Synthesis and Characterization of Tetraruthenaborane Clusters: $Molecular Structure of [HRu₄(CO)₁₂Au₂(PPh₃)₂B]$

Ann K. Chipperfield and Catherine E. Housecroft"

University Chemical Laboratory, Lensfield Road, Cambridge CB2 lEW, U.K.

Arnold **L.** Rheingold"

Department of *Chemistry, University of Delaware, Newark, Delaware 197 16*

Received July 24, 1989

The tetraruthenaborane cluster $\mathrm{HRu}_4(\mathrm{CO})_{12}\mathrm{BH}_2$ (1) has been synthesized and characterized spectroscopically. Deprotonation to $[HRu_4(CO)_{12}BH]$ ⁻ (2) occurs via the loss of an Ru-H-B bridging proton. Compounds 1 and 2 are structural analogues of the ferraboranes $\rm{HFe}_4(CO)_{12}BH_2$ and $\rm{[HFe_4(CO)_{12}BH]}$, although, compared to [HFe₄(CO)₁₂BH]⁻, 2 exhibits a higher activation barrier for endo-hydrogen exchange, in line with the increased $M-H-M$ and $M-H-B$ bond energies in going from $M = Fe$ to Ru. The reaction of 2 with PPh₃AuCl leads to $HRu_4(CO)_{12}Au(PPh_3)BH$ (3) and $\text{HR}u_4(CO)_{12}Au_2(PPh_3)_2B$ (4), and as one progresses across the series of clusters **1-4,** the boron atom is converted from a borane to a borido environment. The tetraruthenium butterfly framework present in compounds 1–4 has been confirmed by
a single-crystal X-ray crystallographic characterization of 4: triclinic, \overline{PI} , $a = 13.212$ (3) Å, $b = 13.366$ (3)
Å, c The structure of 4 is similar to that found for $HFe_4(CO)_{12}Au_2(PEt_3)_2B$ but differs significantly from that of $Fe_4(CO)_{12}Au_2(PPh_3)_2BH$. Subtle differences between the carbonyl orientations in 4 and HF_{4^-} $(CO)_{12}Au_2(\tilde{P}Et_3)_{2}B$, and between the exact geometries of the M_4Au_2B cores (M = Fe, Ru) in the two compounds, support our earlier postulates regarding the sterically controlled pathway for isomer interconversion between $Fe_4(CO)_{12}Au_2(PR_3)_2BH$ and $HF_4(CO)_{12}Au_2(PR_3)_2B$ (R = alkyl, aryl), a pathway that involves hydrogen atom migration triggered by a rearrangement of the gold(1) phosphine groups and reorientation of one ${Fe(CO)_3}$ fragment.

Introduction

Investigations of the interactions of main-group elements with tetranuclear transition-metal butterfly clusters represent a rapid growth area in inorganic cluster chemistry, in particular because the butterfly array of metal atoms represents a molecular model for a "stepped", catalytically active site on a metal surface.' Recently, our attention has focused on the chemistry of ruthenaborane clusters, with an emphasis on clusters in which the ratio of metal
to boron atoms is $\geq 2^{2,3}$ Clusters containing a tetra-Clusters containing a tetraruthenium butterfly core are now well documented,' and of these, compounds in which the Ru, butterfly interacts with a main-group element exemplify $Ru-C,4,5$ $Ru-N,6-9$ Ru-P,1° and Ru-C1" bond formation. In the case of the carbido and nitrido clusters, the main-group atom interacts with all four metal atoms of the Ru₄ framework, while in the Ru₄P core the phosphorus atom is in a μ_3 -bonding mode and in the Ru,C core the chlorine atom interacts only

- (1) Sappa, E.; Tiripicchio, **A.;** Carty, **A.** J.; Toogood, G. E. *hog. Inorg. Chem.* **1987, 35,** 437.
- **(2)** Chipperfield, **A. K.;** Housecroft, C. E. *J. Organomet. Chem.* **1988,** *349,* C17.
- **(3)** Chipperfield, **A. K.;** Housecroft, C. E.; Raithby, P. R. *Organometallics,* in press.
- (4) Cowie, **A.** G.; Johnson, B. F. G.; Lewis, J.; Raithby, P. R. *J. Organomet. Chem.* **1988, 306, C63.**
- **(5)** Adams, R. D.; Babin, J. E.; Tanner, J. T. *Organometallics* **1988,**
- 7, 765.

(6) Collins, M. A.; Johnson, B. F. G.; Lewis, J.; Mace, J. M.; Morris,
J.; McPartlin, M.; Nelson, W. J. H.; Puga, J.; Raithby, P. R. *J. Chem.*
Soc., *Chem. Commun.* 1983, 689.

(7) Braga, D.; Johnson, B. F. G.; L
-
- *Chem. Commun.* **1982, 1081.**
	-

(8) Blohm, M. L.; Gladfelter, W. L. *Organometallics* 1985, 4, 45.
(9) Blohm, M. L.; Gladfelter, W. L. *Inorg. Chem.* 1987, 26, 459.
(10) MacLaughlin, S. A.; Carty, A. J.; Taylor, N. J. *Can. J. Chem.* 1982,

(11) Steinmetz, *G.* R.; Harley, **A.** D.; Geoffroy, *G.* L. *Inorg. Chem.* **1980,** *19,* **2985.**

with the wingtip ruthenium atoms. The ruthenaborane $HRu_{4}(CO)_{12}BH_{2}$ has previously been reported by Lewis and Johnson et al., and on the basis of infrared, mass, and ¹H NMR spectroscopic data, it was proposed that the cluster possessed either a tetrahedral or butterfly Ru, core.12 Subsequently, Fehlner et al. established that the structure of the analogous ferraborane $\rm{HFe}_{4}(\rm{CO})_{12}\rm{BH}_{2}$ comprised an $Fe₄$ butterfly framework.¹³ We have now confirmed the presence of an Ru_4 butterfly in HRu_4 (C- $O_{12}BH_2$; the boron atom resides within the interstice of the metal butterfly, while retaining interactions to two endo-hydrogen atoms. The boridic nature of the boron atom is enhanced by replacing these endo-hydrogen atoms with gold(I) phosphine fragments. In the discussion below, we shall delineate the rather subtle differences observed between the geometries of the M_4Au_2B core in HM_4 - $(CO)_{12}Au_2(PPh_3)_2B$ for $M = Fe^{14,15}$ and Ru.

Experimental Section

General Data. FT-NMR spectra were recorded on a Bruker WM **250** or AM **400** spectrometer. 'H NMR shifts are reported with respect to $\delta = 0$ for Me₄Si, ¹¹B NMR with respect to $\delta = 0$ for $F_3B\cdot OEt_2$, and ³¹P NMR with respect to $\delta = 0$ for H_3PO_4 . All downfield chemical shifts are positive. Infrared spectra were recorded on a Perkin-Elmer FT 1710 spectrophotometer. Mass spectra were recorded on a Kratos MS 890 instrument.

All reactions were carried out under argon by using standard Schlenk techniques.¹⁶ Solvents were dried over suitable reagents and freshly distilled under nitrogen before use. The products were

^{60,} *81.*

⁽¹²⁾ Eady, **C.** R.; Johnson, B. F. G.; Lewis, J. *J. Chem.* **SOC.,** *Dalton Trans.* **1977,** 477.

⁽¹³⁾ Wong, K. S.; Scheidt, W. R.; Fehlner, T. P. *J. Am. Chem. SOC.* **1982,104,1111.** Fehlner, **T.** P.; Housecroft, C. E.; Scheidt, W. R.; Wong, K. S. *Organometallics* **1983, 2, 825.**

⁽¹⁴⁾ Housecroft, C. E.; Rheingold, **A.** L. *Organometallics* **1987,6,1332.** (15) Housecroft, **C.** E.; Shongwe, M. S.: Rheingold, **A.** L. *Organo-*

metallics **1989,** *8,* **2651. (16)** Shriver, D. F.; Drezdon, M. **A.** *The Manipulation of Air-Sensitiue Compounds,* 2nd ed.; Wiley: New York, **1986.**

separated by thin-layer chromatography with Kieselgel 60-PF₂₅₄ mesh (Merck). $Ru_3(CO)_{12}$ and PPh₃PAuCl were prepared from $RuCl_3·H_2O$ (Johnson-Matthey) and $HAuCl_4$ (Aldrich), respectively, by literature procedures.^{17,18} Na₂CO₃, (PPN)Cl (PPN = bis- $(triphenylphosphine)$ nitrogen $(1+)$, and THF-BH₃ were used directly as supplied by Aldrich.

Preparation of $\text{HRu}_4(\text{CO})_{12}\text{BH}_2$ **(1).** $\text{Ru}_3(\text{CO})_{12}$ (0.33 g, 0.52) mmol) was stirred in THF (16 mL) while Li[BHEt₃] $(1 \text{ mL}, 1 \text{ M})$ solution in THF) followed by THF $-BH_3$ (6 mL, 1 M solution in THF) was added. The solution was stirred at room temperature for 1.5 h, and then solvent was removed. Hexane (8 mL) and phosphoric acid (8 mL, 44% (aqueous)) were added to the solid residue. After the mixture was stirred for \sim 1 h, 10 mL of hexane was added to dilute the organic layer, which was subsequently removed from the acid by cannula. Product extraction was completed by using further portions of hexane $(3 \times 10 \text{ mL})$. Removal of solvent from the combined hexane solutions yielded a crude, red-brown solid. Product separation was achieved by using thin-layer chromatography with hexane eluent. Yellow $HRu_4(CO)_{12}BH_2$ was obtained as the fifth of six bands¹⁹ in \sim 10% yield with respect to $Ru_3(CO)_{12}$ (40 mg 0.05 mmol): 250-MHz ¹H NMR (CDCl₃, 298 K) δ -8.4 (br q, $J_{BH} = 65$ Hz, Ru-H-B), -21.18 $= 70$ Hz); IR (hexane, cm⁻¹) ν_{CO} 2074 vs, 2063 vs, 2051 m, 2030 s, 2017 w, 2003 w; EI-MS *m/z* 756 (P+) with the loss of 12 CO's observed. Compound 1 is slightly air sensitive both in the solid and in solution. $(s, Ru-H-Ru)$; 128-MHz ¹¹B NMR (CDCl₃, 298 K) δ 109.9 (t, J_{BH}

Preparation of [PPN][HRu₄(CO)₁₂BH]. (PPN)Cl (0.07) mmol) was dissolved in MeOH (5 mL), and Na_2CO_3 (0.02 g, 0.17 mmol) was suspended in the solution. $HRu_4(CO)_{12}BH_2$ (0.05) mmol) was dissolved in acetone (5 mL), and the solution was added by cannula to the methanol suspension. An immediate color change from yellow to orange was observed. After the mixture was stirred for 15 min, the solvent was removed, leaving a crude orange residue from which [PPN] $[HPN][HRu_4(CO)_{12}BH]$ (typically 50 mg, 0.04 mmol; yield \sim 80%) was extracted by using 2×10 mL portions of Et₂O. [PPN][HRu₄(CO)₁₂BH]: 250-MHz 4 H NMR ((CD₃)₂CO, 298 K) δ 7.7–7.4 (m, PPN⁺), –6.7 (br, Ru- δ 142.2 (d, J_{BH} = 80 Hz); IR (CH₂Cl₂, cm⁻¹) v_{CO} 2024 vs, 2000 s, 1985 m, 1970 m, 1920 w; FAB-MS (3-NBA matrix) *m/z* 727 (P- - CO). H –B), –20.92 (s, Ru– H –Ru); 128-MHz ¹¹B NMR (CDCl₃, 298 K)

Preparation of $\text{HRu}_4(CO)_{12}\text{Au}(PPh_3)BH$ (3). [PPN][H- $Ru_4(CO)_{12}BH$] (0.05 mmol) was dissolved in CH_2Cl_2 (6 mL) with AuPPh₃Cl (0.03 g, 0.07 mmol) and TIPF₆ (0.02 g, 0.07 mmol). The solution was stirred for 45 min, during which time a color change from orange to green-brown was observed. The solvent was removed and the residue collected. Product separation was achieved by using thin-layer chromatography and eluting with $n-C_6H_{14}-CH_2Cl_2$ (1:1). Orange-brown $\overline{HRu}_4(CO)_{12}Au(PPh_3)BH$ (3) was collected as the first band in \sim 20% yield (12 mg, 0.01) mmol). Eight other bands were obsd., each in insufficient quantity to characterize. Compound **3** is slightly air sensitive in solution. $HRu_4(CO)_{12}Au(PPh_3)BH: 250-MHz \nvert H NMR ((CD₃)₂CO, 298 K)$ δ 7.7-7.5 (m, Ph_3P), -4.7 (br, Ru-H-B), -20.86 (s, Ru-H-Ru); 128-MHz ¹¹B NMR ((CD₃)₂CO, 298 K) δ 137.2 (fwhm 152 Hz, $^{11}B(^{1}H)$ fwhm 119 Hz, $J_{BH} \approx 60 \text{ Hz}^{21}$); IR (hexane, cm⁻¹) v_{CO} 2088 w, 2063 w, 2052 vs, 2030 w, 2014 m, 2005 w, 1982 w, 1970 w; FAB-MS (3-NBA matrix), m/z 1214 (P⁺) with loss of 12 CO observed.

Preparation of $\text{HRu}_4(CO)_{12}\text{Au}_2(\text{PPh}_3)_2\text{B}$ (4). [PPN][H- $Ru_4(CO)_{12}BH$] (0.05 mmol) was prepared in situ and dissolved in $\rm CH_2Cl_2^- (10\ mL)$ with $\rm AuPPh_3Cl$ (0.10 g, 0.21 mmol) and $\rm TIPF_6$ $(0.02 \text{ g}, 0.07 \text{ mmol})$. The solution was stirred for $\sim 1 \text{ h}$, during

(18) Mann, F. G.; Wells, A. F.; Purdie, D. J. Chem. Soc. 1937, 1828.

(19) The first five bands from the top of the TLC plate were yellow-

orange: band $1 = H_3Ru_3(CO)_9CR$ (R = H, Me); band $2 =$ uncharacterized;

band $3 = H_2$

Table **I.** Comparison **of** the 'H and **IlB NMR** Spectroscopic Properties of $HM_4(CO)_{12}BH_2$ and $[HM_4(CO)_{12}BH]$ ⁻ (M = Fe, **Ru)**

*^a*Spectroscopic data reported for the PPN+ salt.

Table II. Crystal Data for $HRu_4(CO)_{12}Au_2(PPh_3)_2B$ (4)

formula	$C_{48}H_{31}BO_{12}P_2Au_2Ru_4$
\mod wt, M_r	1670.7
cryst syst	triclinic
space group	ΡĪ
a. A	$13.212(3)^a$
b. A	13.366 (3)
c, Å	15.261(4)
α , deg	96.92 (2)
β , deg	94.40 (2)
γ , deg	103.91(2)
V, A ³	2581.2 (10)
\boldsymbol{Z}	2
$D(\text{calod})$, g cm ⁻³	2.15
μ (Mo K α), cm ⁻¹	68.91
T.K	294
$T_{\rm max}/T_{\rm min}$	0.031/0.019
diffractometer	Nicolet R3m
radiation	Mo K α (λ = 0.71073 Å)
2θ limits, deg	$4 \leq 2\theta \leq 50$
data collected (hkl)	$±16,±16,+19$
rflns collected	9467
indpnt rflns	9095
$R(int)$, %	4.29
obs rflns $(F_0 \geq 3\sigma(F_0))$	6939
std rflns (var)	3 std/197 rflns $(\sim 1\%)$
$R(F)$, %	3.94
$R(wF)$, %	4.58
GOF	1.323
Δ/σ (max)	0.126
$\Delta(\rho)_{\text{max}}$, e \AA^{-3}	2.2 (1.03 Å, Au(2))
N_{\circ}/N_{\circ}	12.62

 $\frac{12.52}{9}$
⁴ Unit cell parameters obtained from least-squar settings of 25 reflections (20 $\leq 2\theta \leq 28^{\circ}$). a Unit cell parameters obtained from least-squares fit of the an-

which time a color change from orange to brown was observed. The solvent was removed and the residue collected. Products were separated by using thin-layer chromatography, with *n-* $C_6H_{14}-CH_2Cl_2$ (1:1) as eluent. Red $HRu_4(CO)_{12}Au_2(PPh_3)_2B$ (4) was collected as the third band from the top of the plate in \sim 70% yield (58 mg, 0.035 mmol). Six other bands were observed, but none was in sufficient quantity to characterize. Compound **4** is moderately air stable. $HRu_4(CO)_{12}Au_2(PPh_3)_2B: 250-MHz$ ¹H NMR ((CD₃)₂CO, 298 K) δ 7.8-7.6 (m, *PPN*⁺), -20.66 (s, Ru-*H*-Ru); 128-MHz ¹¹B NMR ((CD₃)₂CO, 298 K) δ 170.0; IR (hexane, cm⁻¹) v_{CO} 2069 m, 2036 s, 2024 vs, 2009 w, 1988 m, 1951 w; FAB-MS (3-NBA matrix) m/z 1670 (P⁺). Anal. Calcd for $(3-NBA \text{ matrix})$ m/z 1670 (P⁺). H, 1.75; P, 3.79. $Au_2BC_{48}H_{31}O_{12}P_2Ru_4$: C, 34.51; H, 1.87; P, 3.71. Found: C, 34.24;

Crystal Structure Determination. Crystallographic data are collected in Table 11. A deep red crystal (0.27 **X** 0.28 **X** 0.32 mm), obtained by recrystallization from CH_2Cl_2 -hexane, was affixed to a glass fiber with epoxy cement. No evidence for lattice symmetry greater than triclinic was seen in photographic data or from cell reduction routines. The centrosymmetric alternative was selected initially and later affirmed by the chemical reasonableness of the results of refinement. Corrections for absorption were empirical (216 ψ -scan reflections). The two Au atoms were located by direct methods. All non-hydrogen atoms were refined anisotropically, and all H atoms (except for that bonded to Ru) were treated as idealized contributions $(d_{CH} = 0.96$ A). The phenyl rings were constrained to rigid, planar hexagons $(d_{\text{CC}} = 1.395 \text{ Å})$.

⁽¹⁷⁾ Eady, C. R.; Jackson, P. F.; Johnson, B. F. G.; Lewis, J.; Ma-latesta, M. c.; MacPartlin, M.; Nelson, w. J. H. *J. Chem.* Soc., *Dalton Trans.* 1980, 383.

nomet. Chem., in press.

⁽²¹⁾ Coupling constant estimated from line width analysis.

Table III. Atomic Coordinates $(\times 10^4)$ and Isotropic Thermal Parameters $(\mathring{A}^2 \times 10^3)$ for 4

	$\mathbf x$	у	z	U^a		\mathfrak{X}^-	У	\boldsymbol{z}	I \int
Au(1)	2430.2 (3)	7559.5 (3)	3266.0 (3)	39.3(1)	C(23)	1421	4858	6113	$83(7)$ *
Au(2)	2431.4 (3)	8149.8 (4)	1533.4(3)	41.4(2)	C(24)	1228	5769	5857	$90(8)$ *
Ru(1)	3274.5(7)	9628.1(7)	3841.6 (6)	42.3(3)	C(25)	1532	6078	5056	$70(6)*$
Ru(2)	726.5(7)	8890.7 (7)	1872.9 (6)	40.5(3)	C(26)	2028	5476	4509	$47(4)$ *
Ru(3)	2604.5(7)	10589.4 (7)	2382.5 (6)	45.8(3)	C(31)	462(6)	5279 (5)	2259(5)	$57(5)*$
Ru(4)	1189.5(8)	9920.0 (7)	3667.8 (6)	45.2(3)	C(32)	-433	4597	1783	$83(7)$ *
P(1)	2283(2)	5820 (2)	3408(2)	41 (1) *	C(33)	-566	3523	1734	$83(7)*$
P(2)	3379 (2)	7376 (2)	567(2)	$40(1)*$	C(34)	196	3132	2161	$85(7)$ *
\mathbf{B}	2041(10)	8998 (10)	2794 (8)	$42(5)$ *	C(35)	1090	3814	2637	$68(6)$ *
O(1)	5367 (7)	9407 (9)	3247 (7)	$95(5)*$	C(36)	1223	4887	2686	$48(4)$ *
O(2)	3286 (10)	8546 (9)	5486 (6)	$104(5)*$	C(41)	3647 (6)	4903 (7)	2438(5)	$63(5)*$
O(3)	4300 (9)	11748 (8)	4949 (8)	$102(5)*$	C(42)	4627	4733	2300	$79(7)$ *
O(4)	$-774(8)$	10228(8)	1390(8)	$89(5)$ *	C(43)	5475	5134	2953	$90(8)*$
O(5)	513(8)	8036 (10)	$-100(7)$	$103(6)*$	C(44)	5342	5704	3745	$95(8)*$
O(6)	$-920(8)$	7115(8)	2382(8)	$88(5)*$	C(45)	4361	5873	3883	$72(6)$ *
O(7)	1561(9)	11404 (10)	849 (8)	$101(6)*$	C(46)	3513	5473	3230	$51(4)$ *
O(8)	4381 (7)	10274(8)	1314(7)	$78(4)$ *	C(51)	3010(7)	8626 (5)	$-707(4)$	$53(5)$ *
O(9)	3968 (12)	12691(9)	3280(10)	$137(7)$ *	C(52)	2945	8892	-1562	$66(6)*$
O(10)	$-884(9)$	10564(11)	3446(8)	$112(6)*$	C(53)	3163	8246	-2272	$68(6)*$
O(11)	1989(10)	11383 (10)	5416(7)	$114(6)*$	C(54)	3446	7334	-2127	$72(6)*$
O(12)	276(8)	8023 (8)	4550 (7)	$86(5)*$	C(55)	3511	7068	-1272	$67(6)*$
C(1)	4593 (10)	9461 (10)	3466(8)	61 $(5)*$	C(56)	3292	7714	-562	$46(4)$ *
C(2)	3265(11)	8944 (10)	4846 (8)	$67(5)*$	C(61)	1878(5)	5500(5)	434(5)	$53(5)*$
C(3)	3907 (11)	10971 (10)	4524 (9)	$67(5)*$	C(62)	1490	4422	237	$64(5)*$
C(4)	$-225(9)$	9746 (10)	1593(9)	$58(5)*$	C(63)	2161	3799	-1	69 $(5)*$
C(5)	629 (10)	8346 (11)	641(8)	$66(5)*$	C(64)	3221	4253	-43	$72(6)*$
C(6)	$-292(10)$	7775 (9)	2172(9)	$57(5)*$	C(65)	3608	5331	153	$58(5)$ *
C(7)	1906(11)	11081(11)	1424(10)	$70(6)*$	C(66)	2937	5955	392	$45(4)$ *
C(8)	3690 (10)	10313(9)	1696 (9)	$57(5)*$	C(71)	5550 (6)	8193 (6)	443(4)	$58(5)$ *
C(9)	3479 (13)	11891(11)	2945 (11)	$81(6)$ *	C(72)	6611	8427	760	$68(6)*$
C(10)	$-128(11)$	10306(11)	3499(9)	$67(6)*$	C(73)	6918	8154	1574	$68(6)*$
C(11)	1710 (12)	10866(11)	4771 (10)	$75(6)$ *	C(74)	6164	7647	2073	$69(6)*$
C(12)	623 (10)	8753 (10)	4226(9)	$60(5)*$	C(75)	5102	7413	1756	$63(5)*$
C(21)	2220(7)	4566 (6)	4765 (5)	$59(5)*$	C(76)	4795	7686	942	$47(4)$ *
C(22)	1916	4257	5567	$75(6)*$					

^aAsterisks indicate equivalent isotropic *U* values, defined as one-third of the trace of the orthogonalized **Uij** tensor.

All computations used SHELXTL **(5.1)** software." Table **I11** gives the atomic coordinates, and Table IV gives selected bond distances and angles.

Results and Discussion

 $HRu₄(CO)₁₂BH₂$ and $[HRu₄(CO)₁₂BH]$ ⁻. One of the major boron-containing products from the reaction of $Ru_3(CO)_{12}$ and BH_3 . THF in the presence of hydride ion is $HRu_4(\tilde{CO})_{12}BH_2$ (1; Chart I). In a similar reaction, the iron carbonyls $Fe({\rm CO})_5$ and $Fe_2({\rm CO})_9$ react with $\rm BH_3$.THF and hydride ion to give $HF_{4}(CO)_{12}^{\bullet}BH_{2}$ (5; Chart II).²²

Figure 1. **'H** NMR spectrum **(250** MHz, high-field region) of 1 illustrating Ru-H-B and Ru-H-Ru resonances.

The spectroscopic properties of 1 are consistent with this cluster possessing a structure analogous to that of *5.* Preliminary spectroscopic data for 1 have previously been presented, 12,23 but the present results increase the amount of information available for this tetraruthenaborane cluster and allow the structural assignment to be confirmed. The **'H** NMR spectrum of 1 exhibits high-field resonances at δ -8.4 and -21.18 assigned to Ru-H-B and Ru-H-Ru protons, respectively (Figure 1). The collapsed quartet observed for the signal at δ -8.4 confirms that each of the

⁽²²⁾ Housecroft, C. E.; Buhl, M. L.; Long, G. J.; Fehlner, T. P. *J. Am. Chem.* **SOC. 1987,109, 3323.**

⁽²³⁾ After our paper had been submitted, the ¹¹B NMR spectrum and a confirmation of the ¹H NMR spectrum of 1 were independently reported: Hong, F.-E.; Coffy, T. J.; McCarthy, D. A.; Shore, S. G. *Inorg*. Chem. 1989, 2

*^a*The labeling scheme is given in Figure 3.

 $Ru-H-B$ *endo-hydrogen* atoms is coupled to one ¹¹B nucleus. The $^{11}B{^1H}$ NMR spectrum becomes a triplet on coupling to protons $(J_{BH} = 70 \text{ Hz})$ (part a vs part b of Figure 2), indicating that the two hydrogen atoms are attached to the boron atom. Both the ¹H and ¹¹B NMR chemical shifts for **1** compare favorably with those observed for *5* (Table I).

Compound 1 deprotonates readily via the loss of an Ru-H-B proton to give **2** (Chart I); the reaction proceeds in weakly basic media but most efficiently in the presence of sodium carbonate. From **1** to **2,** a downfield shift in the ¹¹B NMR spectrum (Table I) indicates an increase in the degree of direct Ru-B bonding, consistent with removal of a Ru-H-B rather than an Ru-H-Ru proton.^{24,25} In

Figure 2. ¹¹B NMR spectra (128 MHz) of 1 and 2: (a) ¹¹B{¹H} NMR spectrum of 1; (b) proton-coupled ¹¹B NMR spectrum of 1; (e) llB{'H} NMR spectrum of **2;** (d) proton-coupled llB NMR spectrum of **2.**

support of this, the $^{11}B(^{1}H)$ NMR signal for 2 (Figure 2c) becomes a doublet (Figure 2d), with J_{BH} = 80 Hz. The difference in the ¹¹B shifts δ (anion) - δ (neutral), $\Delta \delta$, is strikingly similar for the tetraferraborane and the tetraruthenaborane (Table I); $\Delta \delta_{\text{Fe}} = 34$ and $\Delta \delta_{\text{Ru}} = 32$. Although the number of direct group 8 metal-boron interactions significantly alters the ^{11}B NMR chemical shift, the change from iron to ruthenium for a given pair of isostructural compounds does *not* greatly influence the position of the signal. We have observed a similar phenomenon when comparing ¹¹B NMR spectroscopic data for $\rm Fe_3(CO)_9BH_5$ and $\rm Ru_3(CO)_9BH_5.^2$

The increase in metal-metal bond strengths on descending the iron triad is reflected in a increased energy barrier for the exchange of M-H-M and M-H-B *endo*hydrogen atoms in the $[HM_4(CO)_{12}BH]$ ⁻ anions on going from $M = Fe$ to Ru. In the $[HF_{4}(CO)_{12}BH]$ ⁻ anion **(6)** a static structure is frozen out at temperatures *50 "C* on the 300-MHz ¹H NMR time scale,²² while for anion 2, a static structure is observed at room temperature on the 250-MHz 'H NMR time scale. A corresponding increase in the energy of activation for endo-hydrogen exchange is observed from $HFe₄(CO)₁₂CH²⁶$ to $HRu₄(CO)₁₂CH⁴$ these compounds are isoelectronic with **6** and **2,** respectively (see Chart II).

Clusters 1 and **2** are the final members of the series of iron and ruthenium butterfly clusters illustrated in Chart 11. Each compound exhibits an M_4X $(X = B, C)$ cluster core,4J3,22,26-30 although only for compounds *5* and **14** have the structures been crystallographically confirmed. 13,24,28 In Chart II, the butterfly compounds are arranged in iso-

- (24) Housecroft, C. E. *Polyhedron* 1987, *6,* 1935.
- (25) Fehlner, T. P.; Rath, N. P. *J. Am. Chem.* **SOC.** 1988, *110,* 5345. (26) Tachikawa, M.; Muetterties, E. L. *J. Am. Chem.* **SOC. 1980,** *102,*
- 4541. (27) Holt, E. M.; Whitmire, K. H.; Shiver, D. F. *J. Organomet. Chem.*
- **1981,** *213,* 125. (28) Drezdon, M. **A.;** Whitmire, K. H.; Bhattacharyya, **A. A,;** Hsu,
- W.-L.; Nagel, C. C.; Shore, S. G.; Shriver, D. F. *J. Am. Chem. SOC.* **1982,** *104,* 5630.
	- (29) Drezdon, M. A.; Shriver, D. F. *J. Mol. Catal.* **1983,21,** 81. *(30)* Beno, M. A.; Williams, J. M.; Tachikawa, M.; Muetterties, E. L.

J. Am. Chem. **SOC. 1981,** *103,* 1485.

electronic pairs; isoelectronic with 1 is the $[H_3Ru_4(CO)_{12}C]^+$ cation, for which two isomers exist, and three possible structures, 7-9, have been proposed.⁴ Irrespective of the precise locations of the endo-hydrogen atoms in the cation, the general observation is that, from $HRu_4(CO)_{12}BH_2$ to $[H_3Ru_4(CO)_{12}C]^+$, Ru-H-Ru interactions become more favorable than $Ru-H-X$ $(X = B, C)$ bridges. As the cluster becomes more positively charged, the ruthenium valence shell (particularly 4d) orbitals will contract, allowing them to overlap more effectively with the hydrogen 1s AO's. The same preference, although less pronounced, is observed if we compare 2 with $H_2Ru_4(CO)_{12}C$; anion 2 possesses one Ru-H-B and one Ru-H-Ru interaction, while in H_2Ru_4 - $(CO)_{12}C$, \sim 85% exists as an isomer, 13, with two Ru-H-Ru interactions and a second isomer, **12,** is isostructural with **2.4** Comparing each ruthenium compound with its respective iron analogue (viz. **2** with **6,** and **12** and **13** with **14),** we see that while the metallaborane clusters retain their preference for M-H-B over M-H-M interactions, the ruthenium carbon-containing clusters show a greater tendency to form Ru-H-Ru bridges than do the iron clusters to form Fe-H-Fe interactions. These trends may be rationalized in terms of the relative M-H-M and M- $H-X$ ($M = Fe$, Ru ; $X = B$, C) bond strengths and in terms of arguments put forward by Fehlner et al.³¹ Efficient overlap of an endo-hydrogen atom with a cluster edge or face is only achieved when there is a region of electron density lying outside the cluster. Thus from B to C, as valence shell AO's contract, the endo-hydrogen atoms migrate toward the metal framework rather than be as-

Figure 3. Molecular structure and numbering scheme for **4.** Hydrogen atoms are not shown.

sociated with the main-group atom.

Reactions of 2 with Ph3PAuC1. The anion **2** reacts with 1 equiv of Ph_3PAuCl to form the gold(I) phosphine derivative **3,** which has been spectroscopically characterized. The retention of a tetraruthenium butterfly framework is supported by a crystal structure of the digold derivative **4** (see below) and from our previous observations that, in the reaction of $[HF_{e_4}(CO)_{12}BH]^-$ with gold(I) phosphines, the metal butterfly cluster core is resistant to structural change.¹⁵ The ¹¹B NMR spectrum of 3 is close to that observed for anion **2,** implying that the environment around the boron atom is little changed in going from 2 to 3 . As expected,^{15,32,33} the formation of an Au-B bond has an insignificant effect upon the ^{11}B NMR chemical shift. In the 'H NMR spectrum, resonances attributable to Ru-H-B and Ru-H-Ru interactions are observed. Hence, a structure for **3** is proposed in which a AuPPh, fragment bridges an $Ru_{wing} - B$ edge (Chart I).

The reaction of anion $2 \text{ with } \geq 2$ equiv of Ph_3PAuCl leads to the formation of the digold derivative **4.** Spectroscopic characterization of this cluster implies that the boron atom has become encapsulated within the metal cage; a downfield singlet (δ +170) is observed in the ¹¹B NMR spectrum, and a single high-field resonance in the 'H NMR spectrum at δ -20.66 indicates the presence of an Ru-H-Ru bridge. These expectations are confirmed by a crystallographic study of **4.**

Molecular Structure of 4. The molecular structure of **4** is illustrated in Figure 3, and bond distances and angles are listed in Table IV. The cluster possesses a tetraruthenium butterfly framework with an internal dihedral angle of 117.4 (1)^o. The boron atom is in a μ_4 bonding mode with respect to the tetraruthenium butterfly and is at an elevation of 0.37 (1) \AA above the Ru(1)---Ru(2) vector, (i.e. above a line drawn between the wingtip atoms of the butterfly). In comparing the structural parameters of the Ru₄B core in 4 with those of the Fe₄B core in similar compounds, 14,15,34 we note that the internal dihedral angle of the butterfly opens slightly (113.5 \pm 0.5° for Fe₄B to 117.4' in **4),** to accommodate the boron atom within the M4 framework **as** the transition-metal radius increases from Fe to Ru; the boron atom does not rise significantly out of the butterfly $(0.34 \pm 0.03^{\circ}$ for Fe₄B to 0.37° in 4). Each

⁽³²⁾ Harpp, K. S.; Housecroft, C. E. *J. Organomet. Chem.* **1988**, 340, **389**.

⁽³³⁾ Housecroft, C. E.; Rheingold, **A.** L. *J.* Am. Chem. *SOC.* **1986,108, 6420.**

⁽³⁴⁾ Housecroft, **C.** E.; Rheingold, **A.** L.; Shongwe, M. S. *Organo*metallics **1988, 7,** 1885.

 AuPPh_3 fragment bridges one Ru_{wing} -B edge, and the Au-B distances of 2.288 **(15)** and 2.272 (13) **A** are similar to corresponding bond lengths observed in related auraferraborane clusters.^{14,15,33-36} The boron atom is therefore within bonding distance of all six metal atoms, and this observation is consistent with the observed downfield ¹¹B NMR chemical shift; i.e., the boron atom experiences a boridic rather than a borane environment. The hexametal atom core is nonoctahedral, with the two gold atoms skewed across the open face of the $Ru₄B$ butterfly core (Figure 3). **A** similar geometry has been observed in $HF_{4}(CO)_{12}Au_{2}(PEt_{3})_{2}B, ^{15,34}$ although, in 4, the planes containing the $Au(1)-Au(2)$ and $Ru(3)-Ru(4)$ vectors are not parallel as is evident from Figure 4b; $\angle Ru(3)BAu(2)$ $= 93.8$ (5)^o and $\angle Ru(4)BAu(1) = 118.4$ (6)^o. The significance of the tilting of the $\{(\text{PPh}_3)_2\text{Au}_2\}$ unit with respect to the ${HRu_4(CO)_{12}B}$ core is discussed below.

The carbonyl ligands in **4** are all terminally attached. If we ignore the Ru-B interactions, each wingtip Ru atom is in an approximately octahedral environment. The metal hydride was not located directly, but the orientations of the carbonyl ligands on the hinge Ru atoms (Figure 3) indicate the presence of an $Ru(3)-H-Ru(4)$ bridging hydrogen atom, consistent with the observation of a metal hydride ¹H NMR spectral resonance (δ -20.66).

Cluster 4 is isoelectronic³⁷ with the tetraruthenium butterfly cluster $Ru_4(CO)_{12}Au_2(PMe_2Ph)_2C,$ ³⁸ but it is significant that the clusters are not isostructural. In the carbido cluster, both in the solid state and in solution, one $AuPMe₂Ph$ moiety bridges the $Ru_{hinge}-Ru_{hinge}$ bond while the second interacts with *both* Ruwing atoms and with the carbido atom to form a symmetrical bridge. The change from C to BH as one goes from $Ru_4(CO)_{12}Au_2(PMe_2Ph)_2C$ to compound **4** clearly introduces the question of placement of three instead of two electrophiles on the surface of the $Ru₄X$ cluster core. We have previously suggested that a charge effect may be responsible for driving the gold(1) phosphines to seek preferential interaction with M-B rather than M-M edges.¹⁴ This effect will be more pronounced in a metallaborido than in a metallacarbido cluster, as the effective nuclear charge increases in going from B to C, contracting the valence shell orbitals on the main-group atom. Perhaps significantly, the same structural trends are emerging with the aura butterfly clusters as with the hydrido butterfly species illustrated in Chart 11. Besides the observation of a greater preference for $X-Au(PR₃)-Ru$ over $Ru-Au(PR₃)-Ru$ interactions from $X = C$ to B, a change from Fe to Ru in $M_4(CO)_{12}Au_2$ - $(PR₃)₂C$ appears to favor M-Au(PR₃)-M over C-Au- $(PR₃)[–]M$ interactions.^{38,39} A note of caution should, however, be added since, for the metallacarbides, we are comparing systems with different phosphine substituents (see below).

Comparison of 4 with $HFe_4(CO)_{12}Au_2(PR_3)_2B$ **.** Recently, we presented a detailed study of the structural isomerism exhibited by compounds of type HFe₄- $(CO)_{12}Au_2(PR_3)_2B$ (R = alkyl, aryl).^{15,34} With the constraint of a structurally invariant (proven by crystallographic characterization)^{14,15,34} Fe₄ butterfly framework, the locations of the two gold(1) phosphine fragments vary depending upon the steric requirements of the phosphine substituents. The characterization of the tetraruthenium cluster **4** adds another dimension to our steric arguments; corresponding views of the structures of $HF_{4}(CO)_{12}Au_{2}$ -(PEt₃)₂B, cluster 4, and Fe₄(CO)₁₂Au₂(PPh₃)₂BH are shown in Figure 4. The unusual geometry of the $Fe₄Au₂B$ core in $Fe_4(CO)_{12}Au_2(PPh_3)_2BH$ (Figure 4c) compared to the more symmetrical core structure in $HF_{4}(CO)_{12}Au_{2}$ - $(PEt₃)₂B$ (Figure 4a) has been attributed to the greater cone angle of $AuPPh_3$ vs that of $AuPEt_3$.¹⁵ As one goes from $Fe₄(CO)₁₂Au₂(PPh₃)₂BH$ to its ruthenium analogue **4,** the metal butterfly opens up sufficiently to overcome the steric crowding experienced by the two AuPPh₃ fragments in the tetrairon cluster. Hence, the structure of **4** is more closely related to that of $HFe₄(CO)₁₂Au₂(PEt₃)₂B$ than to $Fe_4(CO)_{12}Au_2(PPh_3)_2BH$. However, careful inspection of parts a and b of Figure 4 illustrates that the relief of steric strain is not sufficient to allow cluster **4** to attain C_2 symmetry. In fact, the structure of 4 appears to lie partway along a path, previously postulated, 15 that converts the $\rm M_4Au_2B$ core in $\rm{HFe_4(CO)_{12}Au_2(PEt_3)_2B}$ to that in $Fe_4(CO)_{12}Au_2(PPh_3)_2BH$. Changes in the hinge atom carbonyl ligand orientations further support this suggestion. From Figure 4a through to Figure 4c, one AuPR₃ moiety migrates from a B-Au(PR₃)- M_{wing} to a $B-Au(PR_3)-M_{\text{hinge}}$ bridging site; coupled with this change is a rotation of the associated hinge $M(CO)_{3}$ unit. The greater the degree of tilting of the $\{(\text{PR}_3)_2 \text{Au}_2\}$ unit with respect to the $\{HM_4(CO)_{12}B\}$ core, the further the hinge carbonyl ligands rotate, until, eventually, as the B-Au- $(PR₃)-M_{hinge}$ interaction forms at the expense of the B-Au(PR₃)– $\rm M_{wing}$ bridge, one CO ligand forces the M–H– $\rm M$ hydride out of its bridging site (Figure 4c).

⁽³⁵⁾ Harpp, K. S.; Housecroft, C. E.; Rheingold, **A.** L.; Shongwe, M.

S. *J. Chem. SOC., Chem. Commun.* **1988,** 965. (36) Housecroft, C. E.; Rheingold, A. L.; Shongwe, M. S. *J. Chem. Soc., Chem. Commun.* **1988,** 1630.

⁽³⁷⁾ The term *isoelectronic* is used here to relate the clusters $Ru_4(C-O)_{12}Au_2L_2C$ and $HRu_4(CO)_{12}Au_2L_2B$; the phosphine substituents in the two compounds are not identical, but this does not affect the number of *cluster* bonding electrons.

⁽³⁸⁾ Cowie, A. G.; Johnson, B. F. G.; Lewis, J.; Raithby, P. R. *J. Chem.* SOC., *Chem Commun.* **1984, 1710.**

⁽³⁹⁾ Johnson, B. F. *G.;* Kaner, D. A,; Lewis, J.; Raithby, P. R.; Rosales, **M.** J. *J. Organomet. Chem.* **1982,** *231,* C59. (40) Sheldrick, *G. SHELXTL (5.1);* Nicolet XRD Corp.: Madison, WI.

Acknowledgment is made to the donors of the Petroleum Research Fund, administered by the American Chemical Society, for support of this research, to the Royal Society for a 1983 University Research Fellowship (to C.E.H.), and to the NSF for a grant toward the purchase of a diffractometer at the University of Delaware. Johnson-Matthey is thanked for generous loans of RuCl₃.

Supplementary Material Available: Tables of atomic coordinates, bond distances, bond angles, thermal parameters, and **H** atom coordinates (9 pages); a listing of structure factors (41 pages). Ordering information is given on any current masthead page.

Use of Palladium-Catalyzed Coupling Reactions in the Synthesis of Heterobimetallic Complexes. Preparation of Bis(cyclopentadieny1)acetylene Heterodinuclear Complexes

Claudio Lo **Sterzot and** J. K. **Stille"**

Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523

Received July 28, 7989

The palladium-catalyzed coupling reactions of η^5 -iodocyclopentadienyl complexes of Fe, W, Mn, and Re with Bu₃SnC=CH yield the corresponding η^5 -ethynylcyclopentadienyl derivatives (η^5 -HC=CC₅H₄)ML_n (M = Fe, W, Mn, Re). Upon reaction with Et_2NSnR_3 (R = Me, Bu), the acetylenic proton is replaced with a trialkyltin group, forming the η^5 -[(trialkylstannyl)ethynyl]cyclopentadienyl derivatives $(\eta^5$ -R₃SnC= CC5H4)ML,. **A** second palladium-catalyzed coupling reaction between these trialkyltin derivatives and $(\eta^5\text{-}\text{iodocyclopentadienyl})$ metal complexes affords the heterobimetallic complexes $\text{L}_n\text{M}(\eta^5\text{-}C_5\text{H}_4)C\equiv C$ $(y^5 - C_5H_4)M'\dot{L}_m$ (M and $M' = Fe$, W, Mo, Mn, Re). The crystal structure of $\dot{P}h_3P(CO)_2Mn(y^5-C_5H_4)C \equiv$ $C(\eta^5-C_5H_4)W(CO)_3CH_3$ confirmed the general structure of these heterobimetallic complexes and showed that the two metals attached to the cyclopentadienyl rings were pointed in opposite directions.

Introduction

One goal of research directed toward the efficient reduction of carbon monoxide by homogeneous catalysis has been the preparation of mixed-metal complexes containing both "early" and "late" transition metals.' Much of the interest in this chemistry is due to the expectation that the two metal centers will interact cooperatively in a catalytic process to affect novel reactions and increase the overall reaction rates under mild reaction conditions.2 One approach to this goal has been to design an appropriate bridging ligand that holds the two metal centers in close proximity, thus allowing effective interaction (i.e., exchange of ligands) during the catalytic cycle. In such a dinuclear complex, either of the two metals may separately catalyze two consecutive reactions, or both metals may simultaneously perform some transformation through interaction with the substrate.

Most of the bidentate ligands used to bring two metal centers together are bridging ligands bearing two coordinating centers, P, As, N, S, or 0, linked in the same molecule in various ways.3 The limitation in the use of such ligands resides in the limited thermal stability of their metal complexes due to the relatively weak metal-ligand bond. By contrast, cyclopentadienyl ligands have much stronger ligand-metal bonds (60-70 kcal mol⁻¹ for typical n^5 -cyclopentadienyl-metal bonds versus 30-40 kcal mol⁻¹ for a trialkylphosphine-metal bond).4 However, general synthetic routes for the synthesis of heterobimetallic complexes held together by two covalently linked cyclopentadienide rings are difficult. While a number of homobimetallic structures in which two identical metal centers are complexed by the cyclopentadienyl rings of dicyclopentadienylmethane,⁵ dicyclopentadienyldimethylsilane,⁶ dicyclopentadienylacetylene,^{7,8} and fulval-

839. (e) Muetterties, **E.** L. *Bull. SOC. Chim. Belg.* **1975,** *84,* **959. (3)** (a) Maitlis, P. M.; Espinet, P.; Russell, M. J. H. In *Comprehensiue Organometallic Chemistry;* Wilkinson, G., Stone, F. G. A., Abel, E. W., Eds.; Pergamon Press: New York, 1982; Vol. 6, p 265. (b) Arnold, D. P.;
Bennett, M. A.; McLaughlin, G. M.; Robertson, G. B.; Whittaker, M. J.
J. Chem. Soc., Chem. Commun. 1983, 32. (c) Puddephatt, R. J.; Thompson, P. J. *J. Organomet. Chem.* **1976,117,395.** (d) Ebsworth, **E.** A. V.; Ferrier, H. M.; Henner, B. J. L.; Rankin, D. W. H.; Reed, F. J. S.; Robertson, H. E.; Whitelock, J. D. Angew. Chem., Int. Ed. Engl. 1977, 16, 482. (e) Richter, U.; Vahrenkamp, H. J. Chem. Res., Synop. 1977, 156. (f) Köpf, H.; Räthlein, K. H. Angew. Chem., Int. Ed. Engl. 1969, 8, 980. (g) B 191. (h) Hughes, R. P. In Comprehensive Organometallic Chemistry;
Wilkinson, G., Stone, F. G. A., Abel, E. W., Eds.; Pergamon Press: New
York, 1982; Vol. 5, p 277.
(4) Connor, J. A. *Top. Curr. Chem.* 1976, 71, 71.

(5) (a) Bryndza, H. É.; Berman, R. G. J. A*m. Chem. Soc.* 1979, 101,
4766. (b) Mueller-Westerhoff, U. T.; Nazzal, A.; Tanner, M. J. Organo-
met. Chem. 1982, 236, C41. (c) Scholz, H. J.; Werner, H. J. Organomet.

Organometallics **1983, 2, 1711. (7)** Bunel, E. E.; Valle, L.; Jones, N. L.; Carroll, P. J.; Gonzalez, M.; Munoz, N.; Manriquez, J. M. *Organometallics* **1988, 7,** 789.

^{*}Deceased. Address all correspondence to Dr. Louis S. Hegedus at Colorado State University.

Present address: Centro C.N.R. di Studio sui Meccanismi di Reazione, Dipartimento di Chimica, Univ. "La Sapienza", P. le **A.** Moro, **2 00185** Roma, Italy.

^{(1) (}a) Bruce, M. I. *J. Organomet. Chem.* **1983,242,147.** (b) Roberts, **D.** A.; Geoffroy, G. L. In *Comprehensiue Organometallic Chemistry;* Wilkinson, G., Stone, F. G. A., Abel, E. W., Eds.; Pergamon Press: Oxford, **1982;** Vol. **6,** p **763.** (c) Gladfelter, W. L.; Geoffroy, G. L. *Adu. Organomt. Chem.* **1980, 18, 207.**

⁽²⁾ (a) Muetterties, E. L.; Krause, M. J. *Angew. Chem., Int. Ed. Engl.* 1983, 22, 135. (b) Muetterties, E. L.; Rhodin, T. N.; Band, E.; Brucker,
C. F.; Pretzer, W. R. *Chem. Rev.* 1979, 79, 91. (c) Band, E.; Muetterties,
E. L. *Chem. Rev.* 1978, 78, 639. (d) Muetterties, E. L. *Science* 1977,

Chem. **1986, 303,** C8. **(6)** (a) Day, V. W.; Thompson, M. R.; Nelson, G. *0.;* Wright, M. E. *Organometallics* **1983,2,494.** (b) Nelson, **G.** *0.;* Wright, M. E. *Ibid.* **1982,** *I,* **565.** (c) Nelson, G. *0.;* Wright, M. E. *J. Organomet. Chem.* **1982,239,** 353. (d) Wegner, P. A.; Uski, V. A.; Kiester, R. P.; Dabestani, S.; Day, V. W. J. Am. Chem. Soc. 1977, 99, 4846. (e) Weaver, J.; Woodward, P. J. Chem. Soc., Dalton Trans. 1973, 1439. (f) Wright, M. E.; Mezza, T. M.; Nelson