

Figure 1. Molecular structure of $Cp_{2}^{*}Zr_{2}(\mu-H)_{3}Cl_{3}(PMe_{3})$ (4). Selected structural parameters are as follows: Zr(1)-Zr(2) = 3.126 (1), Zr(1)-Cl(1) = 2.470 (1), Zr(2)-Cl(2) = 2.456 (1), Zr(2)-Cl(3) = 2.456 (1), Zr(3) = 2.456= 2.452 (1), Zr(1)-P(1) = 2.744 (1), Zr(1)-H(1) = 1.92 (3), Zr-(1)-H(2) = 2.00 (3), Zr(1)-H(3) = 2.24 (5), Zr(2)-H(1) = 2.04 (4), Zr(2)-H(2) = 1.98 (3), Zr(2)-H(3) = 2.35 (5) Å, $\angle Zr(1)-H(1)-Zr(2)$ = 104.1 (19), $\angle \mathbf{Zr}(1) - \mathbf{H}(2) - \mathbf{Zr}(2) = 103.2$ (14), $\angle \mathbf{Zr}(1) - \mathbf{H}(3) - \mathbf{Zr}(2)$ = 85.9 (17), $\angle P(1) - Zr(1) - Cl(1) = 86.06$ (3), $\angle Cl(2) - Zr(2) - Cl(3) = 101.77$ (3)°.

(2)°, compare Hf-H-Hf of 94 (5)° in $\{Cp*Hf(Me)\}$ $(CMe_3)_2](\mu-H)_2^2$). At -30 °C the ¹H NMR spectrum⁵ of 4 shows three nonequivalent hydride resonances, each with one ${}^{2}J_{PH}$ and two (equivalent) ${}^{2}J_{HH}$ couplings. At 75 °C all hydride signals are coalesced into one broad resonance, indicating rapid interchange of the hydrides at higher temperatures. Since at this temperature two different Cp* resonances remain, rapid exchange of Cl and PMe₃ between the metal centers apparently does not occur. Compound 4 is the first example of a $(\mu-H)_3$ -bridged earlytransition-metal dimer. In the heterobimetallic complex $Cp_2Zr(Cl)(H)_3Os(PMe_2Ph)_3^9$ the metal centers are probably also $(\mu-H)_3$ bridged, although the hydrides could not be located by X-ray diffraction. A number of late-transition-metal $(\mu$ -H)₃ complexes are known (such as [Fe₂(μ - $H_{3}(triphos)_{2}[PF_{6}]$ and related compounds¹⁰).

Despite the difficulties encountered in the characterization of 3, the use of the (dimethylamino)propyl ligand has enabled us to obtain soluble, crystalline Cp*Zr hydrides. This makes it likely that intermediate stabilization of the newly formed hydride by an (already coordinated) weak Lewis base is essential to the formation of soluble complexes. For these sterically and electronically strongly unsaturated hydrides, the formation of thermodynamically favored oligomers with bridging hydride ligands is the driving force for the observed disproportionation to give complexes with complicated stoichiometries. Bercaw et al. already observed that in the hydrogenolysis of $Cp*Hf[P(CMe_3)_2]Cl_2$ an intermediate $Cp*Hf(H)Cl_2$ species can be trapped with ethene² but in the absence of trapping agents probably disproportionates. This contrasts with the behavior of (sterically more encumbered) monomeric electron-deficient complexes, where the thermodynamic bias toward dispersion of π -donor ligands (like halides or alkoxides) promotes comproportionation rather than disproportionation.¹¹ Presently we are investigating a range of Cp*M hydrides (M = Zr, Hf) with varying stoichiometries and their interaction with Lewis bases to get a more complete view of the structure-determining factors in strongly electron-deficient early-transition-metal hydrides.

Acknowledgment. This investigation was supported by the Netherlands Foundation for Chemical Research (SON) with financial aid from the Netherlands Organization for Scientific Research (NWO).

Supplementary Material Available: Experimental details, spectral and analytical data for all compounds, details of structure determination, crystal data, and lists of positional and thermal parameters for 4 (15 pages); a listing of observed and calculated structure factors for 4 (26 pages). Ordering information is given on any current masthead page.

(11) (a) Hessen, B.; Spek, A. L.; Teuben, J. H. Angew. Chem., Int. Ed. Engl. 1988, 27, 1058. (b) Marsella, J. Moloy, K. G.; Caulton, K. G. J. Organomet. Chem. 1980, 201, 89, and references cited therein.

First Prototype of Neutral Diacyl Complexes of Platinum(II) and Related Acyl(alkyl) Complexes of Platinum(II)

Jwu-Ting Chen,* Tsang-Miao Huang, Ming-Chu Cheng, and Yu Wang

Department of Chemistry, National Taiwan University Taipei, Taiwan, 10764 Republic of China

Received October 20, 1989

Summary: The acyl(carbonyl) complex cis-[Pt(COPh)- $(CO)(PPh_3)_2$ ⁺ (2a) reacts with PhLi to yield the neutral dibenzoyl complex cis-Pt(COPh)2(PPh3)2 (3a) in 34% isolated yield. The crystallographic data of 3a indicate that it is disposed in a distorted square-planar geometry with two benzoyl carbonyls in the s-trans configuration. The analogous reaction of the cationic 2a with MeLi, however, gives three products: cis-Pt(COPh)(COMe)(PPh₃)₂ (3b), cis-Pt(COPh)(Me)(PPh₃)₂ (4), and Pt(COPh)(Me)(CO)(PPh₃) (5a) in a relative ratio of 1:2.5:3 in 55% total yield. In a similar reaction carried out in the presence of extra PPh₃, only **3b** and **4** were obtained, in a 1:3.5 ratio in 90% total yield. The structures of the complexes 4 and 5a were determined by X-ray crystallography, and both are square planar. In 5a, the PPh3 was found trans to the benzoyl ligand. The replacement of a PPh₃ in 4 by CO gives 5a and its regio isomer 5b, whose PPh₃ is instead trans to the methyl group. The complex 5b is kinetically favored but thermodynamically unstable. These substitution reactions are reversible with the equilibria in favor of 4.

The rare diacyl complexes of the prototype RC(O)MC-(O)R' (wherein R and R' are hydrocarbyls) are either anionic^{1,2} or are stabilized by bridging structures.²⁻⁴ Curi-

⁽⁹⁾ Bruno, J. W.; Huffman, J. C.; Green, M. A.; Caulton, K. G. J. Am. Chem. Soc. 1984, 106, 8310.

 ^{(10) (}a) Dapporto, P.; Fallani, G.; Midollini, S.; Sacconi, L. J. Am.
 Chem. Soc. 1973, 95, 2021. (b) Dapporto, P.; Midollini, S.; Sacconi, L.
 Inorg. Chem. 1975, 14, 1643. (c) Bau, R.; Carroll, W. E.; Hart, D. W.;
 Teller, R. G. Adv. Chem. Ser. 1978, 167, 73. (d) Crabtree, R. H.; Felkin,
 H.; Morris, G. E. J. Organomet. Chem. 1977, 141, 205.

^{(1) (}a) Casey, C. P.; Bunnel, C. A. J. Chem. Soc., Chem. Commun. 1974, 733; J. Am. Chem. Soc. 1976, 98, 436. (b) Casey, C. P.; Scheck, D. M. J. Am. Chem. Soc. 1980, 102, 2723. (c) Casey, C. P.; Baltusis, C. M. J. Am. Chem. Soc. 1982, 104, 6347. (d) Drew, D.; Darensbourg, M. Y.; Darensbourg, D. J. J. Organomet. Chem. 1975, 85, 73. (2) Lukehart, C. M. Acc. Chem. Res. 1981, 14, 109; Adv. Organomet.

Chem. 1987, 25, 45, and references therein.

ously, all of them are found in d⁶ octahedral systems. In d⁸ square-planar systems, such diacyl species were proposed as key intermediates in carbonylative coupling reactions.⁵ However, such complexes have not yet been isolated.⁶ Reported herein are the first examples of neutral diacyl complexes of Pt(II), as well as the unprecedented acyl(alkyl) and acyl(alkyl)(carbonyl) complexes of Pt(II).

Treatment of trans-Pt(COCOPh)(Cl)(PPh₃)₂ (1) with AgBF₄ in dichloromethane at -29 °C led to cis-[Pt-(COPh)(CO)(PPh₃)₂](BF₄) (2a).⁷ After the removal of precipitated AgCl, the temperature was lowered to -63 °C. The addition of 1.1 equiv of PhLi to the reaction solution resulted in instantaneous formation of the cis dibenzoyl complex, cis-Pt(COPh)₂(PPh₃)₂ (3a). Recrystallization of **3a** from CH_2Cl_2/Et_2O afforded golden yellow, crystalline material in 34% isolated yield.

The dibenzoyl compound **3a** has been spectroscopically⁸ and crystallographically⁹ characterized. Its ORTEP plot in Scheme I shows that 3a is in a distorted square-planar geometry with the benzoyl ligands in the cis position. The bond angles $\angle P(1) - Pt - P(2) = 104.44$ (9)° and $\angle C(1) - Pt - P(2) = 104.44$ (9)° and $\angle C(1) - Pt - P(2) = 104.44$ $C(2) = 80.5 (3)^{\circ}$, to our knowledge, are the record high and the record low values respectively in the cis-PtC₂P₂ sys-

(8) Selected spectroscopic data of **3a**: IR (KBr) $\nu_{C0} = 1613, 1598 \text{ cm}^{-1}$; ³¹P NMR (CDCl₃) δ 14.5 ($J_{P-Pt} = 1568.1 \text{ Hz}$).

tems. The two benzovl C=O bonds are nearly perpendicular to the complex plane of P(1)-P(2)-C(1)-C(2) and are disposed in the s-trans configuration with a torsion angle of $O(1)-C(1)-C(2)-O(2) = 128.6^{\circ}$, different from the previously reported s-cis diacyl complexes.

The analogous reaction of 2a with MeLi at -78 °C, however, led to a rather different result. cis-Pt(COPh)- $(Me)(PPh_3)_2$ (4) and a novel benzoyl(carbonyl)(methyl) complex of Pt(II), 5a, were recovered, along with the expected acetyl(benzoyl) complex of Pt(II) 3b, in a relative ratio 2.5:3:1 in 55% total yield. When the reaction was carried out in the presence of 2 extra molar equiv of PPh₃, only 3b and 4 were obtained in 1:3.5 relative yield, and the total conversion was raised to 90%.

Repeated recrystallizations from benzene/Et₂O/n-hexane afforded pure 5a. Its spectroscopic data¹⁰ indicate that 5a contains benzoyl, carbonyl, methyl, and phosphine ligands. The $J_{P-Pt} = 1414.5$ Hz in the ³¹P NMR spectrum suggests that the single PPh₃ is most likely trans to the benzoyl group, and the crystal structure of 5a¹¹ provided proof of this. This is the first square-planar mononuclear complex of Pt(II) that contains at the same time $M-C(sp^3)$,

^{(3) (}a) Kampe, C. E.; Boag, N. M.; Kaesz, H. D. J. Am. Chem. Soc. 1983, 105, 2896. (b) Jenson, C. M.; Chen, Y. J.; Kaesz, H. D. J. Am. Chem. Soc. 1984, 106, 4046. (c) Jenson, C. M.; Knobler, C. B.; Kaesz, H. D. J. Am. Chem. Soc. 1984, 106, 5926.

⁽⁴⁾ The only previous example of an unsupported neutral diacyl complex, (RCO)₂Fe(CO)₄, has perfluoro substituents. Hensley, D. W.; Wurster, W. L.; Stewart, R. P. Jr. Inorg. Chem. 1981, 20, 645.
(5) Yamashita, H.; Kobayashi, T.; Sakakura, T.; Tanaka, M. J. Orga-

nomet. Chem. 1988, 356, 125.

⁽⁶⁾ A diacyl analogue related to the Pd(II)-catalyzed carbonylation of alcohols to dialkyl oxalates is (dppe)Pt(COOMe)₂. Bryndza, H. Organometallics 1985, 4, 1686.

⁽⁷⁾ Sen, A.; Chen, J.-T.; Vetter, W. M.; Whittle, R. R. J. Am. Chem. Soc. 1987, 109, 148.

⁽⁹⁾ **3a**: $C_{50}H_{40}O_2P_2Pt \cdot CH_2Cl_2$, $P2_1/c$, a = 14.45 (1), b = 16.469 (7), c 19.23 (1) Å, $\beta = 105.78$ (6)°, V = 4403.78 Å³, Z = 4, $\mu = 3.44$ mm⁻¹, determined on a CAD-4 diffractometer at T = 300 K; λ (Mo K α) = 0.7107 Å, $2^{\circ} < 2\theta < 50^{\circ}$. Total reflections, 7986; observed reflections, 5276 I > $1.5\sigma(I), R = 0.047, R_w = 0.032$ obtained by least squares refinement. 1.5 $\sigma(1)$, R = 0.04, $R_w = 0.032$ obtained by least squares remement. Computing program is NRCC SDP VAX package. Pt-P(1), 2.354 (2); Pt-P(2), 2.365 (2); Pt-C(1), 2.037 (7); Pt-C(2), 2.068 (7); C(1)-O(1), 1.23 (1); C(2)-O(2), 1.202 (9); $\angle P(1)$ -Pt-P(2), 104.44 (9); $\angle C(1)$ -Pt-C(2), 80.5 (3); $\angle Pt-C(1)$ -O(1), 123.1 (6); $\angle Pt-C(2)$ -O(2), 122.0 (6).

^{(3);} 247-C(1)-O(1), 123.1 (6); 247-C(2)-O(2), 122.0 (6). (10) Selected spectroscopic data of **5a**: IR (KBr) $\nu_{CO} = 2034$, 1622 cm⁻¹; ³¹P NMR (CDCl₃) δ 17.64 ($J_{P-P_1} = 1414.5$ Hz); ¹H NMR δ 0.376 (CH₃, dt, $J_{H-P} = 10.2$ Hz, $J_{H-P_1} = 70.3$ Hz). (11) **5a**: $C_{27}H_{23}O_2PPt$, triclinic, PI, a = 9.178 (1), b = 10.305 (3), c = 13.425 (3) Å, $\alpha = 106.91$ (2), $\beta = 108.19$ (2), $\gamma = 91.14$ (2)°, V = 1145.68Å³, Z = 2, $\mu = 6.38$ mm⁻¹; total reflections, 4290; observed reflections, 3444 $I > 1.5\sigma(I)$, R = 0.030, $R_w = 0.023$. Pt-C(1), 2.064 (6); Pt-C(2), 1.897 (7); Pt-C(3), 2.108 (7); C(1)-O(1), 1.221 (8); C(2)-O(2), 1.118 (8); $\angle P$ t-C-(2)-O(2), 174.9 (6).

Communications

 $M-C(sp^2)$, and M-C(sp) bonds. The rather short Pt-CO bond indicates that the methyl group may facilitate the backbonding, which presumably is responsible for the unusual stability of this carbonyl ligand in 5a.

The separation of 3b and 4 from their mixtures was not successful. The addition of PPh_3 to the solution of 5a caused complete conversion of 5a to 4.¹² Complex 4 is the first structurally characterized acyl(alkyl) compound of Pt(II).^{13,14} The Pt-P bond of the phosphine trans to the methyl group is 0.04 Å shorter than the Pt-P bond trans to the benzoyl group. The acetyl(benzoyl) complex 3b was mainly identified by spectroscopic methods.¹⁵ Two acyl vibrations at 1628 and 1605 cm⁻¹ in the IR and a ³¹P NMR resonance of doublets of doublets with $J_{P-Pt} = 1568.1$ and 1675.9 Hz strongly support the cis diacyl structure.

At ambient temperature, the complex 4 in CDCl₃ slowly decomposed to give acetophenone as the predominant product,¹⁶ along with several unidentified complexes. The formation of acetophenone was substantially accelerated, when 1 atm of CO was applied to the solution of 4. Reaction of 4 with CO also led to the formation of an intermediate 5b in <40% conversion. Complex 5b eventually disappeared, while 5a was formed in 30% yield. The bubbling of CO into the solution of **5a** did not give any **5b**.

0.033. Pt-P(1), 2.297 (3); Pt-P(2), 2.338 (3); Pt-C, 2.18 (1); Pt-C(1), 2.03 (1); C(1)-O(1), 1.17 (2).

(15) Selected spectroscopic data of **3b**: IR (KBr) $\nu_{CO} = 1628, 1605$ cm⁻¹; ³¹P NMR δ 15.49 ($J_{P-P} = 18.5, J_{P-Pt} = 1568.1$ Hz), 13.91 ($J_{P-Pt} = 1675.9$ Hz); ¹H NMR δ 1.61 (CH₃, dt, $J_{H-P} = 0.65$ Hz, $J_{H-Pt} = 15.3$ Hz). (16) ¹H NMR: δ 2.60 (CH₃); GC-MS, M⁺ = 120.

Complex 5b exhibited NMR patterns¹⁷ analogous to those of 5a, except for the relatively large coupling constant, $J_{\rm P-Pt}$ = 1967 Hz, in the ³¹P spectrum. Accordingly, we assign 5b as an isomer of 5a, in which the PPh_3 is trans to the methyl group rather than cis. The equilibria between 5a and 4, as well as between 5b and 4, could simply result from the substitution of either PPh_3 in 4 by CO. This is reasonable, since the Pt-P bond of the PPh_3 trans to the benzoyl group is weaker. Therefore, 5b is kinetically favored. On the other hand, 5a has its carbonyl ligand trans to the better electron-donating methyl group, so that it is the thermodynamic product. However, both equilibria favor 4, in which a stronger ligand, PPh₃ instead of CO, is present.

The overall reaction mechanism has not been fully elucidated. However, the NMR study of the reaction between 2a and MeLi at -40 °C showed that 3b was not the primary product. The decomposition of 3b yielded neither 4 nor 5a. An intermediate 6, which presumably is formed by nucleophilic attack of MeLi at the metal center of 2a, is proposed. Through 6, 3b could be independently formed by CO insertion. Meanwhile, 4 and 5a could be produced by the loss of the coordinated CO and PPh₃, respectively, from 6.

Acknowledgment. We thank National Science Council, R.O.C., for financial support.

Supplementary Material Available: An experimental section, tables of complete crystal data, complete lists of bond lengths and angles, atomic coordinates, and thermal parameters, and ORTEP drawings for 3a, 4, and 5a (21 pages); listings of structure factors for 3a, 4, and 5a (54 pages). Ordering information is given on any current masthead page.

⁽¹²⁾ Selected spectroscopic data of 4: IR (KBr) $\nu_{CO} = 1604 \text{ cm}^{-1}$, ³¹P NMR δ 24.38 ($J_{P,-P} = 14.3$, $J_{P,-Pt} = 2196.3 \text{ Hz}$), 20.04 ($J_{P,-Pt} = 1423.2 \text{ Hz}$); ¹H NMR δ 0.33 (CH₃, ddt, $J_{H,-P1} = 9.2$, $J_{H,-P2} = 6.2 \text{ Hz}$, $J_{H,-Pt} = 68.4 \text{ Hz}$). (13) 4: C₄₄H₃₈OP₃Pt, P2₁/n, a = 11.290 (2), b = 17.857 (4), c = 18.306(4) Å, $\beta = 98.74$ (2)⁵, V = 3647.67 Å³, Z = 4, $\mu = 4.01 \text{ mm}^{-1}$; total re-flections, 4746; observed reflections, 3032 $I > 1.5\sigma(I) R = 0.048, R_{\pi} =$

⁽¹⁴⁾ Goldberg, K. I.; Bergman, R. G. J. Am. Chem. Soc. 1989, 111, 1285.

⁽¹⁷⁾ Selected spectroscopic data of 5b: ³¹P NMR δ 21.5 ($J_{P-Pt} = 1967$ Hz); ¹H NMR δ 0.87 (CH₃, dt, J_{H-P} = 6.2 Hz, J_{H-Pt} = 72 Hz).