

Formation, fragmentation, and isomerization of titanacycle rings supported by aryloxide ligation

John E. Hill, Phillip E. Fanwick, and Ian P. Rothwell

Organometallics, **1990**, 9 (8), 2211-2213• DOI: 10.1021/om00158a017 • Publication Date (Web): 01 May 2002 Downloaded from http://pubs.acs.org on March 8, 2009

More About This Article

The permalink http://dx.doi.org/10.1021/om00158a017 provides access to:

- Links to articles and content related to this article
- Copyright permission to reproduce figures and/or text from this article

tin reagents with unsaturated organic moieties, and heating the CH₂Cl₂ solution under reflux is necessary. In attempted vinylation by (CH₂=CH)₄Sn and alkynylation by HC=CSiMe₃ 1 was recovered quantitatively, apparently due to irreversible formation of the π -complexes. (2) It is noteworthy that silver metal deposited upon mixing HSiEt₃ or R₄Sn with AgSbF₆, whether 1 was present or not. Furthermore, in model experiments with Ph₃CBr/AgSbF₆ or [Ph₃C]PF₆ in place of 1/AgSbF₆, Ph₃CH was obtained with HSiEt₃ and Et₄Sn, but Ph₃CMe was not formed with Me₄Sn. These results suggest that some Ag-Me species may alkylate 1 to give 4.²⁵ (3) The role of exogenous carbon monoxide in the formation of acyl derivatives, e.g. 9,¹⁸ contrasts with the intramolecular CO migration involved in forming the tricobalt species $[Co_3(CO)_9(CCO)]^+$, which also is apparently more electrophilic in further reactions to form $Co_3(CO)_9(\mu_3$ -CC(O)R) compounds.¹ However, similar trapping of external CO by mononuclear $[CpFe(CO)_2(CH_2)]^+$ and dinuclear $[Cp_2Fe_2(CO)_3(\mu$ -CH)]^+ has been observed, affording the ketene complex $[CpFe(CO)_2(CH_2=C=O)]^{+,26}$ and the ketenyl complex $[Cp_2Fe_2(CO)_3(\mu$ -CH=C=O)]^{+,27} respectively. Work aimed at the direct observation of intermediates in the triosmium reactions is underway.

Acknowledgment. We are grateful to D. S. Strickland for her preliminary work with $[H_3Os_3(CO)_9(CCO)]^+$ and HSiEt₃. This research was supported by National Science Foundation Grant CHE 89-15349.

Formation, Fragmentation, and Isomerization of Titanacycle Rings Supported by Aryloxide Ligation

John E. Hill, Phillip E. Fanwick, and Ian P. Rothwell*

Department of Chemistry, Purdue University, West Lafayette, Indiana 47907 Received May 18, 1990

Summary: The reactivity of the titanacyclopentadiene ring in $[(Ar''O)_2Ti(C_4Et_4)]$ can best be explained on the basis of facile fragmentation into a titanium bis(alkyne) complex.

The last few years have seen an intense research interest into the structure and reactivity of metallacycle- and heterometallacycle-containing compounds.¹⁻³ A particu-

^{Lappert, M. F.; Marton, T. R.; Raston, C. L.; Skelton, B. W.; White, A. H. J. Chem. Soc., Dalton Trans. 1982, 1959. (k) Erker, G.; Dorf, U.; Rheingold, A. L. Organometallics 1988, 7, 138 and references therein. (3) (a) Chamberlain, L. R.; Durfee, L. D.; Fanwick, P. E.; Kobriger, L. M.; Latesky, S. L.; McMullen, A. K.; Steffey, B. D.; Rothwell, I. P.; Folting, K.; Huffman, J. C. J. Am. Chem. Soc. 1987, 109, 6068 and references therein. (b) Curtis, M. D.; Real, J. J. Am. Chem. Soc. 1986, 108, 4668. (c) Hirpo, W.; Curtis, M. D.; Real, J. J. Am. Chem. Soc. 1986, 108, 4668. (c) Hirpo, W.; Curtis, M. D.; Au. Chem. Soc. 1988, 110, 5218. (d) Thorn, D. L.; Hoffman, R. Nouv. J. Chim. 1979, 3, 39. (e) Upton, T. H.; Rappe, A. K.; Goddard, W. A., III. J. Am. Chem. Soc. 1982, 104, 448. (f) Albers, M. O.; deWaal, P. J. A.; Liles, D. C.; Robinson, D. J.; Singleton, E.; Wiege, M. B. J. Chem. Soc., Chem. Commun. 1986, 1680. (g) Erker, G.; Zwettler, R.; Kruger, C.; Hyla-Kryspin, I.; Gleiter, R. Organometallics 1990, 9, 524. (h) Hofmann, P.; Frede, M.; Stauffert, P.; Lasser, W.; Thewalt, J. Angew. Chem., Int. Ed. Engl. 1988, 24, 712. (i) Vaughan, G. A.; Sofield, C. D.; Hillhouse, G. L.; Rheingold, A. L. J. Am. Chem. Soc. 1987, 108, 26, 2007.}

Figure 1. ORTEP view of molecule 1 of $[(Ar''O)_2Ti(C_4Et_4)]$ (1). Selected bond distances (Å) and angles (deg) for molecules 1 and 2: Ti-O(110) = 1.806 (6), 1.788 (6); Ti-O(120) = 1.804 (6), 1.828 (6); Ti-C(101) = 2.016 (9), 1.983 (9); Ti-C(104) = 1.986 (9), 2.02 (1); C(101)-C(102) = 1.35 (1), 1.33 (1); C(102)-C(103) = 1.52 (1), 1.55 (1); C(103)-C(104) = 1.33 (1), 1.34 (1); O(110)-Ti-O(120) = 116.5 (3), 111.1 (3); C(101)-Ti-C(104) = 94.3 (4), 98.5 (4).

larly well-studied area has been the development of useful synthetic methodologies based upon the reactivity of intermediate metallacyclopentadiene rings formed by intramolecular coupling of two alkyne units at transitionmetal centers.⁴⁻⁶ During our studies of the organometallic

⁽²⁵⁾ Methylation by AlMe₃ and LiCuMe₂, which was reported to be effective in the alkylation of bridgehead organic halides, was unsuccessful:
(a) Gorlier, J.-P.; Hamon, L.; Levisalles, J.; Wagnon, J. J. Chem. Soc., Chem. Commun. 1973, 88. (b) Della, E. W.; Bradshaw, T. K. J. Org. Chem. 1975, 40, 1638. (c) Kraus, G. A.; Yi, P. Synth. Commun. 1988, 18, 473.

 ⁽²⁶⁾ Bodnar, T. W.; Cutler, A. R. J. Am. Chem. Soc. 1983, 105, 5926.
 (27) Casey, C. P.; Fagan, P. J.; Miles, W. H.; Marder, S. R. J. Mol. Catal. 1983, 21, 173.

^{(1) (}a) Collman, J. P.; Hegedus, L. S.; Norton, J. R.; Finke, R. G. Principles and Applications of Organotransition Metal Chemistry, 2nd ed.; University Science Books: Mill Valley, CA, 1987; Chapter 9. (b) Puddephatt, R. J. Coord. Chem. Rev. 1980, 149. (c) Grubbs, R. H. In Comprehensive Organometallic Chemistry; Wilkinson, G., Stone, F. G. A., Abel, E. W., Eds.; Pergamon Press: Oxford, U.K., 1982. (d) Basset, J. M.; Leconte, M. CHEMTECH 1980, 762.

<sup>J. M.; Leconte, M. CHEMTECH 1980, 762.
(2) (a) Schrock, R. R. Acc. Chem. Res. 1986, 19, 342. (b) Wallace, K.
C.; Dewan, J. C.; Schrock, R. R. Organometallics 1986, 5, 2162. (c) Puddephatt, R. J. Comments Inorg. Chem. 1982, 2, 69. (d) Schrock, R. R.; McLain, S.; Sancho, J. Pure Appl. Chem. 1980, 52, 729. (e) Negishi, E.; Takahashi, T. Synthesis 1988, 1, 1. (f) Yasuda, H.; Tatsumi, K.; Nakamura, A. Acc. Chem. Res. 1985, 18, 120. (g) Erker, G.; Kruger, C.; Muller, G. Adv. Organomet. Chem. 1985, 18, 120. (h) Buchwald, S. L.; Wannamaker, M. W.; Watson, B. J. J. Am. Chem. Soc. 1989, 111, 776. (i) Fagan, P. J.; Nugent, W. A. J. Am. Chem. Soc. 1988, 110, 2310. (j) Lappert, M. F.; Marton, T. R.; Raston, C. L.; Skelton, B. W.; White, A. J. Chem. Soz., Dorf, U.; Rheingold, A. L. Organometallics 1988, 7, 138 and references therein.</sup>

^{(4) (}a) Vollhardt, K. P. C. Acc. Chem. Res. 1977, 10, 1. (b) Vollhardt, K. P. C. Angew. Chem., Int. Ed. Engl. 1984, 23, 539. (c) Schore, N. E. Chem. Rev. 1988, 88, 1081. (d) Buchwald, S. L.; Nielson, R. B. J. Am. Chem. Soc. 1989, 111, 2870.

chemistry of titanium that can be supported by aryloxide ligation,⁷ we have isolated and investigated the reactivity of a new titanacyclopentadiene complex. The reactivity of this complex can be explained on the basis of initial fragmentation back into a titanium bis(alkyne) complex and rapid isomerization of subsequent heterometallacycle compounds.

The room-temperature sodium amalgam reduction (2:1 Na:Ti) of toluene solutions of the dichloride $Ti(OAr'')_2Cl_2$ (OAr'' = 2,6-diphenylphenoxide)⁸ in the presence of 3hexyne (≥ 2 equiv) leads to formation of the orange titanacyclopentadiene compound $[(Ar''O)_2Ti(C_4Et_4)]$ (1) in 80-90% yields (Scheme I).9 A structural study of 1 (Figure 1)¹⁰ shows the molecule to contain an essentially planar metallacycle ring, in contrast to the case for the

(8) Dilworth, J. R.; Hanich, J.; Krestel, M.; Beck, J.; Strahle, J. J.

(8) Dilworth, J. K.; Hanich, J.; Krestel, M.; Beck, J.; Strahle, J. J. Organomet. Chem. 1986, 315, C9. (9) Anal. Calcd for $\text{TiC}_{48}\text{H}_{46}\text{O}_2$ (1): C, 82.03; H, 6.60. Found: C, 81.43; H, 6.83. ¹H NMR data (C₆D₆, 30 °C): δ 6.86–7.48 (m, phenyl protons), δ 2.02 (q), 1.59 (q, CH₂CH₃); 0.87 (t), 0.42 (t, CH₂CH₃). Selected ¹³C NMR data (C₆D₆, 30 °C): δ 231.3 (Ti—C); 136.3 (Ti—C=C); 160.0 (Ti-O-C); 28.4, 20.9 (CH₂CH₃); δ 14.9, 13.9 (CH₂CH₃).

(10) Crystal data for TiC₄H₄₆O₂ (1) at 20 °C: a = 12.627 (3) Å, b = 17.378 (4) Å, c = 17.739 (3) Å, $\alpha = 90.41$ (2)°, $\beta = 94.68$ (2)°, $\gamma = 92.89$ (2)°, V = 3874 (3) Å³, Z = 4, $d_{calcd} = 1.205$ g cm⁻³ in space group PI. A total of 10099 unique intensities were collected by using Mo K α radiation $(4^{\circ} \leq 2\theta \leq 45^{\circ})$, of which 3481 with $I > 3\sigma(I)$ were used in the final refinement. Final residuals are R = 0.075 and $R_w = 0.080$. The unit cell contains two independent molecules.

Figure 2. ORTEP view of $[(Ar''O)_2Ti(\eta^2-Bu^tNCC_4Et_4)(py)]$ (2). Selected bond distances (Å) and angles (deg): Ti-O(10) = 1.861(2); Ti-O(20) = 1.841 (2); Ti-N(31) = 2.142 (2); Ti-N(50) = 1.860(2); Ti-C(41) = 2.262 (3); C(41)-N(50) = 1.417 (3); O(10)-Ti-O(20)= 111.36 (8); C(41)-Ti-N(50) = 36.68 (9).

folded tungstacyclopentatriene compound $[(Ar''O)_2W-(C_4Et_4)]$.^{5b,11} Compound 1 shows many of the reactions typical of other metallacyclopentadiene complexes.⁴⁻⁶ Hence, treatment with excess 3-hexyne at 110 °C leads to the catalytic formation of hexaethylbenzene, while treatment with MeCN leads to the liberation of the corresponding substituted pyridine (Scheme I). Reaction of 1 with Bu^tNC in the presence of an additional 1 equiv of C_5H_5N (py) rapidly leads to the formation of the new iminocyclopentadiene complex $[(Ar'O)_2Ti(\eta^2 Bu^{t}NCC_{4}Et_{4})(py)$] (2; Scheme I),¹² which has been struc-

^{(5) (}a) Nugent, W. A.; Thorn, D. L.; Harlow, R. L. J. Am. Chem. Soc. 1987, 109, 2788. (b) Strickler, J. R.; Wexler, P. A.; Wigley, D. E. Or-1936, 109, 2106. (b) Strickler, J. R.; Weiter, F. A.; Wigley, D. E. Or-ganometallics 1988, 7, 2067. (c) Tomao, K.; Kobayashi, K.; Yosihiko, I. J. Org. Chem. 1989, 54, 3517. (d) Atwood, J. L.; Hunter, W. E.; Alt, H.; Rausch, M. D. J. Am. Chem. Soc. 1976, 98, 2454. (e) Alt, H.; Rausch, M. D.; J. Am. Chem. Soc. 1976, 98, 2454. (f) Sikora, D. J.; Rausch, M. D.; Barter, B. D. Atwood, J. L. J. Am. Chem. Soc. 1970, 101, 5070

⁽a) Fachinetti, G.; Floriani, C. J. Chem. Soc. 1979, 101, 5079.
(b) (a) Fachinetti, G.; Floriani, C. J. Chem. Soc., Chem. Commun.
1974, 66. (b) Fachinetti, G.; Floriani, C.; Marchetti, F.; Mellini, M. J. Chem. Soc., Dalton Trans. 1978, 1398. (c) Watt, G. W.; Drummond, F. O., Jr. J. Am. Chem. Soc. 1970, 92, 826. (d) Lau, C. P.; Chang, B. H.; Grubbs, R. H.; Brubaker, C. H. J. Organomet. Chem. 1981, 214, 325.

 ^{(7) (}a) Durfee, L. D.; Hill, J. E.; Fanwick, P. E.; Rothwell, I. P. Or-ganometallics 1990, 9, 75. (b) Hill, J. E.; Fanwick, P. E.; Rothwell, I. P. Inorg. Chem. 1989, 28, 3602. (c) Durfee, L. D.; Hill, J. E.; Kerschner, J. L.; Fanwick, P. E.; Rothwell, I. P. Inorg. Chem. 1989, 28, 3095. (d) Durfee, L. D.; Fanwick, P. E.; Rothwell, I. P. J. Am. Chem. Soc. 1987, 109, 47200 4720.

⁽¹¹⁾ Kerschner, J. L.; Fanwick, P. E.; Rothwell, I. P. J. Am. Chem. Soc. 1988, 110, 8235.

Scheme II

turally characterized (Figure 2).¹³ Besides the normal coordination of the pyridine and aryloxide ligands, the titanium metal center in 2 can be seen to be bound to the imine function of the iminocyclopentadiene molecule in an $\eta^2(C,N)$ fashion. The structural features and reactivity of directly related η^2 -imine (azametallacyclopropane) complexes have been discussed.^{7a}

A number of reactions of metallacycle 1, however, can be seen to proceed via fragmentation back into its component alkyne units.¹⁴ Hence, treatment of C_6D_6 solutions of 1 with the 1,4-diaza-1,3-butadiene compound PhN= CMeCMe=NPh can be shown to lead to the enediamido compound [(Ar''O)₂Ti(PhNCMe=CMeNPh)] (3)¹⁵ and 2 equiv of 3-hexyne at room temperature. The analogous enediamido compound [(Ar''O)₂Ti(PhNCEt=CEtNPh)] (4) is also formed when titanacyclopentadiene 1 is heated with azobenzene (PhN=NPh) at 110 °C for 60 min.¹⁶⁻¹⁸

(10.3) Crystal data for TiC₅₆H₆₀N₂O₂ (2) at -105 °C: a = 12.554 (4) Å, b = 17.934 (5) Å, c = 21.567 (6) Å, $\beta = 102.39$ (2)°, V = 4742 (5) Å³, Z = 4, $d_{calcd} = 1.211$ g cm⁻³ in space group $P2_1/n$. A total of 6424 unique intensities were collected by using Mo Ka radiation ($4 \le 2\theta \le 45^{\circ}$), of which 4739 with $I > 3\sigma(I)$ were used in the final refinement. Final residuals are R = 0.040 and $R_w = 0.055$.

(14) Fragmentation of metallacyclopentane rings into component olefin groups is well-known; for example see: (a) Takahashi, T.; Fujimori, T.; Seki, T.; Saburi, M.; Uchida, Y.; Rousset, C. J.; Negishi, E. J. Chem. Soc., Chem. Commun. 1990, 182 and references therein. Isomerization of metallacyclopentadiene rings has been demonstrated; see: (b) Strickler, J. R.; Bruck, M. A.; Wigley, D. E. J. Am. Chem. Soc., in press.

Soc., Chem. Commun. 1990, 102 and references differint instruction of metallacyclopentadiene rings has been demonstrated; see: (b) Strickler, J. R.; Bruck, M. A.; Wigley, D. E. J. Am. Chem. Soc., in press. (15) Anal. Calcd for TiC₆₂H₄₂N₂O₂ (3): C, 80.61; H, 5.46; N, 3.62. Found: C, 80.59; H, 5.61; N, 3.91. ¹H NMR (C₆D₆, 30 °C): δ 6.15–7.33 (m, aromatics); δ 1.38 (s, CCH₃). Selected ¹³C NMR data (C₆D₆, 30 °C): δ 160.4, 158.6 (Ti–O–C); δ 112.3 (CCH₃); δ 14.4 (CCH₃). (16) The NMR graptice of both δ and δ indicate they adopt a nonpla-

(16) The NMR spectra of both 3 and 4 indicate they adopt a nonplanar ground state-structure.³⁴

1. (17) Anal. Calcd for TiC₅₄H₄₆N₂O₂ (4): C, 80.78; H, 5.78; N, 3.49. Found: C, 80.97; H, 5.79; N, 3.37. ¹H NMR (C₆D₆, 30 °C): δ 6.25–7.44 (m, aromatics); δ 2.05, 1.59 (ABX₃ pattern of CH₂CH₃); δ 0.51 (t, CH₂CH₃). Selected ¹³C NMR data (C₆D₆, 30 °C): δ 160.4, 159.5 (Ti–O–C); δ 118.7 (CEt); δ 20.6 (CH₂CH₃); δ 14.0 (CH₂CH₃). Monitoring the reaction by ¹H NMR spectroscopy shows the formation of 3-hexyne as well as smaller amounts of hexethylbenzene. A viable pathway for the formation of 4 from 1 + PhN=NPh involves initial fragmentation of 1 to a bis(alkyne) intermediate. Displacement of one of the alkyne groups by PhN=NPh followed by intramolecular coupling leads to a diazametallacyclopentene ring (Scheme II). This step, which has been recently demonstrated by Bergman et al.,¹⁹ leads to a 2,3-diazametallacyclopentene complex. Formation of the observed, final enediamido (2,5-diazametallacyclopentene) compound would then require a previously uncharacterized isomerization process (Scheme II). Further synthetic and mechanistic studies of this reactivity are in progress.

Acknowledgment. We thank the National Science Foundation (Grant CHE-8915573) for support of this research.

Registry No. 1, 127998-83-8; 2, 127998-80-5; 3, 127998-81-6; 4, 127998-82-7; Ti(OAr")₂Cl₂, 110300-61-3; Bu^tNC, 7188-38-7; PhN=CMeCMe=NPh, 5393-49-7; PhN=NPh, 103-33-3; CH₃CH₂COCH(NHPh)CH₂CH₃, 127998-79-2; 3-hexyne, 928-49-4.

Supplementary Material Available: Tables of crystal data and data collection parameters, positional parameters, general temperature factors, and bond distances and angles for 1 and 2 (37 pages); tables of observed and calculated structure factors (58 pages). Ordering information is given on any current masthead page.

⁽¹²⁾ Anal. Calcd for TiC₅₈H₆₀N₂O₂ (2): C, 80.53; H, 6.99; N, 3.24. Found: C, 80.29; H, 7.01; N, 3.62. ¹H NMR (C₆D₆, 30 °C): δ 8.51 (d, ortho protons on pyridine); 6.3-7.7 (m, aromatics); 1.69 (m, CH₂CH₃); 1.03 (broad t, CH₂CH₃); δ 0.64 (s, Bu^tN). Selected ¹³C NMR data (C₆D₆, 30 °C): δ 160.6 (Ti-O-C); 139.6, 132.7 (CCH₂CH₃); 6 115.2 (Bu^tNC); δ 65.1 (Me₃C); 31.7 (Me₃C); 19.4, 18.1 (CH₂CH₃); 16.5 (CH₂CH₃). (13) Crustel date for TiC₂-H₂-N₂. (2) 554 (4) Å

⁽¹⁸⁾ The stereochemistry of 4 was further confirmed by its hydrolysis to produce 4-(phenylamino)-3-hexanone (CH₃CH₂COCH(NHPh)-CH₂CH₃). High-resolution MS: calcd, m/e 191.1310; found, m/e 191.1310. Selected ¹H NMR data (C₆D₆, 30 °C): δ 4.15 (broad d, NH); δ 3.62 (q, CH); δ 1.94 (ABX₃, OCCH₂CH₃); δ 1.53 (m), 1.19 (m, diastereotopic CHCH₂CH₃); δ 0.86 (t, CH₂CH₃); δ 0.63 (t, CHCH₂CH₃). ¹³C NMR (C₆D₆, 30 °C): δ 147.9 (ipso carbon on phenyl); δ 113.6 (meta carbon on phenyl); δ 68.6 (O=C-); δ 63.7 (NCH); δ 32.0, 24.9 (CH₂CH₃); δ 9.5, 7.8 (CH₂CH₃).

 ⁽¹⁹⁾ Walsh, P. J.; Hollander, F. J.; Bergman, R. G. J. Am. Chem. Soc.
 1990, 112, 894.