(14)	97.2 (2)	C(11)-Co(2)-C(17)) 141.5 (2)			
C(11)-Co(1)-C(15)	133.3 (2)	C(11)-Co(2)-C(18)	103.3(2)			
C(11)-Co(1)-C(16)	113.3(2)	C(11)-Co(2)-C(19)	102.6(2)			
C(12)-Co(1)-C(14)	106.5(2)	C(12)-Co(2)-C(17)	106.1(3)			
C(12)-Co(1)-C(15) C(12)-Co(1)-C(16)	94.0(2)	C(12) - Co(2) - C(18) C(12) - Co(2) - C(10)	99.7(2)			
C(12) - Co(1) - C(16) C(14) - Co(1) - C(15)	144.2(2) 1021(2)	C(12) = C(0(2) = C(19) $C(17) = C_0(2) = C(18)$	140.0(2)			
C(14)-Co(1)-C(15) C(14)-Co(1)-C(16)	980(2)	$C(17) = C_0(2) = C(10)$ $C(17) = C_0(2) = C(10)$	1048(3)			
C(14) - Co(1) - C(16)	105.6(2)	C(18) - Co(2) - C(19)	996(3)			
$C_0(2) - C_0(1) - C(11)$	511(1)	$C_0(1) - C_0(2) - C(11)$	52.0(3)			
Co(2)-Co(1)-C(12)	51.6(1)	$C_0(1)-C_0(2)-C(12)$	51.2(1)			
$C_0(2)-C_0(1)-C(14)$	148.3(2)	$C_0(1)-C_0(2)-C(17)$	95.3(2)			
$C_0(2)-C_0(1)-C(15)$	102.4(2)	$C_0(1)-C_0(2)-C(18)$	150.5(2)			
Co(2)-Co(1)-C(16)	94.6 (2)	$C_0(1)-C_0(2)-C(19)$) 102.0 (2)			
Co(1)-C(11)-Co(2)	76.4 (1)	Co(1)-C(12)-Co(2)	77.2(2)			
Co(1)-C(11)-C(2)	127.9 (3)	Co(2)-C(11)-C(2)	138.1 (3)			
Co(1)-C(11)-C(12)	69.0 (3)	Co(2)-C(11)-C(12)) 70.7 (3)			
Co(1)-C(12)-C(11)	72.1 (3)	Co(2)-C(12)-C(11)) 70.2 (3)			
Co(1)-C(12)-C(13)	131.4 (4)	Co(2)-C(12)-C(13)) 133.5 (4)			
(;;) 1 7 7 Trim	athul 9 mm	numul 9 hudrouwor	homeel			
C(2) - C(3)	1 567 (6)	C(6) = C(1)	1534(6)			
C(2) = O(3)	1.307(0) 1.439(5)	C(0) = C(1) C(1) = C(10)	1.534(0) 1 527(6)			
C(2) - C(1)	1.562 (6)	C(1) - C(7)	1.578 (6)			
C(2) - C(11)	1.502(6)	C(7) - C(9)	1.528(7)			
C(3) - C(4)	1.543 (7)	C(7) - C(8)	1.540(7)			
C(4) - C(5)	1.533 (7)	C(11)-C(12)	1.327 (6)			
C(4) - C(7)	1.529 (7)	C(12) - C(13)	1.508 (7)			
C(5) - C(6)	1.548 (7)	- (/				
O(1) = C(2) = C(3)	110.7(3)	C(2) = C(1) = C(10)	114.5(4)			
O(1) - C(2) - C(1)	109.3(3)	C(2) = C(1) = C(10)	114.0(4) 114.7(4)			
C(3)-C(2)-C(1)	102.1(3)	C(2)-C(1)-C(7)	102.4(3)			
O(1)-C(2)-C(11)	107.6(3)	C(6)-C(1)-C(7)	100.6(4)			
C(3)-C(2)-C(11)	110.6 (3)	C(10)-C(1)-C(7)	116.0 (4)			
C(1)-C(2)-C(11)	116.4 (3)	C(4)-C(7)-C(1)	93.1 (3)			
C(2)-C(3)-C(4)	103.5 (4)	C(4)-C(7)-C(9)	113.5 (4)			
C(3)-C(4)-C(5)	107.0 (4)	C(1)-C(7)-C(9)	117.0 (4)			
C(3)-C(4)-C(7)	102.9 (4)	C(4)-C(7)-C(8)	113.3(4)			
C(5)-C(4)-C(7)	103.4 (4)	C(1)-C(7)-C(8)	113.4 (4)			
C(4)-C(5)-C(6)	102.3 (4)	C(9)-C(7)-C(8)	106.4(4)			
C(5)-C(6)-C(1)	104.3 (4)	C(2)-C(11)-C(12)	144.9 (4)			
C(2)-C(1)-C(6)	107.0 (3)	C(11)-C(12)-C(13)	144.7 (5)			
(iii) Carbonyle						
C(14) - O(2)	1.134 (6)	C(17) - O(5)	1,118 (7)			
C(15) - O(3)	1.141 (6)	C(18) - O(6)	1.122 (7)			
C(16) - O(4)	1.134 (6)	C(19) - O(7)	1.127 (7)			
$C_0(1) - C(14) - O(2)$	178 4 (5)	$C_0(2) - C(17) - O(5)$	178.8 (6)			
$C_0(1) - C(15) - O(3)$	177.1 (5)	$C_0(2) = C(18) = O(6)$	179.2 (6)			
$C_0(1)-C(16)-O(4)$	176.8 (6)	$C_0(2) - C(19) - O(7)$	178.5 (6)			

techniques, including both thermal and catalytic routes. The method employed in this work for the generation of the monophosphine-substituted clusters was modeled on that of Robinson et al.¹⁴ in which a THF solution of the cluster and the phosphine was stirred together at room temperature with benzophenone ketyl (BPK). This synthetic technique is advantageous in that it generates the monosubstituted clusters in good yields under mild conditions. The latter point is very significant when one wishes to carry out the substitution reactions under kinetic control. The syntheses of the bridging phosphine–dicobalt clusters were achieved by using a thermal route because the catalytic approach gives phosphine-linked clusters as the major products. $^{15}\,$

The tricarbonylcobalt vertices in the two ether-containing clusters 4 and 5 are diastereotopic and hence should not be equally susceptible to the replacement of a carbonyl group by a phosphine ligand. In the trimetallic clusters described previously,¹ the extent of phosphine attack at the two cobalt vertices was monitored via ³¹P NMR spectroscopy. Phosphorus nuclei attached to different cobalt sites would be expected to give rise to different ³¹P NMR resonances. Using two phosphine ligands of comparable basicity but different steric demand (as measured by their cone angles), we had hoped to be able to establish a simple reactivity pattern and then correlate the observed diastereoselectivity to the bulk of the phosphine ligand. Accordingly, triphenylphosphine (cone angle 145°) and tricyclohexylphosphine (cone angle 170°) were allowed to react with the ether clusters 4 and 5 to give the complexes 8-11, as in Scheme II.

The two pairs of monophosphine-substituted dicobalt clusters were synthesized, characterized, and examined for diastereoselectivity by using ³¹P NMR spectroscopy. However, in each of the four cases, the ³¹P NMR spectrum consisted of a single line. One could interpret this observation in two ways: either (i) the substitution was completely selective for one cobalt vertex over the other in all cases, or (ii) it was not possible in these molecules to resolve the different resonances for the two diasterotopic sites because the chemical shift differences were small. We preferred to adopt the more conservative position and chose to try to establish the existence of two overlapping resonances. To this end, molecules 12 and 13, each of

which contained the bridging diphenylphosphinomethane ligand, were prepared from the two starting hexacarbonyl clusters by heating them under reflux in hexane with dppm. In both cases, mass spectral analysis confirmed the successful replacement of two carbonyl groups by dppm while the ¹³C NMR spectroscopic results demonstrated that dppm was bridging the two cobalts rather than forming a chelate at a single cobalt center. It follows that two different resonances should have been observed in the ³¹P NMR spectra of 12 and 13 (as is the case for 2), corresponding to the two different phosphorus environments, provided the chemical shifts of the nuclei were sufficiently well separated. The ³¹P NMR spectra obtained for both 12 and 13 were single lines, clearly indicating that the phosphorus nuclei in these clusters did not possess distinct chemical shifts and in fact were overlapping, even at high magnetic field. The same explanation, i.e., overlapping ${}^{31}P$ resonances, can therefore be invoked for the monophosphine-substituted clusters 8-11.

Nevertheless, this does not answer the question of whether any diastereoselectivity was occurring during the ligand substitution reactions. Although it was not possible

⁽¹⁴⁾ Arewgoda, M.; Robinson, B. H.; Simpson, J. J. Am. Chem. Soc. 1983, 105, 1893.

⁽¹⁵⁾ Cunninghame, R. G.; Hanton, L. R.; Jensen, S. D.; Robinson, B. H.; Simpson, J. Organometallics 1987, 6, 1470.

Figure 4. Section of the 62.5-MHz ¹³C NMR spectrum of 11 showing the presence of major and minor diastereomers derived from the reaction of tricyclohexylphosphine with 5.

to observe two resonances in the ³¹P NMR spectra, pairs of corresponding carbons in the two diastereomers were detectable in the ¹³C NMR spectra, and it was apparent that some degree of selectivity by the incoming phosphine had taken place. By comparing the intensities of the corresponding carbons, it was possible to draw conclusions regarding the extent of selective ligand substitution. When triphenylphosphine is used as the attacking ligand on either of the starting clusters, the two possible diastereomers are formed in equivalent amounts; the ratio of the corresponding pairs of carbon resonances in the diastereomers is 1:1. In contrast, use of tricyclohexylphosphine as the incoming ligand toward either 4 or 5 reveals (see Figure 4) that one diastereomer is being preferentially formed over the other isomer in a ratio of approximately 3:2 in both cases. Since tricyclohexylphosphine possesses a larger cone angle than does triphenylphosphine, the small discrimination in selectivity is presumably governed largely by steric factors.

In the cluster 6, which is derived from endo-2propynylborneol, the chiral substituent is substantially closer to the cobalt vertices than is the case for the ether clusters 4 and 5 discussed above. One might thus anticipate greater discrimination between the two vertices in 6. Indeed, the corresponding dppm derivative, 14, which was synthesized by the thermal reaction of dppm with 6, exhibited two well-separated ³¹P NMR resonances. However, treatment of 6 with Ph₃P under catalytic conditions

R = H,
$$R^{*}$$
 = -CH₂-O-menthyl, L = PPh₃
R = H, R^{*} = -CH₂-O-menthyl, L = PCy₃
R = H, R^{*} = -CH₂-O-bornyl, L = PPh₃
R = H, R^{*} = -CH₂-O-bornyl, L = PCy₃
R = CH₂, R^{*} = borneol, L = PPh₃

Có(CO)3

(OC)₃Co

ó(CO)2

yielded only a 1:1 mixture of the diastereomeric monophosphine-substituted clusters 15. Attempts to carry out the analogous substitution reaction with tricyclohexylphosphine were unsuccessful, so at this point we chose to focus on complete vertex substitution.

(d) Heterobimetallic Clusters. Heterobimetallic μ alkyne transition-metal clusters have been the subject of numerous investigations over the past few years.¹⁶⁻²¹ These compounds are normally generated either through the interaction of an alkyne with a heterobimetallic complex or by the isolated substitution of a different organometallic vertex into an appropriate alkyne-homobimetallic cluster. The presence of the bulky chiral substituent in the enantiomerically pure dicobalt-alkyne clusters suggested that it might be feasible to generate mixed metal bimetallic clusters with some degree of control over the ratio of the diastereomeric products. Through the use of high-field ¹³C NMR spectroscopy, it is possible to estimate the degree of chiral discrimination that occurs in the substitution of a (cyclopentadienyl)dicarbonylmolybdenum or -tungsten fragment for a $Co(CO)_3$ moiety. This is accomplished by comparing the intensities of the peaks assigned to corresponding pairs of carbons in the two diastereomers.

In order to ensure that the ¹³C NMR results obtained would not be prejudiced as a consequence of different relaxation times for corresponding carbons in the resultant diastereomeric mixed metal clusters, two different routes to the chiral mixed metal ether clusters were devised. As shown in Scheme III, the diastereomers 19–24 are necessarily formed in a 50:50 ratio by the first route. Substitution of $Co(CO)_3$ by the new vertex, i.e., $(C_5H_5)Mo(CO)_2$, $(C_5H_4Me)W(CO)_2$, or $(C_5H_4Me)Mo(CO)_2$, in the hydroxymethyl cluster 3 obviously involves no chiral discrimination and must lead to racemic 16, 17, or 18. These racemic complexes were then treated with either (1R, 2S, 5R)-(-)menthol or (1S)-endo-(-)-borneol and an acid catalyst over 4-Å molecular sieves to give the resultant 50:50 diaste-

⁽¹⁶⁾ Chetcuti, M. J.; Grant, B. E.; Fanwick, P. E. J. Am. Chem. Soc. 1989, 111, 2743 and references therein.

⁽¹⁷⁾ Wido, T. M.; Young, G. H.; Wojcicki, A.; Calligaris, M.; Nardin, G. Organometallics 1988, 7, 452.

⁽¹⁸⁾ Hart, I. J.; Jardin, A. E.; Jeffery, J. C.; Stone, F. G. A. J. Organomet. Chem. 1988, 341, 391. (19) Jensen, S. D.; Robinson, B. H.; Simpson, J. Organometallics 1986,

^{5. 1690.}

Manning, P. J.; Peterson, L. K. Inorg. Chim. Acta 1984, 88, L5.
 Jaouen, G.; Marinetti, A.; Saillard, J.-Y.; Sayer, B. G.; McGlinchey, M. J. Organometallics 1982, 1, 225.

89 PPM Figure 5. Section of the 62.5-MHz ¹³C NMR spectrum of 26 showing the cyclopentadienyl and tungsten carbonyl resonances

for the major and minor(*) diastereomers.

reomeric mixtures of the heterobimetallic species possessing a chiral natural product substituent. Now in the second approach a simple reversal of these steps results evident in Figure 5, which depicts the resonances associated with the carbonyl and cyclopentadienyl carbons derived from the tungsten reaction. At this point, we are focusing our efforts on determining the solution structures of the two diastereomers to identify that which is formed preferentially. By synthesizing the

dimolybdenum and ditungsten complexes of endo-2-

revealed that replacement of a tricarbonylcobalt vertex by $C_5H_5Mo(CO)_2$ yielded a 65:35 mixture of the diastereomeric heterobimetallic clusters 25. Furthermore, the analogous reaction with $C_5H_5W(CO)_3^-$ gave a 75:25 dia-

stereomeric mixture 26. This diastereoselectivity is quite

propynylborneol, it is anticipated that NMR studies (in particular, NOE measurements) will allow a determination of the orientations of the cyclopentadienyl rings with respect to the bridgehead methyl of the borneol. A comparison of the ¹H and ¹³C NMR shifts of the diastereomeric heterobimetallic mixture and of the homobimetallic cluster would then allow conclusions to be drawn regarding which vertex in the dicobalt– μ -alkyne starting cluster was the preferred site for substitution.

As we were completing the final synthetic aspects of this work, a paper appeared that described reactions of triphenylphosphine with (HC=CCH(R)OH)Co₂(CO)₆ clusters.³ In these systems, the chiral nature of the α -carbon rendered the Co(CO)₃ vertices diastereotopic, and selective substitution of triphenylphosphine for CO at one cobalt vertex was observed. Furthermore, it was established crystallographically that the carbonyl ligand that had been replaced was trans to the cobalt-cobalt bond. In the light of these interesting observations, we chose to extend our study to include propargyl alcohol complexes of the type described by Nicholas. We selected (HC=CCH(Et)-OH)Co₂(CO)₆, 27, as being a representative cluster which had not been previously examined.

Treatment of 27 with $Ph_2PCH_2PPh_2$ yielded the complex 28, which exhibited only a single ³¹P signal despite the diastereotopic character of the phosphorus nuclei. The ¹³CO peaks appeared as two broadened resonances at 207.9 and 203.9 ppm. As anticipated from the work of Nicholas, the reaction of 27 with triphenylphosphine gave major (67%) and minor (33%) diastereomers, **29a** and **29b**, respectively, which were separable by column chromatography; the disubstituted cluster **30** was also obtained.

One must rationalize why the diastereoselectivity of Ph_3P attack on 27 (and the related clusters described by Nicholas) is noticeably better than that found with the borneol cluster 6. Molecular modeling studies based on our X-ray data for 6 reveal that incorporation of a bulky triphenylphosphine into the position trans to the cobalt-cobalt vector leads to major steric problems. We must therefore conclude that the phosphine replaces a pseudo-axial carbonyl ligand in 6 rather than a pseudoequatorial one. Thus, the diastereoselectivity is much less influenced by the chiral substituent than would otherwise be the case.

Treatment of the dicobalt cluster 27 with the (cyclopentadienyl)tricarbonylmolybdenum anion led to a 70:30

diastereomeric mixture 31; the diastereomer ratio was readily determined from the relative intensities of the signals in the 13 C NMR spectrum. Although these mo-

lybdenum clusters were not readily separable chromatographically, the analogous tungsten complexes, **32**, were synthesized in a 60:40 ratio and the major isomer (the first to elute from the column) was cleanly isolable. We reiterate, however, that phosphine-substituted or metal-substituted clusters obtained by attack on systems such as **4**, **5**, or **6** are diastereomers and are optically active whereas the products **29a** and **29b** (which were obtained via the Nicholas procedure) and also the mixed metal clusters **31** and **32** are still racemic mixtures since the starting cluster **27** is a racemate. [For simplicity, only a single enantiomer of each cluster is shown.] These mixed metal clusters bearing an α -hydroxy substituent are convenient sources of mixed metal vinylidene cations, $CpM(CO)_2Co(CO)_3$ - $[HC=C=CHR]^+$, where M = Mo or W, and an NMR spectroscopic study of their molecular dynamics will be the topic of a future report.²²

To conclude, we report that in chiral dicobalt- μ -alkyne clusters the sites of carbonyl ligand substitutions or of tricarbonylcobalt vertex substitutions by a variety of isolobal organometallic fragments can be influenced by the nature and proximity of the alkyne substituents. The observed preferential formation of one diastereomer over another suggests that careful control of vertex substitution reactions may provide a simple and direct route to enantiomerically pure heterobimetallic clusters without the need for tedious separations.

Experimental Section

All reactions were carried out under an atmosphere of dry nitrogen by employing conventional benchtop and glovebag techniques. All solvents were dried according to standard procedures before use.²³ ¹³C NMR spectra were recorded with Bruker AM 500, WM 250, and AC 200 spectrometers. ¹H NMR spectra were recorded with Bruker AM 500 and Varian EM390 spectrometers. ³¹P NMR spectra were recorded with a Bruker WM 250 spectrometer. ¹³C and ¹H chemical shifts reported were referenced to tetramethylsilane while ³¹P chemical shifts were referenced to 85% H₃PO₄. [When diastereomers are present in other than a 50:50 ratio, the resonances attributed to the minor isomer are marked with an asterisk.] Infrared spectra were recorded on a Perkin-Elmer 283 instrument using KBr solution cells. Mass spectra were obtained with a double-focusing VG ZAB-E mass spectrometer under positive ion fast atom bombardment (FAB+) and negative ion fast atom bombardment (FAB-) conditions. 3-Nitrobenzyl alcohol was used as the matrix, and xenon was the bombarding species (8 keV). Microanalytical data are from Guelph Chemical Laboratories, Guelph, Ontario.

 $[(OC)_3CoCo(CO)_3][HC = CCH_2OH], 3.$ A solution of $Co_2(CO)_8$ (13.812 g, 40.39 mmol) and propargyl alcohol (2.4 cm³, 41.23 mmol) in THF (100 cm³) was stirred for 1 h at room temperature under an atmosphere of N_2 . After the solvent was removed, the cluster 3 was obtained in approximately 83% yield by recrystallization from hexane.

[(OC)₃CoCo(CO)₃][HC=CCH₂O-menthyl], 4. A solution of $[Co_2(CO)_6][HC \equiv CCH_2OH]$ (3, 0.568 g, 1.66 mmol), (1R,2S,5R)-(-)-menthol (0.478 g, 3.06 mmol), and HBF₄·Et₂O (4 drops) in CH_2Cl_2 (30 cm³) was stirred under N₂ in the presence of an activated 4-Å molecular sieve for 0.5 h. The solution was filtered to separate off the molecular sieve. Removal of the solvent and flash chromatographic purification of the residue on silica gel (eluent, hexane) yield 4 (R_f 0.22) as a red-orange oil (0.606 g, 1.26 mmol, 75.9%). ¹H NMR (C_6D_6): δ 5.50 (s, 1 H); 4.44 (d, 1 H); 4.14 (d, 1 H); 3.01 (m, 1 H); 2.42 (m, 1 H); 1.92 (d, 1 H); 1.50 (d, 1 H); 1.30 (m, 1 H); 1.14 (m, 1 H); 0.96 (d, 3 H); 0.92 (m, 1 H); 0.84 (overlapping peaks, 8 H), 0.75 (m, 1 H). ¹³C NMR (C_6D_6) : δ 199.9 (carbonyls); 93.5 (alkyne quaternary C); 79.2 (C-1); 71.1 (alkyne CH); 68.0 (CH₂O); 48.3 (C-2); 40.2 (C-6); 34.5 (C-4); 31.5 (C-5); 25.6 (C-7); 23.3 (C-3); 22.2 (C-8); 20.9 (C-10), 16.2 (C-9). IR (CH₂Cl₂): ν_{CO} 2090 (m), 2050 (s), 2020 (vs) cm⁻¹. Mass spectra (FAB+): m/z (%) 480 (10) ((M)⁺, C₁₉H₂₂O₇Co₂); 452 (20) (M – $(O)^+$; 424 (38) $(M - 2CO)^+$; 396 (100) $(M - 3CO)^+$; 368 (90) (M $-4CO)^+$; 340 (16) (M - 5CO)^+; 312 (12) (M - 6CO)^+; 325 (52) (M - (O-menthyl))+; 297 (67) (M - (O-menthyl) - CO)+; 269 (33) (M - (O-menthyl) - 2CO)⁺; 241 (25) (M - (O-menthyl) - 3CO)⁺; 213 (12) $(M - (O-menthyl) - 4CO)^+$. Anal. Calcd for $C_{19}H_{22}O_7Co_2$: C, 47.52; H, 4.62. Found: C, 47.32; H, 4.65.

[(OC)₃CoCo(CO)₃][HC=CCH₂O-bornyl], 5. A solution of $[Co_2(CO)_6][HC = CCH_2OH]$ (3, 0.685 g, 2.00 mmol), (1S)-endo-(-)-borneol (0.591 g, 3.83 mmol), and HBF_4 ·Et₂O (4 drops) in CH_2Cl_2 (35 cm³) was stirred under an atmosphere of N₂ in the

presence of excess activated 4-Å molecular sieve for 2 h. After filtration to remove the molecular sieve and evaporation of the resultant solution, the crude material was purified by flash chromatography on silica gel (eluent, hexane) to give 5 (R_1 0.30) as a red-orange oil (0.728 g, 1.52 mmol, 76.0%). ¹H NMR (C₆D₆): δ 5.50 (s, 1 H); 4.33 (d, 1 H); 4.22 (d, 1 H); 3.60 (d, 1 H); 2.33 (br, 1 H); 2.03 (br, 1 H); 1.74 (br, 1 H); 1.60 (br, 1 H); 1.34 (m, 2 H); 1.08 (d, 1 H); 0.98 (s, 3 H); 0.83 (s, 3 H), 0.82 (s, 3 H). ¹³C NMR (C_6D_6): δ 200.2 (carbonyls); 93.6 (alkyne quaternary C); 85.3 (C-2); 71.0 (alkyne CH); 69.8 (CH₂O); 49.7 (C-1 or C-7); 48.1 (C-1 or C-7); 45.5 (C-4); 36.3 (C-3); 28.6 (C-5); 26.9 (C-6); 19.9 (C-9); 19.0 (C-8); 14.1 (C-10). IR (CH₂Cl₂): ν_{CO} 2085 (m), 2045 (s), 2020 (vs) cm⁻¹. Mass spectra (FAB+): m/z (%) 450 (14) ((M - CO)+ $C_{18}H_{20}O_6C_{02}$; 422 (15), (M – 2CO)⁺; 394 (100) (M – 3CO)⁺; 366 (95) (M – 4CO)⁺; 338 (36) (M – 5CO)⁺; 325 (33) (M – (O-bornyl))⁺; 310 (10) (M - 6CO)⁺; 297 (56) (M - (O-bornyl) - CO)⁺; 269 (45) $(M - (O-bornyl) - 2CO)^+$; 241 (48) $(M - (O-bornyl) - 3CO)^+$; 213 (20) $(M - (O-bornyl) - 4CO)^+$. Mass spectra (FAB-): m/z (%) 450 (100) (M – CO)⁻; 421 (32) (M – H – 2CO)–; 394 (20) (M – 3CO)⁻; 338 (11) (M – 5CO)⁻. Anal. Calcd for $C_{19}H_{20}O_7Co_2$: C, 47.72; H, 4.22. Found: C, 47.50; H, 4.17.

 $[(OC)_3CoCo(CO)_3][CH_3C = C-borneol], 6.$ A solution of $\mathrm{Co}_2(\mathrm{CO})_8$ (1.694 g, 4.95 mmol) and endo-2-propynylborneol (0.768 g, 4.00 mmol) in THF (40 cm³) was stirred under a nitrogen atmosphere for 0.5 h. After removal of the solvent, the crude mixture was purified by flash chromatography on silica gel (eluent, hexane) to give 6 (R_f 0.18) as a red solid (1.290 g, 2.70 mmol, 67.5%). ¹H NMR (C_6D_6): δ 2.32 (3 H, alkyne C_{H3}); 2.25, 1.41 (2 H, $H_{3\alpha,3\beta}$; 1.71 (1 H, OH); 1.62 (1 H, H_4); 1.61, 0.95 (2 H, $H_{6\alpha,6\beta}$); 1.31, 1.23 (2 H, $H_{5\alpha,5\beta}$); 1.19 (3 H, Me_8); 0.91 (3 H, Me_{10}); 0.79 (3 H, Me_9). ¹³C NMR (C₆D₆): δ 200.5 (carbonyls); 108.3, 94.2 (alkyne quaternary C's); 82.9 (C-2); 55.1 (C-1 or C-7); 53.0 (C-3); 51.2 (C-1 or C-7); 45.7 (C-4); 30.8 (C-5); 27.8 (C-6); 21.7 (C-9); 21.6 (C-8); 21.2 (alkyne CH₃); 10.9 (C-10). IR (CH₂Cl₂): ν_{CO} 2080 (m), 2040 (s), 2020 (s) cm⁻¹. Mass spectra (FAB+): m/z (%) 461 (14) ((M – OH)⁺ C₁₉H₁₉O₆Co₂); 450 (45) (M – CO)⁺; 433 (15) (M – OH – CO)⁺; 422 (90) (M – 2CO)⁺; 405 (18) (M – OH – 2CO)⁺; 394 (100) $(M - 3CO)^+$; 377 (14) $(M - OH - 3CO)^+$; 366 (13) $(M - 4CO)^+$; 338 (55) (M - 5CO)+; 310 (52) (M - 6CO)+; 293 (10) (M - OH -6CO)⁺. Mass spectra (FAB-): m/z (%) 477 (16) (M - H)⁻; 450 $(100) (M - CO)^{-}; 422 (24) (M - 2CO)^{-}; 393 (9) (M - H 3CO)^{-}; 366$ (6) $(M - 4CO)^{-}$. Anal. Calcd for $C_{19}H_{20}O_7Co_2$: C, 47.72; H, 4.22. Found: C, 47.73; H, 4.12.

Benzophenone Ketyl (BPK). As described by Arewgoda et al.,¹⁴ a solution of benzophenone ketyl can be prepared by refluxing benzophenone in deoxygenated tetrahydrofuran with a slight molar excess of sodium. However, as suggested by the authors,¹⁴ for most of the reactions described herein the BPK solution was simply syringed from a still used to purify THF.

 $[Ph_3P(OC)_2CoCo(CO)_3][HC = CCH_2O-menthyl], 8.$ A solution of $[(OC_3CoC_0(CO)_3][HC = CCH_2O-menthyl] (4, 0.385 g, 0.80)$ mmol), triphenylphosphine (0.262 g, 1.00 mmol), and BPK (1.5 cm³) in THF (35 cm³) was stirred overnight under an atmosphere of N₂. The reaction was monitored by TLC on Kieselgel (eluent, ether/hexane, 5/95), which showed the formation of the product as a reddish band $(R_f 0.32)$. After the solvent was removed, the crude material was purified by flash chromatography on silica gel (eluent, hexane) to give 8 as an orange-red solid (0.475 g, 0.66 mmol, 82.5%) containing an approximately 50:50 mixture of the diastereomers. ³¹P NMR (CD_2Cl_2): δ 54.2 (single peak). ¹³C NMR (CD₂Cl₂): δ 205.9 (2 carbonyls); 202.5 (3 carbonyls); 135.4 (d, ipso (CD₂CL₂): 0 200.9 (2 cardionyls), 202.5 (3 cardonyls), 130.4 (d, lpso C's of phenyl rings, ${}^{1}J({}^{13}C{}^{-31}P) = 41.0$ Hz); 133.6 (d, ortho C's of phenyl rings, ${}^{2}J({}^{13}C{}^{-31}P) = 10.5$ Hz); 130.7 (para C's of phenyl rings); 129.0 (d, meta C's of phenyl rings, ${}^{3}J({}^{13}C{}^{-31}P) = 9.5$ Hz); 90.5 (alkyne quaternary C); 79.7 (C-1); 72.0 (alkyne CH); 68.9, 68.5 (CH₂O); 49.1, 48.9 (C-2); 41.4, 41.1 (C-6); 35.1 (C-4); 32.1 (C-5); 25.7 (C-7); 23.8 (C-3); 22.6 (C-8); 21.4 (C-10); 16.5 (C-9). IR (CH₂Cl₂): ν_{CO} 2050 (m), 2000 (s), 1970 (sh) cm⁻¹. Mass spectra (FAB+): m/z (%) 630 (6) ((M - 3CO)+, $C_{33}H_{37}O_3PCo_2$); 602 (12) $(M - 4CO)^+$; 574 (100) $(M - 5CO)^+$. Mass spectra (FAB-): m/z(%) 452 (100) $(M - PPh_3)^-$; 423 (30) $(M - H - PPh_3 CO)^-$; 396 (12) $(M - PPh_3 - 2CO)^-$. Anal. Calcd for $C_{36}H_{37}O_6PCo_2$: C, 60.52; H, 5.22; P, 4.33. Found: C, 60.22; H, 5.41; P, 4.48. [Cy₃P(OC)₂CoCo(CO)₃][HC=CCH₂O-menthyl], 9. A solu-

tion of [(OC)₃CoCo(CO)₃][HC=CCH₂O-menthyl] (4, 0.358 g, 0.75 mmol), tricyclohexylphosphine (0.266 g, 0.95 mmol), and BPK

⁽²²⁾ D'Agostino, M. F.; Frampton, C. S.; McGlinchey, M. J. J. Orga-(23) Perrin, D. D.; Armarego, W. L. F.; Perrin, D. R. Purification of

Laboratory Chemicals; Pergamon Press: New York, 1980.

(1.5 cm³) was stirred in THF (35 cm³) overnight under an atmosphere of N₂. The reaction was monitored by TLC on Kieselgel (eluent, hexane), which showed the formation of the product as an orange-red band $(R_f 0.20)$. The solvent was removed and the crude material purified by flash chromatography on silica gel (eluent, hexane) to give 9 as an orange-red solid (0.228 g, 0.31 mmol, 41.3%) containing an approximately 60:40 mixture of the diastereomers. ³¹P NMR (C_6D_6): δ 65.3 (single peak). ¹³C NMR (C₆D₆): δ 208.4, 207.21, 202.9 (carbonyls, 1:1:3 ratio); 88.7 (alkyne quaternary C); 79.8, *79.5 (C-1); 70.3, *69.9 (CH₂O); 67.9, *68.5 (alkyne CH); 49.0 (C-2); 41.3 (C-6); 37.3 (d, ipso C's of cyclohexyl rings, ${}^{1}J({}^{13}C-{}^{31}P) = 15.9 \text{ Hz}$; 34.9 (C-4); 31.9 (C-5); 30.0 (d, α -C's of cyclohexyl rings, ${}^{2}J({}^{13}C-{}^{31}P) = 14.7$ Hz); 27.9 (β -C's of cyclohexyl ring); 26.6 (γ -C's of cyclohexyl rings); 25.8 (C-7); 23.7 (C-3); 22.6 (C-8); 21.3 (C-10); 16.6 (C-9). IR (CH₂Cl₂): v_{CO} 2040 (m), 1995 (s), 1950 (sh) cm⁻¹. Mass spectra (FAB+): m/z (%) 648 (100) $((M - 3CO)^+, C_{33}H_{55}O_3PCo_2); 538 (22) (Co_2(CO)_5PCy_3)^+. (FAB-):$ m/z (%) 537 (5) (($Co_2(CO)_5PCy_3$) – H)⁻; 452 (100) (M – PCy₃)⁻; 423 (65) $(M - H - PCy_3 - CO)^-$; 396 (23) $(M - PCy_3 - 2CO)^-$. Anal. Calcd for C₃₆H₅₅O₆PCo₂: C, 59.02; H, 7.57; P, 4.23. Found: C, 58.69; H, 7.72; P, 4.12.

[Ph₃P(CO)₂CoCo(CO)₃][HC=CCH₂O-bornyl], 10. A solution of [(OC)₃CoCo(CO)₃][HC=CCH₂O-bornyl] (5, 0.499 g, 1.04 mmol), triphenylphosphine (0.273 g, 1.04 mmol), and BPK (1.5 cm³) was stirred in THF (30 cm³) under an atmosphere of N_2 . The reaction was monitored by TLC on Kieselgel (eluent, hexane), and the formation of the product as an orange-red band $(R_f 0.17)$ was detected. After the mixture was stirred overnight, the solvent was removed and the residue purified by flash chromatography on silica gel (eluent, hexane) to yield 10 as an orange-red solid (0.409 g, 0.57 mmol, 54.8%) containing an approximately 50:50 mixture of the diastereomers. ³¹P NMR (CD_2Cl_2): δ 54.4 (single peak). ¹³C NMR (CDCl₃): δ 205.7, 205.5, 201.8 (carbonyls, 1:1:3 ratio); 135.0 (d, ipso C's of phenyl rings, ¹J(¹³C-³¹P) = 40.9 Hz); 133.0 (d, ortho C's of phenyl rings, ²J(¹³C-³¹P) = 10.9 Hz); 130.1 (para C's of phenyl rings); 128.2 (d, meta C's of phenyl rings, ${}^{3}J({}^{13}C-{}^{31}P) = 9.5 \text{ Hz}$; 90.3, 89.9 (alkyne quaternary C); 84.9, 84.5 (C-2); 70.8, 70.3 (CH₂); 69.8, 69.4 (alkyne CH); 49.4 (C-1 or C-7); 47.9, 47.4 (C-1 or C-7); 45.2 (C-4); 36.2, 35.9 (C-3); 28.2 (C-5); 26.9 (C-6); 19.8 (C-9); 18.9 (C-8); 14.0 (C-10). IR (CH₂Cl₂): v_{CO} 2050 (m), 2000 (s), 1970 (sh) cm⁻¹. Mass spectra (FAB+): m/z (%) 656 (4) $((M - 2CO)^+, C_{34}H_{35}O_4PCo_2)$; 628 (13) $(M - 3CO)^+$; 600 (24) $(M - 4CO)^+$; 572 (100) $(M - 5CO)^+$. Mass spectra (FAB-): 450 (100) $(M - PPh_3)^-$; 421 (29) $(M - H - PPh_3 - CO)$; 394 (13) $(M - PPh_3 - 2CO)^-$. Anal. Calcd for $C_{36}H_{35}O_6PCo_2$: C, 60.69; H, 4.95; P, 4.35. Found: C, 60.98; H, 5.27; P, 4.13.

[Cy₃P(OC)₂CoCo(CO)₃][HC=CCH₂O-bornyl], 11. A solution of $[(OC)_3CoCo(CO)_3][HC = CCH_2O$ -bornyl] (5, 0.377 g, 0.79 mmol), tricyclohexylphosphine (0.331 g, 1.18 mmol), and BPK (1.5 cm³) in THF (35 cm³) was stirred under an atmosphere of N_2 . The reaction was monitored by TLC on Kieselgel (eluent, hexane), which showed the formation of the product as an orange-red band $(R_f 0.20)$. After further stirring of the mixture overnight, the solvent was removed and the residue purified by flash chromatography on silica gel (eluent, hexane) to yield 11 as an orange-red solid (0.287 g, 0.39 mmol, 49.4%) containing an approximately 60:40 mixture of the diastereomers. ³¹P NMR $(C_6 D_6)$: δ 65.6 (single peak). ¹³C NMR $(C_6 D_6)$: δ 208.3, 207.1, 203.0 (carbonyls, 1:1:3 ratio); 88.9, *88.6 (alkyne quaternary C); 85.2, *85.5 (C-2); 71.4, *71.8 (CH₂); 67.1, *67.4 (alkyne CH); 49.9 (C-1 or C-7); 48.0 (C-1 or C-7); 45.7 (C-4); 37.2 (d, ipso C's of cyclohexyl rings, ${}^{1}J({}^{13}C-{}^{31}P) = 16.4 \text{ Hz})$; 36.5, *36.7 (C-3); 29.9 (d, α -C's of cyclohexyl rings, ${}^{2}J({}^{13}C-{}^{31}P) = 17.0$ Hz); 28.7 (C-5); 27.8 (d, β -C's of cyclohexyl rings, ${}^{3}J({}^{13}C-{}^{31}P) = 9.3$ Hz); 27.1 (C-6); 26.5 (γ -C's of cyclohexyl rings); 19.9 (C-9); 19.1 (C-8); 14.3 (C-10). IR (CH₂Cl₂): ν_{CO} 2045 (m), 2000 (s), 1950 (sh) cm⁻¹. Mass spectra (FAB+): m/z (%) 730 (7) ((M)+, $C_{36}H_{53}O_6PCo_2$); 702 (25) (M -CO)⁺: 675 (5) (M + H – 2CO)⁺; 646 (100) (M – 3CO)⁺; 577 (14) $(M - (O-bornyl))^+$: 549 (11) $(M - (O-bornyl) - CO)^+$; 493 (11) $(M - (O-bornyl) - 3CO)^+$. Mass spectra (FAB-): m/z (%) 450 (100) $(M - PCy_3)^-$; 421 (44) $(M - H - PCy_3 - CO)^-$. Anal. Calcd for $C_{36}H_{53}O_6PC_{02}$: C, 59.18; H, 7.31; P, 4.24. Found: C, 59.71; H, 7.43, P, 4.15.

 $[(dppm)((OC)_2CoCo(CO)_2)][HC = CCH_2O-menthyl], 12. A solution of <math>[(OC)_3CoCo(CO)_3][HC = CCH_2O-menthyl] (4, 0.408 g, 0.85 mmol) and dppm (0.461 g, 1.20 mmol) in hexane (30 cm³)$

was stirred at reflux under an atmosphere of N_2 for 2.5 h. The reaction was monitored by TLC on Kieselgel (eluent, ether/ hexane, 10/90), which showed the formation of the product as an orange-red band $(R_t 0.31)$. After cooling to room temperature and removal of the solvent, the residue was purified by flash chromatography on silica gel (eluent, ether/hexane, 3/97) to give 12 as an orange oily material (0.596 g, 0.74 mmol, 87.0%). ³¹P NMR (CD₂Cl₂): δ 42.0 (single peak). ¹³C NMR (CD₂Cl₂): δ 207.4, 204.6 (carbonyls, 2:2 ratio); 137.5 (d, ipso C's of phenyl rings, ${}^{1}J({}^{13}C-{}^{31}P) = 20.4 \text{ Hz}$; 132.3 (d, ortho C's of phenyl rings, ${}^{2}J$ - $(^{13}C^{-31}P) = 5.7 \text{ Hz}$; 129.9 (para C's of phenyl rings); 128.7 (d, meta C's of phenyl rings, ${}^{3}J({}^{13}C-{}^{31}P) = 4.1$ Hz); 98.6 (alkyne quaternary C); 79.8 (C-1); 74.4 (alkyne CH); 72.0 (CH₂); 49.1 (C-2); 41.6 (t, $CH_2 \text{ of dppm}, {}^{1}J({}^{13}C-{}^{31}P) = 20.8 \text{ Hz}); 41.3 (C-6); 35.3 (C-4); 32.2 (C-5); 25.9 (C-7); 23.9 (C-3); 22.7 (C-8); 21.4 (C-10); 16.6 (C-9).$ IR (CH₂Cl₂): ν_{CO} 2010 (m), 1995 (s), 1970 (m), 1950 (sh) cm⁻¹. Mass spectra (FAB+): m/z (%) 780 (12) ((M - CO)⁺, C₄₁H₄₄O₄P₂Co₂); 724 (35) (M - 3CO)⁺; 696 (100) (M - 4CO)⁺; 625 (5) $(M - (O-menthyl) - CO)^+$: 542 (20) (M + H - (O-menthyl) $-4CO)^+$; 425 (62) (M + H - dppm)⁺. Mass spectra (FAB-): 807 (100) $(M - H)^{-}$; 780 (97) $(M - CO)^{-}$; 752 (10) $(M - 2CO)^{-}$; 586 (20) $(Co_2(CO)_3dppm)^-$. Anal. Calcd for $C_{42}H_{42}O_5P_2Co_2$: C, 62.39; H, 5.48; P, 7.66. Found: C, 61.34; H, 5.58; P, 7.58.

 $[(dppm)((OC)_2CoCo(CO)_2)][HC \equiv CCH_2O-bornyl], 13. A$ solution of $[(OC)_3CoCo(CO)_3][HC \equiv CCH_2O$ -bornyl] (5, 0.589 g, 1.23 mmol) and dppm (0.614 g, 1.60 mmol) in hexane (35 cm³) was stirred at reflux under an atmosphere of N_2 for 6.0 h. The reaction was monitored by TLC on Kieselgel (eluent, ether/ hexane, 5/95), which showed the formation of the product as an orange-red band $(R_f 0.17)$. After cooling to room temperature and removing the solvent, the residue was purified by flash chromatography on silica gel (eluent, ether/hexane, 5/95) to give 13 as an orange-red solid (0.766 g, 0.95 mmol, 77.2%). ³¹P NMR (CDCl₃): δ 42.3 (single peak). ¹³C NMR (CDCl₃): ν 206.8, 203.8 (carbonyls, 2:2 ratio); 137.0 (d, ipso C's of phenyl rings, ${}^{1}J({}^{13}C-{}^{31}P)$ = 18.8 Hz); 131.8 (ortho C's of phenyl rings); 129.4 (para C's of phenyl rings); 128.2 (meta C's of phenyl rings); 97.9 (alkyne quaternary C); 84.2 (C-2); 73.5 (alkyne CH); 72.6 (CH₂); 49.4 (C-1 or C-7); 47.9 (C-1 or C-7); 45.2 (C-4); 41.4 (t, CH₂ of dppm, ¹J- $(^{13}C^{-31}P) = 20.3 \text{ Hz}$; 36.2 (C-3); 28.3 (C-5); 26.7 (C-6); 19.9 (C-9); 18.9 (C-8); 14.1 (C-10). IR (CH₂Cl₂): v_{CO} 2010 (m), 1995 (s), 1975 (m), 1950 (sh) cm⁻¹. Mass spectra (FAB+): m/z (%) 778 (15) $((M - CO)^+, C_{41}H_{42}O_4P_2Co_2); 722 (40) (M - 3CO)^+; 694 (100) (M - 3CO)^+; 60) (M - 3CO)^$ 4CO)⁺; 542 (100) (M + H - (O-bornyl) - 4CO)⁺; 502 (45) (Co₂(dppm))⁺; 443 (65) (Co(dppm))⁺; 425 (59) (Co₂(dppm) - $(C_6H_5)^+$; 348 (40) $(Co_2(dppm) - 2C_6H_5)^+$. Mass spectra (FAB-): m/z % 805 (95) (M – H)⁻; 778 (100) (M – CO)⁻; 750 (18) (M – $2CO)^{-}$; 721 (7) (M – H – $3CO)^{-}$. Anal. Calcd for $C_{42}H_{42}O_5P_2Co_2$: C, 62.54; H, 5.25; P, 7.68. Found: C, 62.87; H, 5.42; P, 7.68.

 $[(dppm)((OC)_2CoCo(CO)_2)][CH_3C=C-borneol], 14. A so$ lution of $[(OC)_{3}CoCo(CO)_{3}][CH_{3}C=C-borneol]$ (6, 0.623 g, 1.30 mmol) and dppm (0.650 g, 1.69 mmol) in hexane (50 cm³) was stirred at reflux under an atmosphere of N_2 for 1.5 h. The reaction was monitored by TLC on Kieselgel (eluent, ether/hexane, 5/95), which showed the formation of the product as a red band $(R_f 0.15)$. After cooling the mixture to room temperature and removing the solvent, the residue was purified by flash chromatography on silica gel (eluent, ether/hexane, 5/95) to yield 14 as an orange-red solid (0.577 g, 0.72 mmol, 55.4%). ³¹P NMR (CDCl₃): δ 42.1 (d, ²J- $({}^{31}P{}^{-31}P) = 125 \text{ Hz}$; 40.9 (d, ${}^{2}J({}^{31}P{}^{-31}P) = 125 \text{ Hz}$). ${}^{13}C \text{ NMR}$ (carbonyls) (CDCl₃): δ 207.3, 206.7, 204.3, 203.7 (1:1:1:1 ratio). IR (CH₂Cl₂): ν_{CO} 2005 (m), 1990 (s), 1965 (m), 1940 (sh) cm⁻¹. Mass spectra (FAB+): m/z (%) 789 (3) ((M - OH)⁺, Mass spectra (FAB+): m/z (%) 789 (3) ((M - OH)⁺, C₄₂H₄₁O₄P₂Co₂); 778 (11) (M - CO)⁺; 761 (5) (M - OH - CO)⁺; 732 (3) (M - H₂O - 2CO)⁺; 722 (16) (M - 3CO)⁺; 704 (9) (M - H₂O - 2CO)⁺; 722 (16) (M - 3CO)⁺; 704 (9) (M - H₂O)⁺; 704 (9) (M - H₂O)⁺; 704 (11) (M - 2CO)⁺; 704 (9) (M - H₂O)⁺; 704 (11) (M - 2CO)⁺; 704 (11) (M - 2 $H_2O - 3CO)^+$; 694 (11) (M - 4CO)⁺; 676 (100) (M - $H_2O - 4CO)^+$; 502 (33) (Co₂(dppm)⁺; 425 (30) (Co₂(dppm)⁺; 348 (27) (Co₂(dppm) $-2C_6H_5$)⁺. Mass spectra (FAB-): m/z (%) 805 (100) (M - H)⁻; 778 (74) (M – CO)⁻; 586 (30) (Co₂(CO)₃dppm)⁻; 393 (26) (M – CO – dppm – H)⁻. Anal. Calcd for $C_{42}H_{42}O_5P_2Co_2$: C, 62.54; H, 5.25; P, 7.68. Found: C, 62.54; H, 6.17; P, 7.53.

 $[Ph_3P(OC)_2CoCo(CO)_3][CH_3C \equiv C-borneol], 15.$ A solution of $[(OC)_3CoCo(CO)_3][CH_3C \equiv C-borneol]$ (6, 0.453 g, 0.95 mmol), triphenylphosphine (0.248 g, 0.95 mmol), and BPK (1.5 cm³) in THF (35 cm³) was stirred overnight under an atmosphere of N₂. The reaction was monitored by TLC on Kieselgel (eluent, ether/hexane, 5/95), which showed the formation of the product as a red band (R_f 0.27). The solvent was removed and the residue purified by flash chromatography on silia gel (eluent, ether/hexane, 1/99) to yield 15 as a red oily material (0.132 g, 0.19 mmol, 20.0%) containing an approximately 50:50 mixture of the diastereomers. ³¹P NMR (CDCl₃): δ 48.8, 44.2 (1:1 ratio). ¹³C NMR (carbonyls) (CDCl₃): 205.4, 201.5 (2:3 ratio). IR (CH₂Cl₂): ν_{CO} 2040 (m), 2000 (s), 1995 (s), 1960 (sh) cm⁻¹. Mass spectra (FAB+): m/z (%) 695 (2) ((M – OH)⁺, C₃₆H₃₄O₅PCo₂); 684 (2) (M – CO)⁺; 667 (2) (M – OH – CO)⁺; 656 (19) (M – 2CO)⁺; 639 (6) (M – OH – 2CO)⁺; 628 (2) (M – 3CO)⁺; 600 (100) (M – 4CO)⁺; 572 (78) (M – 5CO)⁺; 554 (13) (M – H₂O – 5CO)⁺. Mass spectra (FAB–): m/z (%) 711 (5) (M – H)⁻; 450 (100) (M – PPh₃)⁻; 422 (30) (M – PPh₃ – CO)⁻; 393 (11) (M – PPh₃ – 2CO – H)⁻; 258 (44) (Co₂(CO)₅)⁻. Anal. Calcd for C₃₆H₃₅O₆PCo₂: C, 60.69; H, 4.95; P, 4.34. Found: C, 58.03; H, 5.12; P, 4.64.

C, 58.03; H, 5.12; P, 4.64. $(C_5H_4R)M(CO)_3$ -Na⁺ (R = H, CH₃; M = Mo, W). To a solution of $[(C_5H_4R)M(CO)_3]_2$ (1.0 mmol) in THF (25 cm³) was added an excess of finely divided Na metal. The mixture was stirred at room temperature under an atmosphere of N₂ until the solution lost the red color associated with the presence of the dimer and took on the yellow color of the anion. Filtration under N₂ to remove any solid present gave a clear solution of the anion, which was then used in subsequent reactions.

 $[(C_5H_5)Mo(CO)_2Co(CO)_3][HC = CCH_2OH], 16.$ A solution of $(C_5H_5)Mo(CO)_3$ -Na⁺ (prepared as described above) and [Co₂(CO)₆][HC=CCH₂OH] (3, 0.342 g, 1.0 mmol) in THF (25 cm³) was stirred at reflux for 30 min under an atmosphere of N_2 . The reaction was monitored by TLC on Kieselgel (eluent, ether/ hexane, 35/65), which showed the formation of the product as an orange band $(R_{f} 0.14)$. Removal of the solvent and flash chromatographic purification of the residue on silica gel (eluent, ether/hexane, 35/65) yielded the product 16 as an orange-red solid (0.326 g, 0.78 mmol, 78.4%). ¹H NMR (C₆D₆): δ 5.58 (s, 1 H, alkyne ČH), 5.35 (s, 5 H, Cp ring H's), 4.71 (m, 2 H, CH₂), 1.46 (br, 1 H, OH). ¹³C NMR (CDCl₃): δ 225.1 (molybdenum carbonyls), 203.0 (cobalt carbonyls), 90.4 (Cp ring CH's), 74.5 (alkyne CH), 66.5 (CH₂) (Note: Despite running the sample in a variety of solvents, the alkyne quaternary carbonyl was not found). IR (CH₂Cl₂): v_{CO} 2050 (m), 1990 (s), 1950 (br, sh), 1890 (br, sh) cm⁻¹. Mass spectra (FAB+): m/z (%) 418 (27) ((M)⁺, $C_{13}H_9O_6M_0C_0; 401 (16) (M - OH)^+; 390 (73) (M - CO)^+; 373 (35)$ $(M - OH - CO)^+$; 362 (100) $(M - 2CO)^+$; 334 (40) $(M - 3CO)^+$; 317 (13) $(M - OH - 3CO)^+$; 306 (31) $(M - 4CO)^+$; 278 (40) $(M - 5CO)^+$. Anal. Calcd for $C_{13}H_9O_6MoCo$: C, 37.53; H, 2.18. Found: C. 37.85: H. 2.39.

 $[(CH_3C_5H_4)W(CO)_2Co(CO)_3][HC=CCH_2OH], 17.$ A solution of $(CH_3C_5H_4)W(CO)_3$ -Na⁺ and $[Co_2(CO)_6][HC = CCH_2OH]$ (3, 0.513 g, 1.50 mmol) in THF (35 cm³) was stirred at reflux for 30 min under N₂. The reaction was monitored by TLC on Kieselgel (eluent, ether/hexane, 50/50), which showed the formation of the product as an orange spot $(R_f 0.22)$. Removal of the solvent and purification of the residue by flash chromatography on silica gel (eluent, ether/hexane, 30/70) yielded the product 17 as a burnt-orange solid (0.451 g, 0.87 mmol, 58.0%). ¹H NMR (CDCl₃): δ 5.35 (s, 1 H, alkyne CH), 5.27 (br, 4 H, Cp ring H's), 4.90 (m, 2 H, CH₂), 2.16 (s, 3 H, Cp ring CH₃), 1.43 (m, 1 H, OH). ¹³C NMR (CDCl₃): § 212.6, 212.3 (tungsten carbonyls, 1:1 ratio); 202.0 (cobalt carbonyls); 106.0 (Cp ring quaternary C), 89.7, 88.4, 88.0, 87.7 (Cp ring CH's); 84.6 (alkyne quaternary C); 67.8 (alkyne CH); 66.4 (CH_2) ; 14.0 (Cp ring CH₃). IR (CH₂Cl₂): ν_{CO} 2040 (m), 2000 (s), 1980 (s), 1940 (br, sh), 1880 (br, sh) cm⁻¹. Mass spectra (FAB+): m/z (%) 518 (23) ((M)⁺, C₁₄H₁₁O₆CoW; 501 (18) (M – OH)⁺; 490 (45) (M – CO)⁺; 477 (28) (M – OH – CO)⁺; 462 (100) (M – 2CO)⁺; 445 (13) (M - OH - 2CO)+; 434 (42) (M - 3CO)+; 417 (9) (M -OH – 3CO)⁺; 406 (33) (M – 4CO)⁺; 389 (12) (M – OH – 4CO)⁺; 378 (31) (M – 5CO)⁺; 361 (12) (M – OH – 5CO)⁺. Anal. Calcd for C₁₄H₁₁O₆WCo: C, 32.46; H, 2.14. Found: C, 32.78; H, 2.24.

 $[(\tilde{C}_5H_4\tilde{C}H_3)Mo(CO)_2Co(CO)_3][HC=CCH_2OH], 18.$ A solution of $(CH_3C_5H_4)Mo(CO)_3$ -Na⁺ and $[Co_2(CO)_6][HC=CCH_2OH]$ (3, 0.622 g, 1.82 mmol) in THF (30 cm³) was stirred at reflux for 30 min under an atmosphere of N₂. The reaction was monitored by TLC on Kieselgel (eluent, ether/hexane, 30/70), and the formation of the product as an orange band (R_f 0.16) was observed. Removal of the solvent and flash chromatographic purification of the residue on silica gel (eluent, ether/hexane, 25/75) yielded the product 18 as a red oily solid (0.384 g, 0.89 mmol, 48.9%). ¹³C NMR (C_6D_6): δ 226.5, 226.4 (molybdenum carbonyls, 1:1 ratio); 204.3 (cobalt carbonyls); 108.4 (Cp ring quaternary C); 91.3, 90.3, 90.2, 89.8 (Cp ring CH's); 75.6 (alkyne CH); 66.1 (CH₂); 13.7 (Cp ring CH₃) (Note: alkyne quaternary C not located). IR (CH₂Cl₂): ν_{CO} 2040 (m), 1990 (s), 1945 (br, sh), 1890 (br, sh) cm⁻¹. Mass spectra (FAB+): m/z (%) 432 (12) ((M)⁺, C₁₄H₁₁O₆CoMo; 415 (16) (M – OH)⁺; 404 (38) (M – CO)⁺; 387 (48) (M – OH – CO)⁺; 376 (100) (M – 2CO)⁺; 359 (40) (M – OH – 2CO)⁺; 303 (25) (M – OH – 4CO)⁺; 292 (49) (M – 5CO)⁺; 275 (30) (M – OH – 5CO)⁺. Mass spectra (FAB-): m/z (%) 431 (78) (M – H)⁻; 387 (45) (M – OH – CO)⁻; 401 (100) (M – CH₂OH)⁻; 359 (28) (M – OH – 2CO)⁻; 373 (60) (M – CH₂OH – CO)⁻; 331 (34) (M – OH – 3CO)⁻. Anal. Calcd for C₁₄H₁₁O₆MoCo: C, 39.10; H, 2.58. Found: C, 38.47; H, 2.60.

 $[(C_5H_5)Mo(CO)_2Co(CO)_3][HC = CCH_2O-menthyl], 19.$ Method 1. A solution of $[(C_5H_5)M_0(CO)_2C_0(CO)_3][HC \equiv CC H_2OH$ (16, 0.262 g, 0.63 mmol), (1R,2S,5R)-(-)-menthol (0.196 g, 1.26 mmol), and a small amount of pTsOH (50 mg) in CH₂Cl₂ (25 cm^3) was stirred under N_2 in the presence of excess activated 4-Å molecular sieve for 18 h. The reaction was monitored by TLC on Kieselgel (eluent, ether/hexane, 15/85), which showed the formation of the product as a red band $(R_f 0.50)$. After the solution was filtered to remove the molecular sieve and the solvent was evaporated, flash chromatographic purification of the residue on silica gel (eluent, ether/hexane, 15/85) yielded 19 as a red-orange oil (0.240 g, 0.43 mmol, 63.0%) containing a 50:50 mixture of the diastereomers. Method 2. A solution of (C₅H₅)Mo(CO)₃-Na⁺ and [(OC)₃CoCo(CO)₃][HC=CCH₂O-menthyl] (4, 0.20 g, 0.42 mmol) in THF (25 cm³) was stirred at reflux for 1.0 h under an N₂ atmosphere. Removal of the solvent and flash chromatographic purification of the residue on silica gel (eluent, ether/hexane, 5/95) yielded the product 19 as a red-orange oil (0.187 g, 0.34 mmol, 81.0%) containing an approximately 55:45 mixture of the diastereomers. ¹³C NMR (C_6D_6): δ 90.5 (Cp ring CH's); 89.4 (alkyne quanternary C); 79.2 (C-1); 74.2, *74.7 (alkyne CH); 71.9, *71.6 (CH2); 48.8 (C-2); 40.7 (C-6); 34.8 (C-4); 31.8 (C-5); 25.9 (C-7); 23.6 (C-3); 22.6 (C-8); 21.3 (C-10), 16.5 (C-9). IR (CH_2Cl_2) : ν_{CO} 2040 (m), 1990 (s), 1940 (br, sh), 1880 (br, sh) cm⁻¹. Mass spectra (FAB+): m/z (%) 500 (34) ((M - 2CO)⁺, C₂₁H₂₇O₄CoMo); 472 $(100) (M - 3CO)^+; 444 (5) (M - 4CO)^+; 416 (12) (M - 5CO)^+; 401$ (8) $(M - (O-menthyl))^+$. Anal. Calcd for $C_{23}H_{27}O_6CoMo$; C, 49.83; H, 4.91. Found: C, 49.59; H, 4.68.

 $[(CH_{3}C_{5}H_{4})W(CO)_{2}Co(CO)_{3}][HC = CCH_{2}O\text{-menthyl}], 20.$ Method 1. A solution of [(CH₃C₅H₄)W(CO)₂Co(CO)₃][HC=CC-H₂OH] (17, 0.473 g 0.91 mmol), (1R,2S,5R)-(-)-menthol (0.354 g, 2.27 mmol) and a small amount of HBF4·Et2O (6 drops) in CH₂Cl₂ (30 cm³) was stirred in the presence of activated 4-Å molecular sieve under an atmosphere of N₂ for 18 h. The reaction was monitored by TLC on Kieselgel (eluent, ether/hexane, 5/95), which showed the formation of the product as an orange-red band $(R_{f} 0.30)$. The solution was filtered to remove the molecular sieve, and the solvent was evaporated. Flash chromatographic purification of the residue on silica gel (eluent, ether/hexane, 2/98) yielded 20 as an orange-red oil (0.112 g, 0.17 mmol, 18.7%) containing a 50:50 mixture of the diastereomers. Method 2. A solution of $(C_5H_4CH_3)W(CO)_3$ -Na⁺ and $[(OC)_3CoCo(CO)_3]$ -[HC=CCH₂O-menthyl] (4, 0.600 g, 1.25 mmol) in THF (30 cm³) under an atmosphere of N2 was stirred at reflux for 1.0 h. Removal of the solvent and flash chromatographic purification of the residue on silica gel (eluent, ether/hexane, 5/95) yielded the product 20 as an orange-red oil (0.473 g, 0.72 mmol, 57.6%) containing an approximately 55:45 mixture of the diastereomers. ¹³C NMR (C₆D₆): δ 213.6, 213.4 (tungsten carbonyls, 1:1 ratio); 202.9 (cobalt carbonyls); 105.6 (Cp ring quaternary C); 89.8, 89.3, 88.7, 88.2, 87.7, 87.4 (Cp ring CH's); 83.6 (alkyne quaternary C); 79.2, *79.1 (C-1); 72.0, *71.5 (CH₂); 67.8 (alkyne CH); 48.9, *48.7 (C-2); 40.8 (C-6); 34.8 (C-4); 31.8 (C-5); 25.8 (C-7); 23.6 (C-3); 22.6 (C-8); 21.3 (C-10); 16.5 (C-9); 13.5 (Cp ring CH₃). IR (CH₂Cl₂): $\nu_{\rm CO}$ 2035 (m) 1995 (s), 1980 (s), 1940 (br, sh), 1870 (br, sh) cm⁻¹. Mass spectra (FAB+): m/z (%) 600 (29) ((M - 2CO)⁺, C₂₂H₂₉-O₄CoW; 572 (100) (M - 3CO)⁺; 544 (9) (M - 4CO)⁺; 516 (20) (M -5CO)⁺; 501 (4) (M - (O-menthyl))⁺; 473 (15) (M - (O-menthyl)) - CO)⁺; 445 (12) (M - (O-menthyl) - 2CO)⁺. Mass spectra (FAB-): 655 (8) $(M - H)^{-}$; 627 (100) $(M - H - CO)^{-}$; 600 (28) $(M - H)^{-}$; 600 (28) (M $-\,2{\rm CO})^-.$ Anal. Calcd for ${\rm C_{24}H_{29}O_6CoW}:$ C, 43.92, H, 4.45. Found: C, 44.01; H, 4.05.

 $[(C_5H_4CH_3)Mo(CO)_2Co(CO)_3][HC = CCH_2O-menthyl], 21.$ Method 1. A solution of $[(C_{5}H_{4}CH_{3})M_{0}(CO)_{2}C_{0}(CO)_{3}][HC=C$ CH₂OH] (18, 0.262 g, 0.61 mmol), (1R,2S,5R)-(-)-menthol (0.302 g, 1.93 mmol) and HBF₄·Et₂O (6 drops) in CH₂Cl₂ (35 cm³) was stirred overnight under N2 in the presence of an excess of activated 4-Å molecular sieve. The reaction was monitored by TLC on Kieselgel (eluent, ether/hexane, 5/95), which showed the formation of the product as a red band $(R_f 0.42)$. The solution was filtered to remove the molecular sieve. Removal of the solvent and flash chromatographic purification of the residue on silica gel (eluent, ether/hexane, 3/97) yielded 21 as a red oil (0.126 g, 0.22 mmol, 36.1%) containing a 50:50 mixture of the diastereomers. Method 2. A solution of $(C_5H_4CH_3)M_0(CO)_3$ -Na⁺ and $[(OC)_3CoCo(CO)_3][HC=CCH_2O-menthyl]$ (4, 0.417 g, 0.87 mmol) in THF (30 cm³) was stirred at reflux for 1.0 h under N₂. Removal of the solvent and flash chromatographic purification of the residue on silica gel (eluent, hexane) yielded the product 21 as a red oil (0.436 g, 0.77 mmol, 88.5%) containing an approximately 55:45 mixture of the diastereomers. ¹³C NMR (C_6D_6): δ 226.9, 226.5 (molybdenum carbonyls, 1:1 ratio); 204.3 (cobalt carbonyls); 108.3 (Cp ring quaternary C); 91.6, 91.3, 90.8, 90.5, 90.4, 89.9, 89.6 (Cp ring CH's); 89.4 (alkyne quaternary C); 79.2, *79.1 (C-1); 75.4, *75.2 (alkyne CH); 71.8, *71.3 (CH₂); 48.8, *48.6 (C-2); 40.7 (C-6); 34.8 (C-4); 31.8 (C-5); 25.7 (C-7); 23.5 (C-3); 21.5 (C-8); 21.3 (C-10); 16.5 (C-9); 13.8 (Cp ring CH₃). IR (CH₂Cl₂): v_{CO} 2040 (m), 1990 (s), 1940 (br, sh), 1885 (br, sh) cm⁻¹. Mass spectra (FAB+): m/z (%) 542 (10) ((M - CO)⁺, C₂₃H₂₉O₅CoMo); 514 (30) (M - 2CO)⁺; $486 (100) (M - 3CO)^+; 458 (8) (M - 4CO)^+; 430 (18) (M - 5CO)^+.$ Anal. Calcd for C24H29O6CoMo: C, 50.72, H, 5.14. Found: C, 50.62; H, 5.38

 $[(C_5H_5)Mo(CO)_2Co(CO)_3][HC \equiv CCH_2O$ -bornyl], 22. Method 1. A solution of $[(C_5H_5)Mo(CO)_2Co(CO)_3][HC=CCH_2OH]$ (16, 0.365 g, 0.88 mmol), (1S)-endo-(-)-borneol (0.403 g, 2.61 mmol), and pTsOH (50 mg) in CH₂Cl₂ (25 cm³) was stirred under an atmosphere of N₂ in the presence of excess activated 4-Å molecular sieve for 18 h. The reaction was monitored by TLC on Kieselgel (eluent, ether/hexane, 5/95), which showed the formation of the product as a red spot $(R_f 0.41)$. The solution was filtered to remove the molecular sieve. Removal of the solvent and flash chromatographic purification of the residue on silica gel (eluent, ether/hexane, 5/95) yielded 22 as a red oil (0.334 g, 0.61 mmol, 69.3%) containing a 50:50 mixture of the diastereomers. Method 2. A solution of $(C_5H_5)Mo(CO)_3$ -Na⁺ and [(OC)₃CoCo(CO)₃][HC=CCH₂O-bornyl] (5, 0.300 g, 0.63 mmol) in THF (25 cm³) was stirred at reflux for 1.0 h under N_2 . Removal of the solvent and flash chromatographic purification of the residue on silica gel (eluent, ether/hexane, 5/95) yielded the product 22 as a red oil (0.224 g, 0.41 mmol, 64.4%) containing an approximately 55:45 mixture of the diastereomers. ¹³C NMR (C₆D₆): δ 225.9, 225.8, 225.7, 225.6 (molybdenum carbonyls, 1:1:1:1 ratio); 204.4 (cobalt carbonyls); 90.4 (Cp ring CH's); 88.9 (alkyne quaternary C); 85.0, *85.1 (C-2); 74.5, *74.3 (alkyne CH); 73.5 (CH₂); 49.6 (C-1 or C-7); 48.0 (C-1 or C-7); 45.5 (C-4); 36.4 *36.3 (C-3); 28.6, *28.5 (C-5); 27.0 (C-6); 19.9 (C-9); 19.0 (C-8); 14.3, *14.1 (C-10). IR (CH₂Cl₂): ν_{CO} 2050 (m), 1985 (s), 1945 (br, sh), 1885 (br, sh) cm⁻¹. Mass spectra (FAB+): m/z (%) 554 (6) ((M)⁺ $C_{23}H_{25}O_6MoCo$; 498 (56) (M - 2CO)+; 470 (100) (M - 3CO)+; 442 (18) $(M - 4CO)^+$; 414 (12) $(M - 5CO)^+$; 401 (10) $(M - (O-bornyl))^+$; 373 (22) $(M - (O-bornyl) - CO)^+$; 345 (20) $(M - (O-bornyl) - CO)^+$; 345 (20) (M - (O-bornyl) - C2CO)⁺. Mass spectra (FAB-): m/z (%) 553 (10) (M - H)⁻; 525 (100) (M - H - CO)⁻; 497 (35) (M - H - 2CO)⁻. Anal. Calcd for C23H25O6CoMo: C, 50.02; H, 4.56. Found: C, 49.59; H, 4.73.

[($C_5H_4CH_3$)W(CO)₂Co(CO)₃][HC=CCH₂O-bornyl], 23. Method 1. A solution of [($C_5H_4CH_3$)W(CO)₂Co(CO)₃][HC=CC-H₂OH] (17, 0.451 g, 0.87 mmol), (1S)-endo-(-)-borneol (0.402 g, 2.61 mmol), and HBF₄:Et₂O (4 drops) in CH₂Cl₂ (30 cm³) was stirred under an atmosphere of N₂ in the presence of activated 4-Å molecular sieve overnight. The reaction was monitored by TLC on Kieselgel (eluent, ether/hexane, 6/94), which showed the formation of the product as a red spot (R_f 0.47). The solution was filtered to remove the molecular sieve, and then the solvent was evaporated. Flash chromatographic purification of the residue on silica gel (eluent, ether/hexane, 1/99) yielded 23 as an orange-red oil (0.089 g, 0.14 mmol, 16.1%) containing a 50:50 mixture of the diastereomers. Method 2. A solution of $(C_5H_4CH_3)W(CO)_3$ -Na⁺ and $[(OC)_3CoCo(CO)_3][HC=CCH_2O-bornyl]$ (5, 0.609 g, 1.27 mmol) in THF (35 cm³) under N₂ was stirred at reflux for 1.0 h. Removal of the solvent and flash chromatographic purification of the residue on silica gel (eluent, hexane) yielded the product 23 as an orange-red oil (0.552 g, 0.84 mmol, 66.9%) containing an approximately 55:45 mixture of the diastereomers. ¹³C NMR (C₆D₆): δ 213.4, 212.9 (tungsten carbonyls, 1:1 ratio); 203.0 (cobalt carbonyls); 105.6 (Cp ring quaternary C); 89.6, 88.4, 88.3, 87.8 (Cp ring CH's); 85.1, *85.2 (C-2); 83.1 (alkyne quaternary C); 73.6 (CH₂); 68.1, *68.3 (alkyne CH); 49.7 (C-1 or C-7); 48.0 (C-1 or C-7); 45.6 (C-4); 36.4, *36.5 (C-3); 28.6 (C-5); 27.1 (C-6); 19.9 (C-9); 19.0 (C-8); 14.3 (C-10); 13.5 (Cp ring CH₃). IR (CH₂Cl₂): ν_{CO} 2040 (m), 1995 (s), 1980 (s), 1940 (br, sh), 1880 (br, sh) cm⁻¹. Mass spectral (FAB+): m/z (%) 626 (8) $((M - CO)^+, C_{23}H_{27}O_5C_0W); 598 (40) (M - 2CO)^+; 570 (100)$ $(M - 3CO)^+$; 542 (20) $(M - 4CO)^+$; 514 (24) $(M - 5CO)^+$; 473 (19) $(M - (O-bornyl) - CO)^+$; 445 (15) $(M - (O-bornyl) - 2CO)^+$. Mass spectra (FAB-): m/z (%) 653 (15) (M - H)⁻; 625 (100) (M - H $(M - CO)^{-}; 597 (51) (M - H - 2CO)^{-}; 570 (27) (M - 3CO)^{-}; 542 (15)$ $(M - 4CO)^{-}$. Anal. Calcd for $C_{24}H_{27}O_6CoW$: C, 44.06; H, 4.16. Found: C, 44.21; H, 4.38.

 $[(C_5H_4CH_3)Mo(CO)_2Co(CO)_3][HC=CCH_2O-bornyl], 24.$ Method 1. A solution of [(C₅H₄CH₃)Mo(CO)₂Co(CO)₃][HC=C-CH₂OH] (18, 0.341 g, 0.79 mmol), (1S)-endo-(-)-borneol (0.359 2.32 mmol), and a small amount of HBF₄·Et₂O (2 drops) in CH_2Cl_2 (30 cm³) was stirred under N_2 over an excess of activated 4-Å molecular sieve for 1.0 h. The reaction was monitored by TLC on Kieselgel (eluent, ether/hexane, 3/97) which showed the formation of the product as a red band $(R_t 0.30)$. After the molecular sieve was filtered off and the solvent removed, flash chromatographic purification of the residue on silica gel (eluent, ether/hexane, 3/97) yielded 24 as a red oil (0.202 g, 0.36 mmol, 45.6%) containing a 50:50 mixture of the diastereomers. Method A solution of (C₅H₄CH₃)Mo(CO)₃-Na⁺ and [(OC)₃CoCo-(CO)₃][HC=CCH₂O-bornyl] (5, 0.532 g, 1.11 mmol) in THF (30 cm^3) was stirred at reflux for 1.0 h under an atmosphere of N₂. Removal of the solvent and flash chromatographic purification of the residue on silica gel (eluent, hexane) yielded the product 24 as a red oil (0.342 g, 0.60 mmol, 54.1%) containing an approximately 55:45 mixture of the diastereomers. ¹³C NMR (C_6D_6): δ 226.5, 226.4 (molybdenum carbonyls, 1:1 ratio); 204.5 (cobalt carbonyls); 108.2 (Cp ring quaternary C); 91.3, 90.4, 89.8 (Cp ring CH's); 88.9 (alkyne quaternary C); 85.0, *85.2 (C-2); 75.2 (alkyne CH); 73.4, *73.3 (CH₂); 49.7 (C-1 or C-7); 48.0 (C-1 or C-7); 45.5 (C-4); 36.4 (C-3); 28.6 (C-5); 27.0 (C-6); 19.9 (C-8); 14.3 (C-10); 13.8 (Cp ring CH₃). IR (CH₂Cl₂): v_{CO} 2040 (m), 1985 (s), 1940 (br, sh), 1890 (br, sh) cm⁻¹. Mass spectra (FAB+): m/z (%) 540 (9) $((M - CO)^+, C_{23}H_{27}O_5C_0M_0); 512 (56) (M - 2CO)^+; 484 (100)$ $(M - 3CO)^+$; 456 (18) $(M - 4CO)^+$; 428 (14) $(M - 5CO)^+$; 387 (19) $(M - (O-bornyl) - CO)^+$; 359 (12) $(M - (O-bornyl) - CO)^+$. Anal. Calcd for C₂₄H₂₇O₆CoMo: C, 50.90; H, 4.81. Found: C, 50.71; H, 5.05.

 $[(C_5H_5)Mo(CO)_2Co(CO)_3][CH_3C=C-borneol], 25.$ A solution of $(C_5H_5)Mo(CO)_3$ Na⁺ and $[(OC)_3CoCo(CO)_3][CH_3C=C-borneol]$ (6, 0.629 g, 1.32 mmol) in THF (55 cm³) was stirred at reflux for 2.0 h under N_2 . The reaction was monitored by TLC on Kieselgel (eluent, ether/hexane, 5/95), which showed the formation of the product as a red band $(R_f 0.25)$. After cooling to room temperature, the reaction mixture was allowed to stir overnight. Removal of the solvent and flash chromatographic purification of the residue on silica gel (eluent, ether/hexane, 2/98) yielded the product 25 as a red solid (0.319 g, 0.58 mmol, 43.9%) containing an approximately 65:35 mixture of the diastereomers. ¹³C NMR $(C_6 D_6)$: δ 227.1, *228.8 (1 molybdenum carbonyl); 225.3, *226.9 (1 molybdenum carbonyl); 204.5 (cobalt carbonyls); 102.2, *102.6 (quaternary C); 90.5, *90.7 (Cp ring CH's); 85.2, *85.4 (quaternary C); 55.3, *56.1 (quaternary C); 53.5, *50.9 (C-3); 51.5, *51.3 (quaternary C); 49.9 (quaternary C); 45.9, *45.4 (C-4); 33.0 *27.4 (C-5 or C-6); 30.4, *28.0 (C-5 or C-6); 22.5, 22.1, 21.6, 21.3 (alkyne CH_3 , C-8 and C-9); 12.0, *11.4 (C-10). IR (CH_2Cl_2): ν_{CO} 2025 (m), 1995 (s), 1980 (br), 1935 (br) cm⁻¹. Mass spectra (FAB+): m/z $\begin{array}{l} (\%) \ 526 \ (30) \ ((M-CO)^+, \ C_{22}H_{25}O_5CoMo); \ 498 \ (100) \ (M-2CO)^+; \\ 480 \ (44) \ (M-H_2O-2CO)^+; \ 470 \ (24) \ (M-3CO)^+; \ 452 \ (95) \ (M-2CO)^+; \\ \end{array}$ $-H_2O - 3CO)^+$. Mass spectra (FAB-): m/z (%) 553 (19) (M - $(H)^{-1}$; 526 (12) $(M - CO)^{-1}$; 373 (13) $(M - borneol - CO)^{-1}$; 334 (18) $(CpMoCo(CO)_4)^-;\,306\;(100)\;(CpMoCo(CO)_3)^-.$ Anal. Calcd for $C_{23}H_{25}O_6CoMo:\;C,\;50.02;\;H,\;4.56.$ Found: C, 49.57; H, 4.41. [(C₅H₅)W(CO)₂Co(CO)₃][CH₃C=C-borneol], 26. A solution of $(C_5H_5)W(CO)_3$ Na⁺ and $[(OC)_3CoCo(CO)_3][CH_3C=C-borneol]$ (6, 1.371 g, 2.86 mmol) in THF (65 cm³) under N₂ was stirred at reflux for 3.0 h. The reaction was monitored by TLC on Kieselgel (eluent, ether/hexane, 5/95), which showed the formation of the product as a red-orange band $(R_t 0.07)$. Removal of the solvent and flash chromatographic purification of the residue on silica gel (eluent, ether/hexane, 5/95) yielded the product 26 as a red-orange solid (0.280 g, 0.44 mmol, 15.4%) containing an approximately 75:25 mixture of the diastereomers. ¹³C NMR (C_6D_6): δ 214.7, *216.4 (1 tungsten carbonyl); 211.4, *213.2 (1 tungsten carbonyl); 204.0 (cobalt carbonyls); 95.7, *96.3 (quaternary C); 88.6, *88.9 (Cp ring CH's); 84.9, *86.3 (quaternary C); 55.3, *55.9 (quaternary C); 53.5, *50.7 (C-3); 51.5, *51.2 (quaternary C); 49.0 (quaternary C); 46.0, *45.2 (C-4); 30.2, *33.0 (C-5); 27.9, *27.4 (C-6); 22.2, 22.1, 21.6, 21.3 (alkyne CH3, C-8 and C-9); 12.2, *11.4 (C-10). IR (CH₂Cl₂): ν_{CO} 2020 (m), 1995 (s), 1975 (br), 1925 (br) cm⁻¹. Mass spectra (FAB+): m/z (%) 640 (3) ((M)⁺, C₂₃H₂₅O₆CoW); 623 (3) (M - OH)⁺; 612 (12) (M - CO)⁺; 595 (5) (M - OH - CO)⁺; 584 (95) $(M - 2CO)^+$; 566 (30) $(M - H_2O - 2CO)^+$; 556 (11) (M $- 3CO)^+$; 538 (95) (M $- H_2O - 3CO)^+$; 528 (38) (M $- 4CO)^+$; 510 (100) $(M - H_2O - 4CO)^+$; 500 (22) $(M - 5CO)^+$; 482 (25) $(M - H_2O)^+$ - 5CO)⁺. Mass spectra (FAB-): m/z (%) 639 (88) (M - H)⁻; 612 (78) $(M - CO)^-$; 583 (34) $(M - H - 2CO)^-$; 459 (100) (M - borneol) $-CO)^{-}; 431 (26) (M - borneol - 2CO)^{-}; 420 (83) (CpWCo(CO)_4)^{-}.$ Anal. Calcd for C23H25O6CoW: C, 43.15, H, 3.94. Found: C, 42.58; H. 4.31.

 $[(OC)_3CoCo(CO)_3][HC = CCH(OH)Et]$, 27. A solution of Co₂(CO)₈ (3.964 g, 11.59 mmol) and 1-pentyn-3-ol (1.0 cm³, 11.59 mmol) in THF (40 cm³) was stirred under N₂ for 2 h. After the solvent was removed and the residue extracted with hexane, the cluster 27 was obtained as a reddish oil (3.809 g, 10.29 mmol, 88.8%). ¹H NMR (CDCl₃): δ 6.06 (s, 1 H); 4.60 (t, 1 H); 1.80 (overlapping multiplets, 3 H); 1.14 (t, 3 H). IR (CH₂Cl₂): v_{CO} 2090 (m), 2050 (s), 2030 (s) cm⁻¹. Mass spectra (FAB+): m/z (%) 370 (8) $((M)^+, C_{11}H_8O_7Co_2)$; 353 (20) $(M - OH)^+$; 342 (65) $(M - CO)^+$; 325 (38) (M - ŎH - ČO)⁺; 314 (97) (M - 2CO)⁺; 297 (21) (M -OH - 2CO)+; 286 (100) (M - 3CO)+; 269 (12) (M - OH - 3CO)+; 258 (38) (M - 4CO)⁺; 241 (23) (M - OH - 4CO)⁺; 230 (11) (M -5CO)⁺; 213 (12) (M - OH - 5CO)⁺; 202 (14) (M - 6CO)⁺. Mass spectra (FAB-): m/z (%) 369 (35) (M - H)⁻; 342 (100) (M - CO)⁻; $314 (30) (M - 2CO)^-; 286 (16) (M - 3CO)^-; 258 (20) (M - 4CO)^-;$ 230 (9) (M - 5CO)⁻.

[(dppm)((OC)₂CoCo(CO)₂)][HC=CCH(OH)Et], 28. A solution of [(OC)₃CoCo(CO)₃][HC=CCH(OH)Et] (27, 0.570 g, 1.54 mmol) and dppm (0.576 g, 1.50 mmol) in hexane (50 cm³) was stirred at reflux under an atmosphere of N₂ for 1.0 h. The reaction was monitored by TLC on Kieselgel (eluent, ether/hexane, 15/85), which showed the formation of the product as a blood red band $(R_t 0.11)$. After removing the solvent, the residue was purified by flash chromatography on silica gel (eluent, ether/hexane, 15/85) to give 28 as a red solid (0.369 g, 0.53 mmol, 35.3%). ³¹P NMR (CH₂Cl₂): δ 43.0 (single peak). ¹³C NMR (CH₂Cl₂): δ 207.9, 203.9 (carbonyls, 2:2); 136.6 (d, ipso C's of phenyl rings, ${}^{1}J({}^{13}C-{}^{31}P) =$ 19.9 Hz); 132.0 (d, ortho C's of phenyl rings, ${}^{2}J({}^{13}C-{}^{31}P) =$ 14.6 Hz); 129.8 (para C's of phenyl rings); 128.4 (meta C's of phenyl rings); 107.2 (alkyne quaternary C); 75.6 (CH); 73.1 (alkyne CH); 41.3 (t, CH₂ of dppm, ${}^{1}J({}^{13}C-{}^{31}P) = 21.5 Hz$); 32.7 (CH₂); 10.7 (CH₃). IR (CH₂Cl₂): ν_{CO} 2010 (m), 1995 (s), 1970 (m) cm⁻¹. Mass spectra (FAB+): m/z (%) 681 (2) ((M - OH)⁺, C₃₄H₂₉O₄P₂Co₂); 670 (14) $(M - CO)^+$; 642 (4) $(M - 2CO)^+$; 614 (43) $(M - 3CO)^+$; 586 (65) $(M - 4CO)^+$; 568 (10) $(M - H_2O - 4CO)^+$; 519 (35) $(M - 4CO)^+$; 519 (35) (M - 4CO)^+; 510 (M - 4CO)^+; 5 $-H_2O - 3CO - C_6H_5)^+$; 502 (28) $(Co_2(dppm))^+$; 443 (100) (M -OH - $3CO - 2C_6H_5$)⁺; 425 (30) ($Co_2(dppm) - C_6H_5$)⁺; 348 (26) ($Co_2(dppm) - 2C_6H_5$)⁺. Mass spectra (FAB-): m/z (%) 697 (95) $(M - H)^{-}$; 670 (100) $(M - CO)^{-}$; 641 (20) $(M - H - 2CO)^{-}$; 586 (14) $(M - 4CO)^{-1}$

Thermal Reaction of Ph₃P with $[(OC)_3CoCo(CO)_3][HC \equiv CCH(OH)Et]$. A THF/Et₂O (40 cm³/15 cm³) solution of $[(OC)_3CoCo(CO)_3][HC \equiv CCH(OH)Et]$ (27, 0.617 g, 1.67 mmol) and triphenylphosphine (0.350 g, 1.34 mmol) was stirred at 50 °C under an atmosphere of N₂ for 5 h. The reaction was monitored by TLC on Kieselgel (eluent, ether/pentane, 20/80), which showed the formation of three products as reddish-orange bands

 $(R_f 0.28, 0.18, 0.10)$. After cooling to room temperature and allowing the mixture to stir overnight, the solvent was removed and the crude material was purified by flash chromatography on silica gel (eluent, Et_2O /pentane, 20/80). The three bands were collected and subsequently identified as the major monosubstituted diastereomeric product 29a (0.411 g, 0.68 mmol, 50.8%), the bis(triphenylphosphine)-substituted cluster 30 (0.111 g, 0.13 mmol, 19.9%), and the minor monosubstituted diastereomeric product 29b (0.201 g, 0.33 mmol, 24.6%). Major diastereomer 29a. ³¹P NMR (CH₂Cl₂): δ 54.1 (single peak). ¹³C NMR (CH₂Cl₂): δ 205.9, 205.3, 201.8 (carbonyls, 1:1:3); 134.3 (d, ipso C's of phenyl rings, ${}^{1}J({}^{13}C-{}^{31}P) = 41.8$ Hz); 132.9 (d, ortho C's of phenyl rings, ${}^{2}J({}^{13}C-{}^{31}P) = 11.1 \text{ Hz}$; 130.4 (para C's of phenyl rings); 128.5 (d, meta C's of phenyl rings, ${}^{3}J({}^{13}C-{}^{31}P) = 9.8$ Hz); 96.4 (alkyne quaternary C); 72.6 (CH); 71.7 (alkyne CH); 33.3 (CH₂); 10.3 (CH₃). IR (CH₂Cl₂): ν_{CO} 2060 (m), 2005 (s), 1970 (sh) cm⁻¹. Mass spectra $\begin{array}{l} \text{(FAB+):} & m/z \ (\%) \ 604 \ (3) \ ((M)^+, \ C_{28}H_{23}O_6PCO_2); \ 587 \ (4) \ (M-OH)^+; \ 576 \ (2) \ (M-CO)^+; \ 559 \ (4) \ (M-OH-CO)^+; \ 548 \ (18) \ (M-CO)^+; \ 531 \ (4) \ (M-OH-2CO)^+; \ 520 \ (35) \ (M-3CO)^+; \ 503 \ (7) \end{array}$ $(M - OH - 3CO)^+$; 492 (55) $(M - 4CO)^+$; 475 (6) $(M - OH - 4CO)^+$; 464 (100) $(M - 5CO)^+$; 447 (8) $(M - OH - 5CO)^+$; 397 (60) $(M - H_2O - 4CO - C_6H_5)^+$; 321 (50) $(M - OH - 4CO - 2C_6H_5)^+$. Mass spectra (FAB-): m/z 603 (15) (M - H)⁻; 342 (100) (M - PPh₃)⁻; 314 (25) (M - PPh₃ - CO)⁻; 286 (12) (M - PPh₃ - 2CO)⁻. Disubstituted cluster 30. ³¹P NMR (CH₂Cl₂): δ 51.6, 50.0 (1:1 ratio). ^{13}C NMR (carbonyls) (CH₂Cl₂): δ 207.3 (single resonance). IR (CH₂Cl₂): ν_{CO} 2020 (m), 1990 (w), 1970 (s, br) cm⁻¹. Mass spectra (FAB+): m/z (%) 810 (2) ((M - CO)⁺, C₄₄H₃₈O₄P₂Co₂); 782 (4) $(M - 2CO)^+$; 726 (22) $(M - 4CO)^+$; 642 (10) $(Co_2(PPh_3)_2)^+$; 565 (110) $(Co_2(PPh_3)_2 - C_6H_5)^+$; 520 (8) $(M - PPh_3 - 2CO)^+$; 492 (10) $(M - PPh_3 - 3CO)^+$; 46 (100) $(M - PPh_3 - 4CO)^+$. Mass spectra (FAB-): m/z (%) 837 (15) (M - H)⁻; 576 (90) (M - PPh₃)⁻; 314 (100) $(M - 2PPh_3)^-$. Minor diastereomer 29b. ³¹P NMR (CH₂Cl₂): δ 53.0 (single peak). ¹³C NMR (CH₂Cl₂): δ 205.9, 205.2, 201.9 (carbonyls, 1:1:3); 134.5 (d, ipso C's of phenyl rings, ${}^{1}J({}^{13}C-{}^{31}P) = 41.6$ Hz); 132.9 (d, ortho C's of phenyl rings, ${}^{2}J({}^{13}C-{}^{31}P) = 11.1$ Hz); 130.4 (para C's of phenyl rings); 128.6 (d, meta C's of phenyl rings, ${}^{3}J({}^{13}C-{}^{31}P) = 9.8$ Hz); 96.4 (alkyne quaternary C); 72.7 (CH); 72.4 (alkyne CH); 32.3 (CH₂); 10.6 (CH₃). IR (CH₂Cl₂): ν_{CO} 2060 (m), 2005 (s), 1970 (sh) cm⁻¹. Mass spectra (FAB+): m/z (%) $587 (3) ((M - OH)^+, C_{28}H_{22}O_5PCo_2); 559 (3) (M - OH - CO)^+; 548$ $(15) (M - 2CO)^+; 531 (4) (M - OH - 2CO)^+; 520 (30) (M - 3CO)^+;$ 503 (6) (M - OH - 3CO)⁺; 492 (49) (M - 4CO)⁺; 475 (4) (M - OH $-4CO)^+$; 464 (100) (M - 5CO)⁺; 447 (9) (M - OH - 5CO)⁺; 397 (62) (M - H₂O - 4CO - C₆H₅)⁺; 321 (48) (M - OH - 4CO - 2C₆H₅)⁺. Mass spectra (FAB-): m/z (%) 603 (15) (M - H)⁻; 342 (100) (M $-PPh_3$; 314 (27) (M $-PPh_3 - CO$; 286 (14) (M $-PPh_3 - 2CO$; 258 (11) (M - PPh₃ - 3CO)⁻

 $[(C_5H_5)Mo(CO)_2Co(CO)_3][HC = CCH(OH)Et], 31.$ A solution of (C₅H₅)Mo(CO)₃-Na⁺ and [(OC)₃CoCo(CO)₃][HC=CCH-(OH)Et] (27, 0.556 g, 1.50 mmol) in THF (65 cm³) was stirred at reflux for 0.5 h under an atmosphere of N_2 . The reaction was monitored by TLC on Kieselgel (eluent, ether/hexane, 25/75), which showed the formation of the product as a red-orange band $(R_f 0.15)$. Removal of the solvent and flash chromatographic purification of the residue on silica gel (eluent, ether/pentane, 15/85) yielded the product 31 as a red-orange oily material (0.460 g, 1.04 mmol, 69.3%) containing an approximately 70:30 mixture of the diastereomers. ¹³C NMR (C_6D_6): δ 226.5, 225.4 (molybdenum carbonyls, 1:1 ratio); 204.6 (cobalt carbonyls); 92.6, *92.2 (alkyne quaternary C); 90.3, *90.0 (Cp ring CH's); 78.0, *79.2 (alkyne CH); 77.0, *77.2 (CH); 34.3, *33.1 (CH₂); 11.1 (CH₃). IR $(CH_2Cl_2): \nu_{CO} 2040 \text{ (m)}, 1990 \text{ (s)}, 1950 \text{ (sh)}, 1885 \text{ (sh) cm}^{-1}$. Mass spectra (FAB+): m/z (%) 446 (17) ((M)⁺, C₁₅H₁₃O₆CoMo); 418 (40) (M - CO)⁺; 390 (100) (M - 2CO)⁺; 362 (50) (M - 3CO)⁺; 334 (45) (M - 4CO)⁺; 306 (30) (M - 5CO)⁺; 288 (15) (M - 5CO - H₂O)⁺. Mass spectra (FAB-): m/z (%) 445 (95) (M)-; 418 (100) (M -CO)⁻; 389 (40) (M – H – 2CO)⁻. Anal. Calcd for C₁₅H₁₃O₆CoMo: C, 40.57; H, 2.95. Found: C, 40.36; H, 3.03.

 $[(C_5H_5)W(CO)_2Co(CO)_3][HC \cong CCH(OH)Et]$, 32. A solution of $(C_5H_5)W(CO)_3$ -Na⁺ and $[(OC)_3CoCo(CO)_3][HC \cong CCH(OH)Et]$ (27, 0.715 g, 1.93 mmol) in THF (60 cm³) was stirred at reflux for 1.0 h under an atmosphere of N₂. The reaction was monitored by TLC on Kieselgel (eluent, ether/pentane, 20/80), which showed the formation of the product as a red-orange band (R_f 0.14). Removal of the solvent and flash chromatographic purification of the residue on silica gel (eluent, ether/pentane, 20/80) yielded the product 32 as a reddish oily material (0.311 g, 0.58 mmol, 30.1%) containing an approximately 60:40 mixture of the diastereomers. [Note: The major diastereomer could be isolated by flash chromatography on silica gel (eluent, ether/pentane, 5:95)] ¹³C NMR (C₆D₆): 212.4, *213.4 (1 tungsten carbonyl); 211.0, *211.0 (1 tungsten carbonyl); 203.0 (cobalt carbonyls); 88.0, *88.2 (Cp ring CH's); 85.9 (alkyne quaternary C); 77.7, *77.2 (CH); 72.6, *71.3 (alkyne CH); 33.4, *34.7 (CH₂); 10.8, *11.2 (CH₃). IR (CH₂Cl₂): ν_{CO} 2040 (m), 2000 (s), 1985 (s, br), 1940 (sh) cm⁻¹. Mass spectra (FAB+): m/z (%) 532 (15) ((M)⁺, C₁₅H₁₃O₆CoW); 515 (7) (M – OH)⁺; 504 (40) (M – CO)⁺; 487 (10) (M – OH – CO)⁺; 476 (100) $(M - 2CO)^+$; 459 (10) $(M - OH - 2CO)^+$; 448 (43) $(M - 3CO)^+$; 431 (14) (M - OH - 3CO)+; 420 (22) (M - 4CO)+; 403 (21) (M - $OH - 4CO)^+$; 392 (32) $(M - 5CO)^+$; 375 (20) $(M - OH - 5CO)^+$ Mass spectra (FAB-): m/z (%) 531 (100) (M)⁻; 504 (95) (M -CO)⁻; 476 (30) (M - 2CO)⁻; 448 (65) (M - 3CO)⁻; 419 (56) (M - $H - 4CO)^{-}$; 392 (24) (M - 5CO)⁻. Anal. Calcd for $C_{15}H_{13}O_6CoW$: C, 33.86; H, 2.46. Found: C, 33.30; H, 2.55.

X-ray Crystallography. Crystals of $[(C_0(CO)_3)_2(C_{13}H_{10}OH)]$ were grown from CH₂Cl₂/hexane. The density was determined by suspension in an aqueous solution of ZnCl₂. Reddish-black prismatic crystals were examined under a polarizing microscope for homogeneity. A well-formed crystal, $0.64 \times 0.42 \times 0.26$ mm, was selected and mounted on the tip of a glass fiber with use of epoxy cement. Unit cell parameters were obtained from a least-squares fit of χ , ϕ , and 2θ for 15 reflections in the range 21.6° $< 2\theta < 28.7^{\circ}$ recorded on a Nicolet P3 diffractometer with use of graphite monochromated Mo K α radiation ($\lambda = 0.71069$ Å at 22 °C). Intensity data were also recorded on a Nicolet P3 diffractometer with a coupled θ (crystal)-2 θ (counter) scan, for 4269 reflections in the quadrant $h,k,\pm l$ with $2\theta \leq 50^{\circ}$. The method of selection of scan rates and initial data treatment have been described.^{24,25} Corrections for Lorentz-polarization effects and absorption (ψ scans)²⁶ were applied to all reflections. Two standard reflections (0, 6, 7, 1.74%; and -1, 6, -3, 1.93%) monitored every 48 reflections showed no sign of crystal decomposition or instrument instability. Systematically absent reflections (31) were excluded, and 525 symmetry-equivalent data were then averaged $(R_{int} = 0.0175)$ to give 3713 unique reflections. A summary of crystal data is given in Table III.

The coordinates of the cobalt atoms were found from a three-dimensional Patterson synthesis with use of the program SHELX-86.27 Full-matrix least-squares refinement of these coordinates followed by a three-dimensional electron density synthesis revealed all the non-hydrogen atoms and confirmed the positional

assignments for the heavy atoms. After refinement, the temperature factors of the non-hydrogen atoms, which were previously isotropic, were made anisotropic, and further cycles of refinement revealed the positional parameters for all of the hydrogen atoms. These were included in subsequent cycles of refinement (U fixed at 0.08 Å²). Further refinement using full-matrix least-squares minimizing $\sum w(|F_o| - |F_c|)^2$ was terminated when the maximum shift/error reached 0.001. Correction for secondary extinction was made by the method in SHELX-76.²⁸ Final $R_1 = 0.0546$ and $R_2 = 0.0567$ for 3713 reflections. Alternative refinement where coordinates x,y,z were replaced by -x, -y, -z gave $R_1 = 0.0626, R_2$ = 0.0667, and S = 1.2812 (for definition see Table III) for 3713 reflections, confirming the assignment for the correct hand of the structure. Throughout the refinement, scattering curves were taken from ref 29, and anomalous dispersion corrections from ref 30 were applied to the curve for cobalt. All calculations were performed on a VAX 8650 computer. Programs used were as follows: XTAL,³¹ data reduction; TAPER,²⁶ absorption correction; SHELXS-86,²⁷ structure solution; SHELX-76,²⁸ structure refinement; MOLGEOM, 32 molecular geometry; and SNOOPI, 33 diagrams. Final atomic positional parameters are given in Table II, and selected bond lengths and bond angles are given in Table III.

Acknowledgment. We thank the donors of the Petroleum Research Fund, administered by the American Chemical Society, for partial support of this research. Financial support from the Natural Sciences and Engineering Research Council of Canada and McMaster University is also gratefully acknowledged. M.F.D. was the recipient of an NSERC postgraduate scholarship and a McMaster University H. L. Hooker Senior Fellowship. We also thank Dr. Richard W. Smith of the McMaster Regional Centre for Mass Spectrometry for the FAB mass spectra.

Supplementary Material Available: Tables SI-SV, listing full crystal data, least-squares mean planes and dihedral/torsional angles, hydrogen atom positional parameters, bond lengths and bond angles involving hydrogen atoms, and anisotropic temperature factors, respectively (9 pages); Table SVI, listing observed and calculated structure factor amplitudes (23 pages). Ordering information is given on any current masthead page.

⁽²⁴⁾ Lippert, B.; Lock, C. J. L.; Rosenburg, B.; Zvagulis, M. Inorg. Chem. 1977, 16, 1525.

 ⁽²⁵⁾ Hughes, R. P.; Krishnamachari, N.; Lock, C. J. L.; Powell, J.;
 Turner, C. T. Inorg. Chem. 1977, 16, 314.
 (26) Calabrese, J. C.; Burnett, R. M. TAPER locally modified by Z. Tun

with the permission of Nicolet XRD Corp., 1980.

⁽²⁷⁾ Sheldrick, G. M. SHELXS-86, Program for Crystal Structure Solution; University of Göttingen: Federal Republic of Germany, 1986.

⁽²⁸⁾ Sheldrick, G. M. SHELX-76, Program for Crystal Structure Deter-(29) Sherinick, G. M. Shika's, Trigram in Grystal Octative Determination; University of Cambridge: England.
(29) Cromer, D. T.; Mann, J. B. Acta Crystallogr. 1968, A24, 231.
(30) Cromer, D. T.; Liberman, D. J. Chem. Phys. 1970, 53, 1891.
(31) Stewart, J. M.; Hall, S. R. The XTAL System of Crystallographic

Programs. Technical Report TR-1364; University of Maryland: College Park, 1983.

⁽³²⁾ Stephens, J. MOLGEOM, adapted from CUDLS; McMaster University: Canada, 1973.

⁽³³⁾ Davies, K. CHEMGRAF suite: SNOOPI; Chemical Design Ltd.: Oxford, England, 1983.