ORGANOMETALLICS

Volume 9, Number 8, August 1990

© Copyright 1990 American Chemical Society

Communications

Haloalkyl Complexes of Transition Metals: Preparation and Characterization of (Dichloromethyl)cobalt(III) Derivatives

Gabriele Albertin, * Stefano Antoniutti, and Emilio Bordignon * Dipartimento di Chimica dell'Università di Venezia, Dorsoduro, S. Marta 2137, 30123 Venice, Italy Received March 5, 1990

Summary: Dichloromethyl complexes of the type [Co-(CHCl₂)(CNR)_nP_{5-n}](PF₆)₂ [n = 2, 3; R = 4-CH₃C₆H₄, 4-CH₃OC₆H₄, 4-ClC₆H₄; P = PhP(OEt)₂] were prepared by allowing the compounds [Co(CNR)_nP_{5-n}]PF₆ to react at -80 °C with aryldiazonium cations in CH₂Cl₂. Their characterization by infrared and ¹H, ¹³C{¹H}, and variable-temperature ³¹P{¹H} NMR spectroscopy is reported. Some studies on reactions with electrophiles and nucleophiles are also described.

Current interest in the chemistry of halomethyl complexes¹ is due to their potential use as precursors for important classes of compounds, including those with a terminal carbene ligand and bridging methylene or polymethylene groups. Oxidative addition reactions of dihalomethane to low-valent transition-metal complexes have been used as a useful method for the synthesis of these complexes.^{1,2} In this way a number of derivatives containing the MCH₂X group have been reported. In contrast, dihalomethyl MCHX₂ complexes are very rare.³ We report here the first example, to our knowledge, of a new reaction that affords the synthesis of new cobalt(III) complexes containing a dichloromethyl $(CHCl_2)$ group as ligand.

Cobalt(I) derivatives⁴ $[Co(CNR)_2P_3]^+$ and $[Co-(CNR)_3P_2]^+$ $[R = 4-CH_3C_6H_4$, a; 4-CH_3OC_6H_4, b; 4-ClC_6H_4, c; P = PhP(OEt)_2] react at room temperature with stoichiometric or excess amounts of aryldiazonium cations in CH₂Cl₂ to give dichloromethyl $[Co(CHCl_2)(CNR)_2P_3]^{2+}$ (1) and $[Co(CHCl_2)(CNR)_3P_2]^{2+}$ (2) complexes, respectively, in almost quantitative yields (\geq 90%), and these can be isolated as PF₆⁻ or BPh₄⁻ salts.^{5,6} Evolution of N₂ was detected⁷ during the reaction course and analysis of the

 ⁽a) Ghilardi, C. A.; Midollini, S.; Moneti, S.; Orlandini, A.; Ramirez, J. A. J. Chem. Soc., Chem. Commun. 1989, 304, and references therein.
 (b) McCrindle, R.; Arsenault, G. J.; Farwaha, R.; McAlees, A. J.; Sneddon, D. W. J. Chem. Soc., Dalton Trans. 1989, 761.
 (c) Marder, T. B.; Fultz, W. C.; Calabrese, J. C.; Harlow, R. L.; Milstein, D. J. Chem. Soc., Chem. Commun. 1987, 1543.
 (d) Olson, W. L.; Nagaki, D. A.; Dahl, L. F. Organometallics 1986, 5, 630.

^{(2) (}a) Winter, C. H.; Gladysz, J. A. J. Organomet. Chem. 1988, 354,
(2) (a) Winter, C. H.; Gladysz, J. A. J. Organomet. Chem. 1988, 354,
(23) (b) Burns, E. G.; Chu, S. S. C.; deMeester, P.; Lottman, M. Organometallics 1986, 5, 2383. (c) Moss, J. R.; Niven, M. L.; Stretch, P. M. Inorg. Chim. Acta 1986, 119, 177. (d) Yoshida, T.; Ueda, T.; Adachi, T.;
Yamamoto, K.; Higuchi, T. J. Chem. Soc., Chem. Commun. 1985, 1137.
(e) Richmond, T. G.; Crespi, A. M.; Shriver, D. F. Organometallics 1984, 3, 314. (f) Labinger, J. A.; Osborn, J. A.; Coville, N. J. Inorg. Chem. 1980, 19, 3236.

^{(3) (}a) Schrauzer, G. N.; Riberio, A.; Lee, L. P.; Ho, R. K. Y. Angew.
(b) Chem., Int. Ed. Engl. 1971, 10, 807. (b) Ogino, H.; Shoji, M.; Abe, Y.;
(c) Shimura, M.; Shimoi, M. Inorg. Chem. 1987, 26, 2542. (c) Chen, A.;
(c) Marzilli, L. G.; Bresciani Pahor, N.; Randaccio, L.; Zangrando, E. Inorg.
(c) Chim. Acta 1988, 144, 241.

^{(4) (}a) Albertin, G.; Amendola, P.; Antoniutti, S.; Bordignon, E. J. Chem. Soc., Dalton Trans., in press. (b) Bordignon, E.; Croatto, U.; Mazzi, U.; Orio, A. A. Inorg. Chem. 1974, 13, 935.

⁽⁵⁾ All preparative work was carried out under inert atmosphere using standard Schlenk techniques; solvents used were degassed and purified by standard methods. In a typical preparation, 5 mmol of the cobalt(I) complex $[Co(CNR)_3P_2]^+$ or $[Co(CNR)_2P_3]^+$ was mixed with a slight excess (5.2 mmol) of an aryldiazonium salt [generally (4-CH₃C₆H₄N₂)⁺BF₄⁻, 1.07 g] and cooled to -80 °C. CH₂Cl₂ (20 mL) was cooled to the same temperature and added to the solid. The reaction mixture was slowly brought to room temperature and stirred for 2 h. After filtration, the resulting solution was evaporated to dryness under reduced pressure, giving a brown oil, which was triturated with ethanol (20 mL). The addition of NaBPh₄ or NaPF₆ to the resulting orange-yellow solution caused the separation of a yellow solid, which was recrystallized from CH₂Cl₂ (5 mL) and ethanol (20-30 mL); yield ≥90%. Satisfactory elemental analyses were obtained for all complexes. As an example: Anal. Calcd for C₄₇-H₆₀N₂Cl₂CoF₁₂O₆P₅, 1a: C, 44.74; H, 4.79; N, 2.22; Cl, 5.62. Found: C, 44.54; H, 4.87; N, 2.37; Cl, 5.90. Anal. Calcd for C₄₆H₃₂N₃Cl₂O₅F₁₂O₄P₄, 2a: C, 45.78; H, 4.44; N, 3.56; Cl, 6.00. Found: C, 45.95; H, 4.49; N, 3.46; Cl, 6.20.

⁽⁶⁾ In dichloroethane (ClCH₂CH₂Cl) as solvent, the reaction proceeds as in CH₂Cl₂, and the IR spectra of the solution (ν (CN) at 2200 cm⁻¹ starting from [Co(CNR)₂P₃]⁺) seem to suggest, by analogy, formation of the [Co(ClCHCH₂Cl)(CNR)₂P₃]²⁺ complex. However, attempts to isolate a solid product failed because an oily material was always obtained. Instead, with CHCl₃ and CH₂Br₂ as solvents, the reaction did not proceed, and the starting cobalt(I) compounds could be isolated after 3 h of reaction.

solution at the end of the reaction showed that the hydrocarbon ArH is also formed⁷ (in a 1:1 ratio) as a product. The following stoichiometry of the reaction can therefore be proposed:

$$[\operatorname{Co}(\operatorname{CNR})_{n}\operatorname{P}_{5-n}]^{+} + \operatorname{ArN}_{2}^{+} + \operatorname{CH}_{2}\operatorname{Cl}_{2} \rightarrow \\ [\operatorname{Co}(\operatorname{CHCl}_{2})(\operatorname{CNR})_{n}\operatorname{P}_{5-n}]^{2+} + \operatorname{ArH} + \operatorname{N}_{2} (1) \\ n = 2, 3 \quad \operatorname{Ar} = \operatorname{C}_{6}\operatorname{H}_{5} \text{ or } 4\operatorname{-CH}_{3}\operatorname{C}_{6}\operatorname{H}_{4}$$

We have previously observed⁸ that aryldiazonium cations can oxidize cobalt(I) to cobalt(II) and that the corresponding reduction at the aryldiazonium group^{8,9} leads to unstable intermediates that decompose via N₂ and the aryl radicals. On this basis, we tentatively propose the reaction path¹⁰ (2)-(4) for the formation of dichloromethyl com-

$$[\operatorname{Co}^{\mathrm{I}}(\operatorname{CNR})_{n}\operatorname{P}_{5-n}]^{+} + \operatorname{Ar}\operatorname{N}_{2}^{+} \rightarrow [\operatorname{Co}^{\mathrm{II}}(\operatorname{CNR})_{n}\operatorname{P}_{5-n}]^{2+} + \operatorname{Ar}^{\bullet} + \operatorname{N}_{2} (2)$$

$$Ar^{\bullet} + CH_2Cl_2 \rightarrow ArH + CHCl_2^{\bullet}$$
(3)

$$[\operatorname{Co^{II}(CNR)}_{n}\operatorname{P}_{5-n}]^{2+} + \operatorname{CHCl}_{2^{\bullet}} \rightarrow \\ [\operatorname{Co^{III}(CHCl_{2})(CNR)}_{n}\operatorname{P}_{5-n}]^{2+} (4)$$

plexes, involving the Co(I) \rightarrow Co(II) oxidation of the starting complexes¹¹ with the formation of the aryl radical. Presumably by abstraction of a hydrogen atom from CH₂Cl₂, Ar[•] gives the observed hydrocarbon ArH and the new radical CHCl₂[•], which, by reacting with the Co(II) complex, affords the final [Co(CHCl₂)(CNR)_nP_{5-n}]²⁺ derivatives.

The new cobalt(III) complexes are pale-yellow solids, relatively stable as solids and in solution, diamagnetic, and 2:1 electrolytes¹² ($\Lambda_{\rm M}$ for the PF₆⁻ salts between 209 and 190 Ω^{-1} M⁻¹ cm² in 10⁻³ M solution of CH₃NO₂). Elemental analyses, including those of chlorine, infrared and ¹H, ¹³C, and ³¹P NMR spectroscopic data¹³ support the proposed

(10) Studies of this reaction show that the time required for completion of reaction varies from about 10 to 100 min or more for a series of syntheses carried out under apparently identical conditions. Similarly, a variation in yield from 60 to 90% was also observed in some cases. This variability seems to suggest that a radical chain mechanism might be involved. To support this hypothesis, we attempted to trap intermediate alkyl or aryl radicals by using acrylonitrile as solvent since formation of such radicals should lead to polymerization of acrylonitrile. The reaction between Co(I) complexes and ArN₂⁺ was therefore carried out using a mixture of CH₂Cl₂ and CH₂=CHCN (15:5 mL) as solvent. It was observed that, in this case too, the reaction gave the [Co(CHCl₂)-(CNR)_nP_{5-n}]²⁺ complexes. However, an insoluble product, characterized by infrared as poly(acrylonitrile), was also isolated from the reaction mixture, in agreement with the proposed radical pathway.

(11) It may be noted that when the progress of the reaction is monitored by IR spectra in the $\nu(CN)$ region, besides the Co(I) and Co(III) absorptions, the presence of a small band at 2160 cm⁻¹ is revealed. This may be tentatively assigned to the $[Co^{II}(CNR)_n P_{b-n}]^{2+}$ intermediate. Instead, no direct information can be obtained from NMR spectra, because only very broad signals due to paramagnetic species occur during the reaction course.

(12) Geary, W. J. Coord. Chem. Rev. 1971, 7, 81.

(13) All NMR spectra were recorded in $(CD_3)_2CO$ with a Varian FT80-A instrument. ¹H and ¹³C NMR chemical shifts are referred to internal SiMe₄; ³¹P are referred to 85% H₃PO₄ with downfield shifts considered positive. [Co(CHCl₂)(4-CH₃C₆H₄NC)₃[PhP(OEt)₂]₃](PF₆)₂, 1a: IR, cm⁻¹ (CH₂Cl₂) 2197 s, (KBr) 2196 s (ν CN); ¹H NMR δ 7.86, 7.73, 7.48 (m, 23 H, Ph), 6.72 [q, (J_{PH} = 8.3 Hz), 1 H, CHCl₂], 4.33 (m, 12 H, CH₂), 2.47 (s, 6 H, CH₃ isocy.), 1.49, 1.44 (t, 18 H, CH₃); ³¹Pl¹H NMR δ (-80 °C) 142 (m, br); ¹³Cl¹H NMR δ 133.3 [q, (J_{CP} = 6 Hz), dichoroalkyl carbon]. [Co(CHCl₂)(4-CH₃C₆H₄NC)₃[PhP(OEt)₂](PF₆)₂, 2a: IR, cm⁻¹ (CH₂Cl₂) 2207 s (br) (KBr), 2206 s (br) ν (CN); ¹H NMR δ 8.00, 7.63, 7.41 (m, 22 H, Ph), 6.93 [t, (J_{PH} = 7.3 Hz), 1 H, CHCl₂], 4.60 (m, 8 H, CH₂), 2.46, 2.43 (s, 9 H, CH₃ isocy), 1.48 (t, 12 H, CH₃); ³¹Pl¹H NMR, δ (-80 °C) 135.3 s; ¹³Cl¹H NMR δ 122.8 (br, dichoroalkyl carbon).

formulation.¹⁴

At room temperature, apart from phosphite and isocyanide signals, the ¹H NMR spectra show a triplet at δ 6.93 ($J_{PH_{upp}} = 7.3$ Hz) for compound [Co(CHCl₂)-(CNR)₃P₂]²⁺ (**2a**) and a quartet at δ 6.72 ($J_{PH_{upp}} = 8.3$ Hz) for related compound [Co(CHCl₂)(CNR)₂P₃]²⁺ (1a), attributed to the Co-CHCl₂ group, the phosphite ligands being magnetically equivalent at this temperature. It may be noted that the previously reported monochloromethyl derivatives¹ show the ¹H signals of the M-CH₂Cl fragment at δ 4.2-4.8, while in our case the appearance of these signals at a lower field (δ 6.7-6.9) supports the existence of the CHCl₂ ligand. In the ¹³C{¹H} NMR spectra the dichloromethyl ligand signal appears as a quartet at δ 133.3 ($J_{CP} = 6$ Hz) for 1a, whereas a broad signal at δ 122.8 is observed for 2a.

In the $\nu(CN)$ region, the bis(isocyanide) [Co(CHCl₂)-(CNR)₂P₃]²⁺ (1a) complex shows only one strong band at 2197 cm⁻¹ (CH₂Cl₂), indicating two isocyanide ligands in a mutually trans position. The ³¹P{¹H} NMR spectra in the temperature range +30 to -80 °C indicate that the complexes are fluxional. Moreover, also at -80 °C a broad multiplet is still present, and at lower temperatures the A₂B multiplet expected for geometry I can probably be

detected. On the other hand, no unambiguous assignment of a geometry in solution may be made for the [Co- $(CHCl_2)(CNR)_3P_2$]²⁺ (2) derivatives.

The ³¹P{¹H} NMR spectra appear as a sharp singlet at -80 °C, indicating the existence of two magnetically equivalent phosphorus atoms, but the IR spectrum shows only a rather large ν (CN) band at 2206 cm⁻¹ (CH₂Cl₂), which does not allow us to distinguish between fac or mer geometry.

We studied the reactivity of the dichloroalkyl complexes toward electrophilic and nucleophilic reagents as well as reactions with π -acceptor ligands such as CO, CNR, phosphite, etc. Preliminary results show that no carbene complexes can be obtained by reaction of 1 or 2 with Ag⁺, whereas reactions with acid such as HBF₄ do not proceed.

Treatment of both dichloroalkyl compounds 1 and 2 with OH⁻, Cl⁻, or ArNH₂ in any case affords the cobalt(I) tris(isocyanide) complex $[Co(CNR)_3P_2]^+$ as the final reaction product. In the case of reaction with Cl⁻ the absence of chloroform (CHCl₃) was also observed in the solution, which could be formed by nucleophilic attack of Cl⁻ on the carbon atom of the CHCl₂ ligand. Arylamine reacts with 1 or 2 and the infrared spectra taken during the reaction course do not display any intermediate containing isocyanide ligand beyond $[Co(CNR)_3P_2]^+$, as may be expected from the reaction of an amine on a chloroalkyl complex.²

On the basis of these preliminary data, we can only conclude that, in the presence of OH^- , Cl^- , or $ArNH_2$, complexes 1 and 2 undergo a complicated reaction affording in any case the most stable complex in these conditions, the tris(isocyanide) [Co(CNR)₃P₂]⁺ derivative.

Substitution of the ligands in $[Co(CHCl_2)(CNR)_n P_{5-n}]^{2+}$ is rather difficult, and no reaction was observed at room temperature with π -acceptor ligands such as CO (1 atm), CNR, and phosphite. In reflux conditions, however, re-

⁽⁷⁾ Dinitrogen was detected by gas chromatography, whereas the aromatic hydrocarbon (C_6H_6 or $CH_3C_6H_5$) was determined by both ¹H NMR and gas chromatography.

⁽⁸⁾ Albertin, G.; Bordignon, E. J. Chem. Soc., Dalton Trans. 1986, 2551.

⁽⁹⁾ Bowden, W. L.; Brown, G. M.; Gupton, E. M.; Little, W. F.; Meyer, T. J. Inorg. Chem. 1977, 16, 213.

⁽¹⁴⁾ Attempts to obtain the X-ray crystal structure of compound 1a failed because the crystal decomposes during the early stages of measurements. Pelizzi, G., private communication.

duction to Co(I) was observed, always affording the [Co- $(CNR)_{3}P_{2}]^{+}$ derivative.

Acknowledgment. The financial support of MPI and CNR, Rome, is gratefully acknowledged. Thanks are due to Daniela Baldan for her technical assistance.

Registry No. 1a, 127518-91-6; 1b, 127518-95-0; 1c, 127518-97-2; 2a, 127518-93-8; 2b, 127518-99-4; 2c, 127519-01-1; [Co-(CNR)₂P₃]PF₆ (R = 4-CH₃C₆H₄), 127518-87-0; [Co(CNR)₃P₂]PF₆ $(R = 4 - CH_3C_6H_4), 127518 - 89 - 2; (4 - CH_3C_6H_4N_2)^+BF_4^-, 459 - 44 - 9.$

Aldehyde Insertion into a Platinum Hydride and Subsequent Nucleophilic Attack of the Alkoxide at Phosphorus: Platinum–Alkoxide/Phosphorus–Aryl Metathesis

Piet W. N. M. van Leeuwen* and Cornelis F. Roobeek Koninklijke/Shell-Laboratorium, Amsterdam, Shell Research BV, Postbus 3003, 1003 AA Amsterdam, The Netherlands

A. Guy Orpen

Department of Inorganic Chemistry, The University of Bristol, Cantock's Close, Bristol BS8 1TS, U.K. Received February 22, 1990

Summary: Pt(Ph₂PO)(Ph₂POH)₂H (1) was treated with o-(diphenylphosphino)benzaldehyde to give a cyclic platinum alkoxide (2). The latter rearranges to the new product 3 (Scheme I), containing 1-phenyl-3H-2, 1-benzoxaphosphole and a phenyl group coordinated to platinum, via a nucleophilic attack at the coordinated phosphorus center by the alkoxy group, followed by a shift of a phenyl group from phosphorus to platinum. The crystal structure of 3 has been determined.

The insertion of aldehydes into transition-metal hydrides plays a role in industrial processes such as the reduction of aldehydes to alcohols and the conversion of syngas to methanol or ethylene glycol.¹ In recent years the proposed intermediate alkoxide and hydroxymethyl late-transition-metal complexes have been prepared and their reactivity has been studied.²⁻⁹ We have recently reported¹⁰ on platinum phosphinito complexes that catalyze the hydroformylation of alkenes. The aldehydes are hydrogenated to alcohols in a secondary reaction, which may involve either alkoxy or hydroxymethyl intermediates. This communication deals with the mechanism of the aldehyde hydrogenation reaction in a model compound using o-(diphenylphosphino)benzaldehyde as the substrate. The resulting complex shows an unexpected rearrangement reaction that is related to the decomposition of arylphosphines in syngas reactions with late-transition-metal catalysts.

When $Pt(Ph_2PO)(Ph_2POH)_2H(1)$ was treated with o-(diphenylphosphino)benzaldehyde,^{11,12a,b} one of the

- Bernard, K. A.; Atwood, J. D. Organometallics 1989, 8, 795.
 Bryndza, H. E.; Tam, W. Chem. Rev. 1988, 88, 1163.
 Park, S.; Pontier-Johnson, M.; Roundhill, D. M. J. Am. Chem. Soc.

- (6) Bryndza, H. E.; Fong, L. K.; Paciello, R. A.; Tam, W.; Bercaw, J.
 (6) Bryndza, H. E.; Fong, L. K.; Paciello, R. A.; Tam, W.; Bercaw, J.
 E. J. Am. Chem. Soc. 1987, 109, 1444.
 (7) Hoffman, D. M.; Lappas, D.; Wierda, D. A. J. Am. Chem. Soc.
- 1989, 111, 1531.
- (8) Kim, Y.-J.; Osakada, K.; Sugita, K.; Yamamoto, T.; Yamamoto, A. Organometallics 1988, 7, 2182.
- (9) Arnold, D. P.; Bennett, M. A. Inorg. Chem. 1984, 23, 2110.
 (10) van Leeuwen, P. W. N. M.; Roobeek, C. F.; Wife, R. L.; Frijns, J.

H. G. J. Chem. Soc., Chem. Commun. 1986, 31.

(1) Ph₂ 2 Δ7 PhPOCH/

Scheme I

Ph₂POH ligands was immediately replaced and the resulting product showed that insertion^{12c} of the aldehyde into the platinum-hydride bond had occurred. ¹H and ³¹P NMR spectroscopy revealed¹³ that the platinum alkoxide 2 had been formed. Insertion of $Ph_2P(o-C_6H_4CHO)$ into a metal hydride may give either an alkoxy- or an (α hydroxyalkyl)metal complex. Thermodynamic studies^{2,4,6} indicate that noncyclic alkyl- and alkoxyplatinum species have equal stabilities. In the present reaction both the five-membered ring (with an α -hydroxyalkyl group) and the six-membered ring (with an alkoxy group) should be accessible since chelating phosphinoalkenes¹⁴ react with platinum hydride 1 to give products with ring sizes ranging from three to seven. Molecular models show that the five-membered ring may be slightly more favorable. Also,

⁽¹⁾ Sisak, A.; Sámpár-Szerencsés, E.; Galamb, V.; Németh, L.; Ungváry, F.; Pályi, G. Organometallics 1989, 8, 1096 and references therein

⁽²⁾ Bryndza, H. E.; Calabrese, J. C.; Marsi, M.; Roe, D. C.; Tam, W.; Bercaw, J. E. J. Am. Chem. Soc. 1986, 108, 4805.

⁽¹¹⁾ Schiemenz, G. P.; Kaack, H. Justus Liebigs Ann. Chem. 1973, 9, 1480

⁽¹²⁾ o-Ph₂PC₆H₄CHO has been employed in reactions with Vaska's complex^{12a} and PtCl₂^{12b} to give oxidative addition of the aldehyde to the metal: (a) Landvatter, E. F.; Rauchfuss, T. B. Organometallics 1982, 1, 506. (b) Rauchfuss, T. B. J. Am. Chem. Soc. 1979, 101, 1045. Depending on the other ligands, the reactions involving aldehyde C-H bond breaking can be very facile, as is the case for quinoline-8-carbaldehyde,^{12a} and for the provide the theory of the provide the theory. the present reaction more complicated mechanisms other than straight-

the present reaction more complicated mechanisms other than straight-forward aldehyde insertion might be envisaged: (c) Anklin, C. G.; Pre-gosin, P. S. J. Organomet. Chem. 1983, 243, 101. (13) ³¹P NMR for 2 (CD₂Cl₂): δ (Ph₂PO) 72.0, ¹J(PtP) = 3100 Hz, ²J(PP trans) = 420 Hz, ²J(PP cis) = 30 Hz; δ (Ph₂PC₆H₄CH₂O-) 13.0, ¹J(PtP) = 2180 Hz, ²J(PP trans) = 420 Hz, ²J(PP cis) = 9.0 Hz; δ -(Ph₂POH) 61.0, ¹J(PtP) = 3420 Hz, dd, cis couplings. ¹H NMR: δ 3.92 (2 H), ³J(PH) = 9 Hz, ²J(PtH) = 33 Hz; δ 6.4-8.0 (34 H). (14) van Leeuwen, P. W. N. M.; Roobeek, C. F.; Frijns, J. H. G.; Orpen, A. G. Organometallics 1990. 9. 1211.

A. G. Organometallics 1990, 9, 1211.