$\beta\text{-elimination}$ process that results in a release of the alkenyl grouping and closure of the cluster. This transformation demonstrates the existence of a relatively facile CH activation process that leads to the formation of an uncoordinated 2-propenethiolato group, such as that found in 2. It is possible that an intermediate similar to 3 was traversed en route to 2. Efforts to confirm this are currently

(16) A solution of 3 (16 mg) in heptane (20 mL) was heated to reflux The product 4 was isolated in 60% yield by TLC on alumina. for 1 h. for 1 h. 'The product 4 was isolated in 60% yield by 1 LC on autmina. IR (ν (CO), cm⁻¹; (in hexane): 2091 m, 2051 s, 2014 vs, 1999 m, 1989 m, 1967 m, 1947 w, 1943 w. ¹H NMR (δ ; in CDCl₃): 7.53–7.35 (m, 5 H), 5.73 (m, 1 H), 5.17–5.12 (m, 2 H), 2.81 (dd, 1 H, $J_{H-H} = 12.7$ Hz, $J_{H-H} = 7.0$ Hz), 2.54 (m, 1 H, $J_{H-H} = 12.7$ Hz, $J_{H-H} = 7.0$ Hz), 2.29 (d, 3 H, $J_{P-H} =$ 10 Hz), 2.26 (d, 3 H, $J_{P-H} = 10$ Hz), -17.03 (d, 1 H, $J_{P-H} = 26$ Hz). The reverse of this reaction (CO addition) has not yet been achieved. The DDb is determined a magnetized by a similar activation of intervention ($J_{H-H} = 12.7$ Hz, $J_{H-H} = 2.6$ Hz). PPh_3 derivative of 2 was prepared by a similar sequence of insertion/ ligand addition to yield the PPh₃ analogue of 3 and a subsequent de-carbonylation. The PPh₃ derivative of 2 was characterized crystallographically.

in progress. This observation of the involvement of thiametallacylces in the cluster chemistry of thietane appears to contrast significantly with the proposed transformations of thietane on metal surfaces.^{5,17}

Acknowledgment. These studies were supported by the Office of Basic Energy Sciences of the U.S. Department of Energy. We wish to thank Gong Chen for help with the structural analyses.

Supplementary Material Available: Tables of crystal data, positional anisotropic thermal parameters, and bond distances and angles for the structural analysis of compounds 1 and 3 (15 pages); tables of structure factor amplitudes (33 pages). Ordering information is given on any current masthead page.

(17) Calhorda, M. J.; Hoffmann, R.; Friend, C. M. J. Am. Chem. Soc. 1990, 112, 50.

Synthesis and X-ray Crystal Structure of $[Li_2Cu_2(CH_2SiMe_3)_4(SMe_2)_2]_{\omega}$: The First Detailed Structural Characterization of a Lithium Dialkylcuprate Aggregate

Marilyn M. Olmstead and Philip P. Power*

Department of Chemistry, University of California, Davis, California 95616

Received March 6, 1990

Summary: The use of SMe₂ (dimethyl sulfide) as both ligand and solvent has allowed the first X-ray structural characterization of a lithium alkylcuprate aggregate. The title compound [Li₂Cu₂(CH₂SiMe₃)₄(SMe₂)₂]_∞ (1) was synthesized by the reaction of 2 equiv of LiCH₂SiMe₃ with CuBr in SMe₂. Its structure consists of infinite chains of the dimeric units Li2Cu2(CH2SiMe3)4 linked by weakly bridging SMe₂ ligands that bind to the lithium centers. The Li_2Cu_2 array is almost planar, and the α -carbons of the alkyl groups reside in alternating positions approximately 1.3 Å above and below the metal plane. The Li-S distances, 2.65–2.71 Å, are long, and the Li–C bonds, \sim 2.2 Å, are short. Thus, the Li atoms are relatively strongly bonded to the α -carbons of the alkyl group. The Cu–C distances are \sim 1.956 Å, which is close to the values in arylcuprates. The structure of 1 is significantly different, in certain details, from that predicted for Li2Cu2Me4 on the basis of spectroscopy and theoretical calculations.

Since their introduction over 20 years ago¹ organocuprate (Gilman) reagents have proved extremely valuable in organic synthesis.² They are normally represented by the formula "LiCuR₂",³ but they are believed to be associated into higher aggregates in solutions of ether-the solvent in which they are normally employed. For exam-

ple, "LiCuPh2" crystallizes as the "trimeric" ionic species [Li₂Cu₃Ph₆]⁻ from ether or THF solution mixtures along with a countercation of solvated or complexed lithium.⁴ In addition, the self-complexing cuprate Li₂Cu₂- $(C_6H_4CH_2NMe_2-2)_4$ is a dimer in both solution⁵ and the solid state.⁶ These two structures, and that of the related species [Li(THF)₄][LiCu₄Ph₆],⁷ constitute the extent of the currently available detailed structural knowledge of associated lithium diorganocuprates. The scarcity of data for these compounds is further underlined by the absence of a detailed (X-ray) structure for any lithium dialkylcuprate aggregate. In addition, only two crystal structures of neutral copper(I) alkyls, the tetramer $Cu_4(CH_2SiMe_3)_4^8$ and the dimer $[(2-(Me_3Si)_2CCuC_5H_4N)_2]$,⁹ have been published. Even though the structures of the separated mononuclear dialkylcuprate ions $[Cu(C(SiMe_3)_3)_2]^{-10}$ and $[CuMe_2]^{-11,12}$

⁽¹⁾ House, H. O.; Respess, W. L.; Whitesides, G. M. J. Org. Chem. 1966, 31, 3128. Corey, E. J.; Posner, G. H. J. Am. Chem. Soc. 1967, 89, 3111.

⁽²⁾ Posner, G. H. An Introduction to Synthesis Using Organocopper Reagents; Wiley: New York, 1980. House, H. O. Acc. Chem. Res. 1976, 9, 59. Normant, J. F. Synthesis 1972, 63. Jukes, J. E. Adv. Organomet. Chem. 1974, 12, 215. van Koten, G.; Noltes, J. G. Comprehensive Organometallic Chemistry; Pergamon: Oxford, England, 1984; Vol. 1, Chapter 14.

⁽³⁾ Gilman, H.; Jones, R. G.; Woods, L. A. J. Org. Chem. 1952, 17, 1630

⁽⁴⁾ Hope, H.; Oram, D.; Power, P. P. J. Am. Chem. Soc. 1984, 106, (1) Hope, H., Orani, D., Fower, P. F. S. Am. Chem. Soc. 1984, 100, 1149.
Olmstead, M. M.; Power, P. P. Unpublished work. The countercation may be [Li₄Cl₂(OEt₂)₁₀]²⁺, [Li(THF)₄]⁺, or [Li(Et₂O)₄]⁺.
(5) Jastrzebski, J. T. B. H.; van Koten, G.; Konijn, M.; Stam, C. J. Am. Chem. Soc. 1982, 104, 5490.

⁽⁶⁾ van Koten, G.; Jastrzebski, J. T. B. H.; Muller, F.; Stam, C. H. J. Am. Chem. Soc. 1985, 107, 697

⁽⁷⁾ Khan, S. I.; Edwards, P. G.; Xuan, H. S.; Bau, R. J. Am. Chem. Soc. 1985, 107, 1682

⁽⁸⁾ Jarvis, J. A.; Kilbourn, B. T.; Pearce, R.; Lappert, M. F. J. Chem. Soc., Chem. Commun. 1973, 475. Jarvis, J. A.; Pearce, R.; Lappert, M. F. J. Chem. Soc., Dalton Trans. 1977, 999. The latter reference features studies on the reactivity of $Cu_4(CH_2SiMe_3)_4$. Upon treatment with LiCH₂SiMe₃ the species LiCu(CH₂SiMe₃)₂ was obtained and reported to be soluble in ether. ¹H NMR data on solutions having different ratios of LiCH₂SiMe₃ and CuCH₂SiMe₃ also indicate that LiCu(CH₂SiMe₃)₂ is the only cuprate species found: Kieft, R. L.; Brown, T. L. J. Organomet. Chem. 1974, 77, 289.

⁽⁹⁾ Papasergio, R. I.; Raston, C. L.; White, A. H. J. Chem. Soc., Chem. Commun. 1983, 1419

⁽¹⁰⁾ Eaborn, C.; Hitchcock, P. B.; Smith, J. D.; Sullivan, A. C. J. Organomet. Chem. 1984, 263, C23.

⁽¹¹⁾ Hope, H.; Olmstead, M. M.; Power, P. P.; Sandell, J.; Xu, X. J. Am. Chem. Soc. 1985, 107, 4337.

Figure 1. Computer-generated illustration of the polymeric structure of 1. Some important bond distances (Å) and angles (deg) are as follows: Cu(1)-C(9) = 1.961 (6), Cu(1)-C(13) = 1.958(6), Cu(2)-C(1) = 1.954 (6), Cu(2)-C(5) = 1.949 (5), Li(1)-C(1)= 2.218 (13), Li(1)-C(9) = 2.205 (13), Li(2)-C(5) = 2.201 (12), Li(2)-C(13) = 2.198 (12), Li(1)-S(1) = 2.654 (9), Li(1)-S(1a) =2.677 (9), Li(2)-S(2) = 2.679 (10), Li(2)-S(2a) = 2.709 (9); C-(9)-Cu(1)-C(13) = 173.8 (3), C(1)-Cu(2)-C(5) = 171.5 (3), C-C(5) = 171.5 (3), C-C(5)(1)-Li(1)-C(9) = 142.1 (4), C(5)-Li(2)-C(13) = 140.2 (4), S(1)-C(1) = 140.2 (5) (5) = 140.2 (5) (5) (5) = 140.2 (5) (5) (5) (5) = 140.2 Li(1)-S(1a) = 83.3 (2), S(2)-Li(2)-S(2a) = 80.8 (2).

have appeared, these are not believed to be representative of their solution structures owing to the presence of either large substituents or lithium complexing agents. Spectroscopic and theoretical data have pointed to a dimeric, approximately planar, Li_2Cu_2 array with coplanar bridging alkyl groups for $Li_2Cu_2Me_4$.^{13,14} In this paper the first structure of a solvated lithium dialkylcuprate⁸ aggregate, $[Li_2Cu_2(CH_2SiMe_3)_4(SMe_2)_2]_{\infty}$ (1), is now described.

The compound 1 was synthesized,¹⁵ in a conventional manner, by the treatment of CuBr with 2 equiv of LiCH₂SiMe₃.¹⁶ A key feature of its isolation involves the use of dimethyl sulfide rather than the more conventional ethers as the solvent. The advantages of using Me₂S were first recognized by Bertz,¹⁷ who showed, inter alia, that it was possible to identify unambiguously higher order cuprates in this solvent.¹⁸ The structure¹⁹ of 1 consists of infinite chains in which dimeric Li₂Cu₂(CH₂SiMe₃)₄ units are linked by two weakly bridging SMe₂ ligands, as illustrated in Figure 1. This structure results in a very distorted tetrahedral ligand arrangement for Li⁺, whereas the coppers possess almost linear coordination. Although the lithium and copper atoms are essentially coplanar, the planarity does not extend to the α -carbon atoms of the -CH₂SiMe₃ groups. This is illustrated by Figure 2, in which the metal-bound carbon atoms reside pairwise on opposite sides of the metal plane. Important structural

- (12) Dempsey, D. F.; Girolami, G. S. Organometallics 1988, 7, 1208.
 (13) Pearson, R. G.; Gregory, C. D. J. Am. Chem. Soc. 1976, 98, 4098.
 (14) Steward, K. R.; Lever, J. R.; Whangbo, M. H. J. Org. Chem. 1982, 4008. 47, 1472.
- (15) Under anaerobic and anhydrous conditions, a solution (16 mL) of ((trimethylsilyl)methyl)lithium¹⁶ (1.0 M in hexane) was added dropwise to a solution of CuBr (0.43 g) in Me₂S (10 mL) with cooling in an ice bath. The addition produced a white precipitate and a pale yellow solution that was stirred for 4 h. The precipitate was then allowed to settle and the supernatant liquid filtered twice through a Celite-padded glass frit. The supernatant induct intered twice through a Cente-padded glass the. I he volume of the solution was reduced to ca. 10 mL and filtered again. Cooling to -20 °C overnight gave the product 1 as colorless needles: yield 0.62 g, 67%; mp 68–74 °C. ¹H NMR (C_6D_6): δ -1.35 (br s, CH_2SiMe_3), 0.35 (s, CH_2SiMe_3), 1.71 (s, SMe_2). ¹³C NMR (C_6D_6): δ 1.32 (s, CH_2SiMe_3), 4.44 (s, CH_2SiMe_3), 17.7 (s, SMe_2). (16) Sommer, L. H.; Murch, R. M.; Mitch, F. A. J. Am. Chem. Soc. 1954 76 1619
- 1954, 76, 1619.
- (17) Bertz, S. H.; Dabbagh, G. Tetrahedron 1989, 45, 425.
- (18) Bertz, S. H.; Dabbagh, G. J. Am. Chem. Soc. 1988, 110, 3668. The structure of a higher order cuprate has also been reported: Olmstead, M. M.; Power, P. P. J. Am. Chem. Soc. 1989, 111, 4135.
- M, Fower, F. F. J. Am. Chem. Soc. 1905, 111, 4100. (19) Crystal data, obtained on a Siemens R3m diffractometer, for 1 at 130 K with Cu K α ($\lambda = 1.5418$ Å) radiation: a = 11.337 (4) Å, b = 11.583(5) Å, c = 15.163 (6) Å, $\alpha = 103.50$ (3)°, $\beta = 106.01$ (3)°, $\gamma = 97.49$ (3)°, triclinic, space group $P\overline{1}$, $d_{calc} = 1.12$ g cm⁻³, V = 1820 Å³, 4307 data with $I > 2\sigma(I)$, R = 0.06, $R_w = 0.07$.

Figure 2. View of the asymmetric dimeric unit of 1. Some nonbonded distances (Å) and angles (deg) are as follows: Cu-(1)...Cu(2) = 2.984 (1), Li(1)...Cu(1) = 2.637 (9), Li(2)...Cu(1) = $2.648(9), Li(1) \dots Cu(2) = 2.618(9), Li(2) \dots Cu(2) = 2.644(9), Cu$ (1)Li(2)Cu(2) = 68.6 (2), Li(1)Cu(1)Li(2) = 110.7 (3), Li(1)Cu-(2)Li(2) = 111.4 (3). Average distances of C(1), C(5), C(9), and C(13) from the Li₂Cu₂ plane are 1.26, 1.348, 1.348, and 1.28 Å, respectively.

information is provided in the figure captions.

The main feature of interest of 1 involves the dimeric stoichiometry of the weakly solvated $Li_2Cu_2(CH_2SiMe_3)_4$ structural motif. The relatively weak solvation of Li by SMe_2 is reflected in $long^{20}$ (2.65–2.71 Å) Li–S distances and short Li–C bonds of ~2.2 Å. The Cu–C bond lengths, \sim 1.956 Å, are marginally longer than those found in other lithium cuprate aggregates, although they are considerably shorter than the 2.02 Å observed in $Cu_4(CH_2SiMe_3)_4$.⁴ The closest published structure related to 1 is the dimeric aryl species $Li_2Cu_2(C_6H_4CH_2NMe_2-2)_4$ (2).⁶ This has much longer Li-C distances of about 2.385 Å due to the strong solvation of Li by the ortho -CH₂NMe₂ ligands. The Cu-C bonds in 2 are marginally shorter than those in 1, perhaps owing to the different hybridization of the metal-bound carbon atoms. Other differences between the structures relate to the Cu-Cu vectors, which are 2.984 (1) Å in 1 and 2.666 (1) Å in 2. The shorter Cu…Cu contact in 2 may be, in part, the result of some constraints imposed by the ortho donor ligand. This appears to be borne out by the structure of the aryl species Li2Cu2Ph4(SMe2)3, which involves a Cu-Cu vector of 2.87 Å where these constraints are absent. 21

The Li₂Cu₂ array in 1 is very close to planarity (mean deviation of metal atoms from the average plane 0.02 Å). When they are viewed along this plane (Figure 2), the CuC_2 units are staggered with respect to each other so that the opposite pairs of α -carbons are located approximately 1.3 Å above and below the metal plane. The structure of the dimeric unit of 1 is, in fact, remarkably similar to that found for Li₂Cu₂Ph₄ crystallized from SMe₂/hydrocarbon mixtures.²¹ It may be described as a very distorted tetrahedron of four α -carbons in which four of the edges are bridged by the metals. In many ways the structure of the dimeric $Li_2Cu_2R_4$ species (R = alkyl, aryl) is intermediate between the cuboidal and planar forms found for Li₄R₄ and Cu_4R_4 . These two contrasting structures are, in turn, the

⁽²⁰⁾ Shannon, R. D. In Structure and Bonding in Crystals; O'Keeffe, M. K., Navrotsky, A., Eds.; Academic: New York, 1981; Vol. II, p 53. These data predict (on the basis of crystal radii derived from metal sulfides) a Li–S distance of 2.44 Å for 4-coordinate Li⁺. (21) Olmstead, M. M.; Power, P. P. Unpublished work.

result of the tendency of Li^+ and Cu^+ toward tetrahedral and linear coordination, respectively.

From the point of view of stoichiometry the structure of 1 is in broad agreement with the dimeric structure proposed for LiCuMe₂ in Et₂O. However, there are large differences in structural details. First, whereas Li₂Cu₂Me₄ was said to have approximate D_{2h} symmetry with coplanar Li, Cu, and Me groups, the organic groups of 1 show large deviations from the Li₂Cu₂ plane. Second, the Cu…Cu distance in Li₂Cu₂Me₄ was estimated to be 4.4 ± 0.7 Å,¹³ which is very different from the value observed in 1. The validity of the 4.4-Å Cu…Cu distance has already been questioned and may be in error.^{6,22} It is possible to argue that the deviation of the alkyl groups from the Li₂Cu₂ plane in 1 could be due to the steric effects of -CH₂SiMe₃. Nonetheless, it is notable that Li₂Cu₂Ph₄ (solvated by

(22) Krauss, S. R.; Smith, S. G. J. Am. Chem. Soc. 1981, 103, 141.

 SMe_2 ²¹ also has a structure very similar to that of 1, whereas $Cu_4Ph_4(SMe_2)_2$ ²¹ is almost planar, like Cu_4 -(CH_2SiMe_3)₄.⁸ Thus, it appears that this intermediate structure in 1 may be more characteristic of $Li_2Cu_2R_4$ systems than the planar one proposed for $Li_2Cu_2Me_4$. It should also be borne in mind that, in solution, $Li_2Cu_2Me_4$ is probably solvated by ethers binding to lithium, which could play a role in its structure by imposing a nonplanar configuration on the molecule similar to that seen in 1.

Acknowledgment. We thank the donors of the Petroleum Research Fund, administered by the American Chemical Society, and the National Science Foundation for financial support.

Supplementary Material Available: Tables of crystal data, data collection, and refinement, atom coordinates, bond distances and angles, and thermal parameters (10 pages); a table of structure factors (18 pages). Ordering information is given on any current masthead page.

Articles

Synthesis and Reactivity of "MoPt" Bimetallic Systems Containing the Ligand 2-Oxacyclopentylidene

John Powell,* Eric Fuchs, and Jeffery F. Sawyer

Department of Chemistry, University of Toronto, Toronto, Ontario, Canada M5S 1A1

Received June 13, 1989

Oxidative addition of P-H bonds of primary/secondary phosphines, bound to Mo-2-oxacyclopentylidene systems, to Pt(0) complexes results in the transfer of the 2-oxacyclopentylidene ligand from the Mo to the Pt center. The cationic 2-oxacyclopentylidene complexes cis-[Cp(OC)₂Mo($COCH_2CH_2CH_2$)-(PPh₂H)]BPh₄ and trans-[Cp(OC)₂Mo($COCH_2CH_2CH_2$)(PCy₂H)]BPh₄, obtained from the reaction of Cp(OC)₃Mo(CH₂CH₂CH₂Br) with PR₂H and NaBPh₄, react (i) with Pt(C₂H₄)₂(PCy₃) to give [Cp-(OC)₂Mo(μ -PR₂)(μ -H)Pt($COCH_2CH_2CH_2$)(PCy₃)]BPh₄ and (ii) with Pt(C₂H₄)(PPh₃)₂ to give equimolar mixtures of [Cp(OC)₂Mo(μ -PR₂)(μ -H)Pt($COCH_2CH_2CH_2$)(PCH₃)]BPh₄, Cp(OC)₂Mo(R₂PCOCH₂CH₂CH₂),

and $[PtH(PPh_3)_3]BPh_4$. Reaction of $Cp(OC)_2Mo(COCH_2CH_2CH_2)(PCyH_2)]BPh_4$ with $Pt(C_2H_4)(PPh_3)_2$ gives a mixture of trans(Mo), cis(Pt)- $[Cp(OC)_2Mo(COCH_2CH_2CH_2)(\mu-PCyH)PtH(PPh_3)_2]BPh_4$ and $[Cp-(OC)_2Mo(\mu-PCy(CHOCH_2CH_2CH_2))(\mu-H)Pt(PPh_3)_2]BPh_4$. The complexes $Cp(OC)_2Mo(R_2PCOCH_2CH_2CH_2)$ are readily obtained from the reaction of 7 or 8 with base (Proton Sponge). The

molecular structure of $[Cp(OC)_2Mo(\mu-PPh_2)(\mu-H)Pt(COCH_2CH_2CH_2)(PCy_3)]BPh_4 CH_2Cl_2$ (10a) has been determined by single-crystal X-ray diffraction. Crystal data for 10a: $C_{66}H_{76}BCl_2MoO_3P_2Pt$, fw = 1352.0, monoclinic, space group $P2_1/c$, a = 17.920 (3) Å, b = 19.605 (4) Å, c = 18.301 (3) Å, $\beta = 108.95$ (1)°, V = 6081 Å³, $D_{exptl} = 1.48$ g cm⁻³ for Z = 4; R(wR) = 0.052 (0.051) for 5973 reflections with $F \ge 6 \sigma(F)$. The structure of 10a contains square-planar Pt and distorted 4:3 "piano-stool" Mo centers, which are linked by bridging diphenylphosphido and hydrido ligands with $Pt-(\mu-P)-Mo$ and $Pt-(\mu-H)-Mo$ bond angles of 81.28 (9) and 149 (7)°, respectively. The Pt…Mo separation (3.063 (1) Å) is long and weak.

Introduction

The oxidative addition of the P–H bond of a primary or secondary phosphine complex to Pt(0) complexes provides a synthetically useful route to a wide range of single-phosphido-bridged heterobimetallic complexes.¹⁻⁵ An

⁽¹⁾ Powell, J.; Gregg, M. R.; Sawyer, J. F. J. Chem. Soc., Chem. Commun. 1984, 1149; Inorg. Chem. 1989, 28, 4451.

early example involves the reaction of $(OC)_5M(PR_2H)$ (1; M = Cr, Mo, W) with $Pt(C_2H_4)(PPh_3)_2$ to give the μ -

⁽²⁾ Powell, J.; Sawyer, J. F.; Smith, S. J. J. Chem. Soc., Chem. Commun. 1985, 1312.

⁽³⁾ Powell, J.; Sawyer, J. F.; Stainer, M. V. R. J. Chem. Soc., Chem. Commun. 1985, 1314; Inorg. Chem. 1989, 28, 4461.

⁽⁴⁾ Schwald, J.; Peringer, P. J. Organomet. Chem. 1987, 323, C51.