Catalytic and Stoichiometric Carbonylation of β , γ -Unsaturated Carboxylic **Acids To Give Cyclic Anhydrides through Intermediate Palladium-Containing Cyclic Esters**

Kohtaro Osakada, ** Myung-Ki Doh*, ¹ Fumiyuki Ozawa, [†] and Akio Yamamoto *^{,‡}

Research Laboratory of Resources Utilization, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 227, Japan

Received January 23, 1990

Summary: **Palladium(0) complexes with tertiary phosphine ligands catalyze the carbonylative cyclization of 3-butenoic acid to give methylsuccinic anhydride and glutaric anhydride. Reaction of 3-butenoic acid with an** equimolar amount of Pd(CH₂=CHPh)(PMe₃)₂ gives palla**dium-containing cyclic esters that are considered as the reaction intermediates in the above catalytic carbonylation.**

The transition-metal-promoted activation of bifunctional organic compounds followed by a carbonylative cyclization process is useful in the synthesis of various organic compounds with carbonyl functions.²⁻⁸ Previously we observed nickel-promoted stoichiometric conversion of α , β - and β , γ -unsaturated carboxylic acids to cyclic anhydrides through formation of isolable nickel-containing cyclic esters followed by their carbonylation. 9 Accomplishment of a catalytic process with the nickel system is not feasible because the NioL2 generated in reaction **1** forms a **CO**promoted stoichiometric conversion contract and the state of a state of information of isolable nickel-containing d by their carbonylation.⁹ Accomplisic process with the nickel system is represent the Ni⁰L₂ generated

$$
N_1(\text{cod})_2 + 2 \text{ L} + \text{CODH} \xrightarrow{-2 \text{ cod}}
$$
\n
$$
N_2 \xrightarrow{\text{CODH}} \xrightarrow{-2 \text{ cod}}
$$
\n
$$
N_3 \xrightarrow{\text{CODH}} \xrightarrow{\text{CODH}} \xrightarrow{\text{Mie}}
$$
\n
$$
(1)
$$

coordinated complex that is *too* inert to react further with the β , γ -unsaturated acid. We report here the achievement of such a catalytic transformation by employing palladium catalysts. **A** full characterization of a palladium-containing

Present address: Catalysis Research Center, Hokkaido University, Sapporo **060,** Japan.

- * Present address: Department of Applied Chemistry, School of Science and Engineering, Waseda University, Okubo, Shinjuku-ku, Tokyo **169,** Japan.
- **(1)** On leave from the Department of Chemistry, Yeungnam University, **713-749** Korea.

(2) (a) Falbe, J.; Korte, F. *Chem. Ber.* **1962,95,2680.** (b) Mullen, **A.** In *New Syntheses with Carbon Monoxide;* Falbe, J., Ed.; Springer-Verlag: Berlin, Heidelberg, New York, **1980.** (c) **Falbe, J.** *Carbon Monoxide in Organic Synthesis;* Springer-Verlag: Berlin, Heidelberg, New York, **1970;** Chapter **4.**

(3) McMurry, J. **E.;** Andrus, A.; Ksander, G. M.; Musser, J. H.; Johnson, M. A. J. *Am. Chem. SOC.* **1979,101, 1330.**

(4) (a) Murray, **T.** F.; Norton, J. R. *J. Am. Chem.* **SOC. 1979,101,4107. (b)** Murray, **T.** F.; Samsel, E. G.; Varma, V.; Norton, J. R. J. *Am. Chem. SOC.* **1981, 103, 7520.**

(5) (a) Ishikura, M.; Mori, M.; Terashima, M.; Ban, Y. J. *Chem. SOC., Chem. Commun.* **1982,741.** (b) Uozumi, Y.; Kawasaki, N.; Mori, E.; Mori, M.; Shibazaki, M. *J. Am. Chem. SOC.* **1989,111, 3725.**

(6) Villemin, D. *Tetrahedron Lett.* **1983,24, 2855.**

(7) Ozawa, F.; Yanagihara, H.; Yamamoto, A. *J.* **Og.** *Chem.* **1986,51, 415.**

(8) Negishi, **E.;** Zhang, Y.; Shimoyama, I.; Wu, G. *J. Am. Chem. SOC.* **1989,111,8018.** (9) (a) Yamamoto, T.; Igarashi, K.; Komiya, S.; Yamamoto, A. J. **Am.**

Chem. SOC. **1980,102,7448.** (b) Yamamoto, T.; Sano, K.; Yamamoto, A. *Ibrd.* **1987, 109, 1092.**

Table I. Palladium-Catalyzed Carbonylation of 3-Butenoic

"Catalyst/substrate = **1/50;** under **20** atm of CO for **8-10** h at 100 °C in THF unless otherwise stated. Yields were determined by GLC. b 70 atm of CO at 100 °C. ^cIn toluene.

Scheme I

(L PMe,)

PdEt2L2

Figure 1. Molecular structure of $(Me_3P)_2Pd(OCOCH_2CHCH_3)$ **(2).**

cyclic ester involved as the intermediate in the catalytic cycle is also included.

As shown in Table I, **triphenylphosphine-coordinated** palladium(0) complexes convert 3-butenoic acid into methylsuccinic anhydride and glutaric anhydride at 100° C under moderate CO pressure:10

The reaction is accompanied by isomerization of the 3 butenoic acid to crotonic acid. Employment of basic tertiary phosphines such as trimethyl- and tricyclohexylphosphine gave less active catalysts, but PMe₃ served as a suitable ligand to allow the isolation and characterization of reaction intermediates.

The treatment of $PdEt_2(PMe_3)_2$ with styrene gives a coordinatively unsaturated styrene complex, $\mathrm{Pd}(\mathrm{CH_2}=\,$ $CHPh(PMe₃)₂$,¹¹ that serves as an appropriate precursor for the reaction with 3-butenoic acid. NMR $(^{31}P$ and $^{13}C)$ spectra of the reaction mixture of $Pd(CH_2=CHPh)(PMe_3)_2$ with an equimolar amount of 3-butenoic acid at room temperature reveals the following reaction course. Initially the intermediate six-membered palladium-containing cyclic ester $(Me_3P)_2Pd(OCOCH_2CH_2CH_2)$ (1) is formed predominantly and it undergoes skeletal isomerization to give an equilibrated mixture of **1** and the five-membered palladium-containing cyclic ester $(Me_3P)_9\dot{P}d$ (OCOCH2CHCH3) **(2)** in a ratio of **5:95.** Complex **2** was fully characterized by single-crystal X-ray analysis,12 spectroscopic means, and elemental analysis, whereas **1** was characterized by means of NMR spectroscopy in situ.13 coord + co

Pd cat.

The reaction is accompanied by isomerize

butenoic acid to crotonic acid. Employ

tertiary phosphines such as trimethyl- and

phosphine gave less active catalysts, but P

a suitable ligand to allow th

talline form due to its high solubility in most common organic solvents and was characterized in situ by 'H and ${}^{31}P_1{}^{1}H_1$ NMR spectroscopy. See: Ozawa, F.; Ito, T.; Nakamura, Y.; Yamamoto, A. *J.* Organomet. *Chern.* **1979,** *168,* 375.

(12) Crystal data: $C_{10}H_{24}O_2P_2Pd$, triclininc, space group $P\bar{1}$, $a = 9.854$ (2) \overline{A} , $b = 10.445$ (1) \overline{A} , $c = 9.332$ (2) \overline{A} , $\alpha = 103.73$ (1)°, $\beta = 120.74$ (1)°, $\gamma = 94.35$ (1)°, $V = 778.4$ (3) \overline{A}^3 , $Z = 2$, $d_{\text{cal}} = 1.471$ g cm⁻³, $d_{\text{obad}} = 1.47$ g cm⁻³, $3^\circ < 2\theta <$ $g \text{ cm}^{-3}$, $3 \times 20 \times 40^{-7}$, 2012 unique data, 1000 solved is -1000 s and Fourier techniques and refined by full-matrix least-squares calculations. $R = 0.039$; niques and refined by full-matrix least-squares calculations. $R = 0.039$;

 $R_w = 0.037$.

(13) NMR data for 1: ¹³C{¹H} NMR (125 MHz, CD₂Cl₂, -40 °C, ppm

referenced from the solvent signal (53.2 ppm)) 179.2 (C=O), 39.1

(CH₂CO, J(CH) = 124 Hz), 28.0 (CH₂Pd, d, J(CP) = 93 Hz, J(CH) = 1 Hz), 13.9 (P(\hat{CH}_3)₃, d, $J(CP) = 17$ Hz); ³¹P(¹H) NMR (\hat{CD}_2Cl_2 , -40 °C, ppm referenced from external PPh₃) 4.9 (d, $J(PP) = 42$ Hz), 14.2 (d). NMR data for 2: ¹³C{¹H} NMR (CD₂Cl₂, –40 °C, ppm referenced from
the solvent signal (53.2 ppm)) 187.4 (C=O), 48.3 (CH₂, d, J(CP) = 6 Hz, $J(CH) = 125$ Hz), 33.2 (CH, d, $J(CP) = 91$ Hz, $J(CH) = 127$ Hz), 17.0 $(P(CH₃)₃, dd, J(CP) = 32$ and 4 Hz), 15.4 $(P(CH₃)₃, d, J(CP) = 18$ Hz); ³¹P{¹H} NMR (CD₂Cl₂, -40 °C, ppm referenced from external PPh₃) -0.2 (d, J(PP) = 39 Hz), -15.7 (d). The ³¹P{¹H} NMR signal of PPh₃ appears ca. 6.0 ppm downfield from that of 85% H_3PO_4 in CD₂Cl₂.

Figure 1 shows the molecular structure of **2** determined by X-ray crystallography. Complex **2** has a somewhat disordered square-planar coordination around the palladium center. The two Pd-P bond distances showed a significant difference from each other due to the different trans influences of the coordinating carbon atom and the coordinating oxygen atom. The reaction of **2** with CO at 20 atm and 100 °C preferentially gives methylsuccinic anhydride, presumably by CO insertion into the Pd-C bond followed by reductive elimination.¹⁴ The formation of glutaric anhydride in the catalytic process can be accounted for analogously **as** the conversion of **1** and CO into the six-membered cyclic anhydride and a $Pd(0)$ complex.¹⁵

Conversion of the six-membered nickel-containing cyclic ester into the methyl-substituted five-membered nickelcontaining cyclic ester, proceeding through β -hydrogen elimination and an olefin insertion process, has been found to be controlled by chiral phosphine ligands. $9b$ The realization of the catalytic process as reported herein now suggests the feasibility of catalytic asymmetric conversion of β , γ -unsaturated acids to chiral succinic anhydride derivatives.

Acknowledgment. We are grateful for support of this work by a Grant-in-Aid for Scientific Research by the Ministry of Education, Science, and Culture of Japan.

Registry No. 1, 127973-37-9; 2, 127973-38-0; trans-PdEt₂- $(PMe₃)₂$, 124717-55-1; Pd(PPh₃)₄, 14221-01-3; Pd(CO)(PPh₃)₃, 24670-32-4; Pd(PCy₃)₂, 33309-88-5; styrene, 100-42-5; 3-butenoic acid, 625-38-7; methylsuccinic anhydride, 4100-80-5; glutaric anhydride, 108-55-4; crotonic acid, 3724-65-0.

Supplementary Material Available: An ORTEP drawing and tables of positional and anisotropic thermal parameters and bond distances and angles for complex 2, a listing of all NMR data for complexes **1** and **2,** and a description of the experimental procedure for the preparation of the complexes (10 pages); a listing of observed and calculated structure factors for complex **2** (11 pages). Ordering information is given on any current masthead page.

⁽¹⁰⁾ Similar catalytic carbonylations of other unsaturated carboxylic acids were also examined. γ , δ -Unsaturated carboxylic acids such as 4-pentenoic acid and 3-phenyl-3-butenoic acids react with CO under similar conditions to give a small amount $($ <10%) of 2-methyl- and 2phenylglutaric anhydride, respectively. Carbonylation of methacrylic acid gives polymeric products rather than the desired cyclic anhydride.

⁽¹⁴⁾ In the stoichiometric carbonylation of $PdMe(OR)(dppe)$ (R = CH(CF₃)₂; dppe = 1,2-bis(diphenylphosphino)ethane) we observed CO insertion into the Pd-O bond rather than into the Pd-C bond, whereas CO insertion into the Pd-C bond rather than into the Pd-O bond was observed in $trans-PdMe(OPh)(PEt₃)₂$ and $PdMe(OPh)(dppe)$. See: Komiya, S.; Akai, Y.; Tanaka, K.; Yamamoto, T.; Yamamoto, A. Or-ganometallics 1985,4, 1130. Kim, Y.-J.; Osakada, K.; Sugita, K.; Yamamoto, T.; Yamamoto, A. *Ibid*. 1988, 7, 2182. Kim, Y.-J.; Osakada, K.; Sugita, K.; Yamamoto, T.; Yamamoto, A. J. **Am.** *Chern.* SOC. 1990,112, 1096. This fact suggests that the ease of CO insertion depends **on** the stability of the Pd-O bond. In the present case CO insertion into the Pd-C bond is a probable reaction pathway.

⁽¹⁵⁾ Since methylsuccinic anhydride does not undergo isomerization into glutaric anhydride under the conditions of the catalytic carbonyla- tion, the ratio of the yields of the two products depends **on** the relative or the relative reactivity toward CO between them. The preponderance of glutaric anhydride in the catalytic reaction products seems to indicate a significant influence of their relative reactivity toward CO in the present case.