

Subscriber access provided by American Chemical Society

Stereochemical aspects of the reactions of molybdenum complex CpMo(CO)2(syn-.eta.3-C3H4COCH3)

Wen Jung Vong, Shie Ming Peng, and Rai Shung Liu

Organometallics, **1990**, 9 (8), 2187-2189• DOI: 10.1021/om00158a006 • Publication Date (Web): 01 May 2002

Downloaded from http://pubs.acs.org on March 8, 2009

More About This Article

The permalink<http://dx.doi.org/10.1021/om00158a006>provides access to:

- Links to articles and content related to this article
- Copyright permission to reproduce figures and/or text from this article

The nature of **6** and **7** has been established by an X-ray analysis.⁶ Some details are reported for 6,¹⁰ shown in Figure 2 with some relevant bond distances and angles.¹¹ The iminoacyl group does not change its structural parameters. The bonding scheme shown for the two metallacycles derived from the insertion of $CO₂$ into the V-C carbon bonds is supported by the structural parameters. The bidentate ligand in the metallacycle is the deprotonated form of an α -imino carboxylic acid. The appropriate sequence in the insertion reaction transformed the original aryl group **into** a doubly functionalized fragment. Insertion of carbon dioxide in a functionalized carbon ligand **has** so far been an unknown process.¹² Studies will continue for a complete definition of the chemistry of **2,** which is a rather unique iminoacyl derivative that does not have at the metal any ancillary ligand.

Acknowledgment. We thank the **US.** Navy (Grant No. N00014-89-5-1810) and the Fonds National Suisse de la Recherche Scientifique (Grant No. 20-26245-89) for financial support.

Registry No. 1,79738-18-4; 2, 127973-44-8; 3,63064-23-3; 4, 127973-43-7; 6, 127973-45-9; 7, 127973-46-0; ButNC, **7188-38-7; CeHllNCO, 3173-53-3.**

Supplementary Material Available: Tables of crystal data, data collection, and solution and refinement parameters, atomic coordinates, bond distances and angles, thermal parameters, and hydrogen atomic coordinates for compounds **2** and **6 (12** pages); tables of observed and calculated structure factors for compounds 2 and **6 (23** pages). Ordering information is given on any current masthead page.

Stereochemical Aspects of the Reactions of $\text{CpMo}(\text{CO})_{2}(\text{syn-}\eta^{3}\text{-C}_{3}\text{H}_{4}\text{COCH}_{3})$

Wen-Jung Vong,[†] Shie-Ming Peng, $\frac{1}{4}$ and Rai-Shung Liu*.[†]

Departments of *Chemistty, National Tsing Hua University, Hsinchu, Taiwan, Republic of China,* and National Taiwan University, Taipei, Taiwan, Republic of China

Received March 2, 1990

Summary: Reduction of CpMo(CO)₂(syn- η^3 -CH,CHCHCOCH,) (1) with NaBH, in MeOH produces *(RR-* **(SS))-CpMo(CO),(syn-C3-CH,CHCHCH(OH)CH,)** (2) with high diastereoselectivity. Treatment of the latter with 1 equiv of $(CF_2SO_2)_2O$ in ether at $-45 °C$ stereospecifically generates the **s-trans-q'-cris-pentadiene** cationic complex **3,** which adds nucleophiles regioselectively and stereospecifically at the α - or δ -carbons. The enolate of 1 generated with lithium diisopropylamide in THF undergoes diastereoselective aldol reactions.

Functionalization of $CpMo(CO)₂(allyl)$ complexes in cyclic systems¹⁻³ has recently attracted considerable attention. Organic functional groups adjacent to the Organic functional groups adjacent to the $CpMo(CO)_{2}(n^{3}-allyl)$ unit can be transformed with excellent stereoselectivity and regioselectivity. In contrast, little

has been reported concerning the acyclic allyl system. Faller et al.⁴ have reported that condensation of CpMo- $(NO)(Cl)(syn-\eta^3-crotyl)$ with aldehydes yields the homoallylic alcohol with high regioselectivity and diastereoselectivity. Stereocontrolled functionalization of acyclic $\text{CpMo}(\text{CO})_2(\eta^3\text{-ally})$ systems represents a significant extension of this chemistry, and we report here stereochemical aspects of the reaction chemistry of $\text{CpMo}(\text{CO})_{2}(syn$ n^3 -C₃H₄COCH₃).

The complex $\text{CpMo}(\text{CO})_2(\text{syn-}\eta^3\text{-C}_3\text{H}_4\text{COCH}_3)$ (1) was conveniently synthesized by reaction of $\text{CpMo}(\text{CO})_3\text{Na}$ with 5-chloro-3-penten-2-one (tetrahydrofuran at $0 °C$) followed by decarbonylation with excess $Me₃NO$. The syn and anti isomers of 1, formed in a ratio of 6:1, are readily separable by silica gel column chromatography. For the $syn-\eta^3$ isomer, the exo/endo ratio is 16:1. The presence of exo/endo isomers does not complicate the diastereoselectivity studies, because they are related to each other **as** conformers.⁵ Reduction of the $syn- η ³$ isomer of 1 with NaBH₄ in CH₃OH produces $(RR(SS))$ -CpMo(CO)₂(η^3 $syn\text{-}C_3H_4CH(OH)CH_3$ (2) in an exo/endo ratio of 2:1. The RR(SS) configuration is assigned to **2** by assuming that hydride adds to the carbonyl group trans to the CpMo-

⁽¹⁰⁾ A THF *(80* **m~)** solution of **2 (3.33** g, **5.06** mmol) was reacted with CO, at room temperature. The color suddenly changed to dark red. The solution **was** kept stirring for **30** min; then the solvent was evaporated to drynees. A dark solid was obtained, which, after extraction with diethyl ether, gave dark red crystals of **6** (40%). Anal. Calcd for C₄H₆₀N₃O₄V:
C, 70.79; H, 8.04; N, 5.63. Found: C, 70.61; H, 7.97; N, 5.54. $\mu_\text{eff} = 2.87$ $\mu_{\rm B}$ at 288 K.

⁽¹¹⁾ Crystals of 6 are triclinic, space group $P\overline{1}$, with $a = 11.253$ (1) Å, $b = 22.818$ (2) Å, $c = 8.538$ (1) Å, $\alpha = 93.85$ (1)°, $\beta = 94.58$ (1)°, $\gamma = 100.95$ (1)°, $V = 2137.9$ (4) Å³, $Z = 2$, and $d_{\text{cal}} = 1.15$ structure was solved **as** above and refined by full-matrix least squares anisotropically for all the non-hydrogen atoms. All the hydrogen atoms were located in a difference Fourier map and introduced **as** fixed con- tributors in the final stage of refinement. During the refinement the benzene rings were considered as regular hexagons.

⁽¹²⁾ Behr, A. *Carbon Dioxide* Activation *by Metal Complexes;* **VCH** Weinheim, FRG, **1988.** Darensbourg, D.; Kudaroaki, R. A. *Adu. Organornet. Chern.* **1983,22,129. Behr,** A. *Angew. Chem., Int. Ed. Engl.* **1988, 27,661.** Braunstein, P.; Matt, D.; Nobel, D. *Chern. Reo.* **1988,88,747.** Walther, D. *Coord. Chern. Reu.* **1987, 79, 135.**

^{&#}x27;National Tsing Hua University.

¹ National Taiwan University.
(1) (a) Pearson, A. J.; Khan, M. D.; Clardy, J. C.; He, C.-H. *J. Am.*
Chem. Soc. 1985, 107, 2748. (b) Pearson, A. J.; Blystone, S. L.; Nav. H.;
Pinketon, A. A.; Rodeu, B. A.; Yoon, J. *Ib*

A. J.; Khan, M. N. *Ibid.* 1984, *106*, 1872.

(2) (a) Faller, J. W.; Murray, H. H.; White, D. L.; Chao, K. H. Or-
 ganometallics 1983, 2, 400. (b) Faller, J. W.; Rosan, A. M. J. Am. Chem.

Soc. 1977, 99, 4858. (c) Adams

⁽⁴⁾ (a) Faller, J. W.; John, J. A.; Mazzieri, M. R. *Tetrahedron Lett.* **1989,1769.** (b) Faller, J. W.; Linebarrier, D. L. *J. Am. Chem. SOC.* **1989, 11 1, 1937.**

⁽⁵⁾ Faller, J. W.; Incorvia, M. J. *Inorg. Chem.* **1968, 7,** *840.*

Nu=OCH3(4g),0H(4h)

(CO), unit. The ligand conformation of 1 **has** been clarified by an X-ray diffraction study,⁶ which shows a sickle shape for the allyl and ketone carbon atoms as depicted in Scheme I.

Treatment of 2 with 1 equiv of $(CF_3SO_2)_2O$ at $-45 °C$ in ether results in the stereoselective formation of the s -trans- η^4 -cis-pentadiene complex 3 as a precipitate.^{7,8}

Table I. Product Analysis **of** the Reaction between 3 and Nucleophiles

Nu (product)	product yield, %		
		R	
H ₂ O(2)	75		
CH ₃ OH (4a)	67		
C_2H_5OH (4b)	59		
C_2H_5SH (4c)	34	24	
$(CH3)2CHNH2$ (4d)	57		
$[(CH3)2CH]2NH (4e)$		42	
$CH3Li$ (4f)	49		

This s-trans-q*-diene cation **3** is stable in the solid state at ambient temperatures. Attempts to characterize the s-trans-diene cation by NMR spectroscopy⁹ at -40 °C in

⁽⁶⁾ Pale yellow crystale of **1** were **grown** from solution in ether solvent by cooling to **-20 OC.** The crystals belong to the triclinic system, space group $P\bar{1}$, with $a = 7.0395$ (1) Å, $b = 7.891$ (3) Å, $c = 11.716$ (8) Å, $\alpha = 98.67$ (4)°, $\beta = 92.50$ (4)°, $\gamma = 112.93$ (3)°, $V = 588.8$ (5) Å³, and $Z = 2$. Diffraction data were collected on a Enraf-Nonius CAD4 d using **Mo** *Ka* radiation. A **total** of **2259** reflections were collected; of the 2076 unique reflections, 2006 were considered observed, having $I > 2\sigma(I)$. The position of the **Mo** atom was taken from a Patterson map. The remainder **of** the non-hydrogen **atoms** were located in difference Fourier maps; final R = **0.024** and *Rw* = **0.029.**

⁽⁷⁾ q'-s-tram-Diene structures **are** only **known** for neutral complexes.* Recently, Green and co-workers reported the s-trans- η^4 -diene cation **(C₅Me₅)Mo(CO)**₂(s-trans- η^4 -trans-pentadiene); see: Benyunes, S. A.; Green M.; Grimshire, M. **J.** *Organometallics* **1989,** *8, 2268.*

^{(8) (}a) Erker, G.; Wicher, J.; Engel, K.; Rosenfeldt, F.; Dietrich, W.; Kruger, C. J. Am. Chem. Soc. 1980, 102, 6433. (b) Nakamura, A.; Yasuda, H. Angew. Chem., Int. Ed. Engl. 1987, 26, 723. (c) Hunter, A. D.;
Legzdins, P.; Nurse, C. R.; Einstein, F. W. B.; Willis, A. C. J. Am. Chem. So;. **1985,** *107,* **1791.**

CD,C12 encountered difficulties because of its facile rearrangement to the more stable $s\text{-}cis\text{-}\eta^4$ -pentadiene cation. The solid form of the *s*-trans-diene cation in ether at -40 "C shows a remarkable reactivity toward diverse nucleophiles including H_2O , alcohols, amines, thiols, and alkyllithium. Analyses of the products **(4a-f)** resulting from the reaction enabled clarification of the cationic structure. The results are summarized in Table I. The nucleophiles may add at the α - or δ -carbons of the *s*-trans-diene cation. The regioselectivity depends heavily on the steric size of the entering group. Small nucleophiles such as H_2O , $CH₃OH$, $C₂H₅OH$, $(CH₃)₂CHNH₂$, and $CH₃Li$ yield only type A products, whereas for $[(CH₃)₂CH]₂NH$ only type B is obtained. For C_2H_5SH , additions at both the α - and δ -carbons are possible and the two products $(A + B)$ are separable by column chromatography. Type A complexes are assumed to have the same configuration, *RR(SS),* as **2** since hydrolysis of the **s-tram-q4-cis-pentadiene** complex **(3)** regenerates **2.** This implies a trans-addition model during the nucleophilic attack. For complexes B, the anti methyl group is indicated by the coupling constant J_{12} = **7.0** Hz **as** well **as** a relatively upfield resonance (6 **1.00** ppm) in the exo isomer.^{2b,5} The structures of A and B provide direct evidence for the formulation of **3** as the s-trans $n⁴ \text{-} c$ is-pentadiene cation. The more stable s-cis- $n⁴$ -pentadiene complex is expected to yield products other than **A** and B^{2b} We have examined its reaction with H_2O and CH30H at **-40** "C. On the basis **of** spectroscopic data, compound C is produced in high yield and has the CH- $(Nu)CH₃$ group in the anti position as indicated by the coupling constant $J_{34} = 7.0$ Hz.

It is instructive to consider the mechanism of formation of the s-trans-diene derived from **2.** Nucleophilic substitution with retention precludes the formation of a free carbocation at the α -carbon (CHCH₃). The Fisher projection

^{(9) 3}a freshly dissolved in CD,C12 exhibited a ill-defined broad 'H NMR spectrum at -60 **"C but at -40 "C exhibited a well-resolved spectrum assignable to an s-cis-** η^2 **-pentadiene that contained both** *anti***- and syn-methyl isomers. The four isomers were averaged to one isomer in a syn-methyl isomers. The four isomers were averaged to one isomer in a mechanism in which** both **exo-endo isomerization and butadiene-flipping** processes are operative.²¹

represents the key conformation of the intermediate, which has $CF₃SO₃$ lying trans to the $CpMo(CO)₂$ unit. Apparently, the ionization process follows an intramolecular S_N2 mechanism. Thus, CpMo(CO)₂ acts as a base to displace the $CF_3SO_3^-$ anion from the opposite face of the C_4 unit and stabilizes the cation as it forms. This mechanism is essentially equivalent to those previously established for derivatives of ferrocene⁵ and (butadiene)iron tricarbonyl¹⁰ complexes.

Formation of the enolate anion $CpMo(CO)₂(syn- η^3 -$ CH,CHCHCOCH,Li) is accomplished through deprotonation of **1** by lithium diisopropylamide in THF at **-78** "C. This enolate reacts with 1 equiv of $CH₃I$ to form CpMo- $(CO)_2(syn-\eta^3-\underline{CH}_2CHCHCOC_2H_5)$ **(5a)** in high yield. Reaction of this anion with 1 equiv of PCHO gives CpMo- $(CO)_2(syn-\eta^3-\underline{CH}_2CHCHCOCH_2CH(OH)R)$ $(R = Ph(5b),$ CH3 **(54,** (CH3),CH **(5d)) as** two diastereoisomers in good yield. The two diastereoisomers are distinguishable by using the low-field proton resonances of the CHCO and CHR(0H) hydrogens. The ratio of the two diastereoisomers is 53:47 for $R = (CH_3)_2CH$, 89:11 for $R = Ph$, and 71:29 for $R = CH_3$. Good diastereoselectivity is observed in the phenyl case, and after fractional crystallization, **5b** can be obtained **as** a single diastereoisomer in 53% yield.

In summary, we have shown that functionalization of **1** proceeds in a highly stereospecific and regioselective manner. Since $CpMo(CO)₂(allyl)$ has been recognized as a versatile complex in organic synthesis, use of CpMo- $(CO)₂(syn- η ³-C₃H₄R) as a chiral auxiliary in acyclic systems$ deserves further attention.

Acknowledgment. We wish to thank the National Science Council of the Republic of China for financial support of this work.

Supplementary Material Available: An QRTEP drawing, tables of bond distances and angles, crystal data, atomic coordinates, and thermal parameters for 1, and a description of the elemental analyses and spectroscopic data for the compounds 1, 2,4a-f, and 5a-d (10 pages); a table of **structure factors for 1 (7 pages). Ordering information is given on any current masthead page.**

⁽¹⁰⁾ For the related chemistry of $\text{Fe}(\eta^4\text{-}butadiene)(CO)_3$, see the review **paper: Gree, R.** *Synthesis* **1989,341.**