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tin reagents with unsaturated organic moieties, and heating 
the CH2C12 solution under reflux is necessary. In at- 
tempted vinylation by (CH2=CH),Sn and alkynylation by 
H C d S i M e 3  1 was recovered quantitatively, apparently 
due to irreversible formation of the *-complexes. (2) It 
is noteworthy that silver metal deposited upon mixing 
HSiEt, or R4Sn with AgSbF6, whether 1 was present or not. 
Furthermore, in model experiments with Ph3CBr/AgSbF, 
or [Ph3C]PF6 in place of l/AgSbF6, Ph3CH was obtained 
with HSiEt, and Et4Sn, but Ph3CMe was not formed with 
Me4Sn. These results suggest that some Ag-Me species 
may alkylate 1 to give 4.25 (3) The role of exogenous 
carbon monoxide in the formation of acyl derivatives, e.g. 

(25) Methylation by AlMe3 and LiCuMe,, which was reported to be 
effective in the alkylation of bridgehead organic halides, was unsuccessful: 
(a) Gorlier, J.-P.; Hamon, L.; Levisalles, J.; Wagnon, J. J.  Chem. SOC., 
Chem. Commun. 1973, 88. (b) Della, E. W.; Bradshaw, T. K. J.  Org. 
Chem. 1975,40,1638. (c) Kraus, G .  A.; Yi, P. Synth. Commun. 1988,18, 
473. 

9,1e contrasts with the intramolecular CO migration in- 
volved in forming the tricobalt species [C%(CO),(CCO)]+, 
which also is apparently more electrophilic in further re- 
actions to form Co3(CO),(p3-CC(0)R) compounds.' How- 
ever, similar trapping of external CO by mononuclear 
[CpFe(C0)2(CH2)]+ and dinuclear [Cp2Fe2(C0)3(p-CH)]+ 
has been observed, affording the ketene complex [CpFe- 
(CO),(CH,=C=O)]+ 26 and the ketenyl complex 
[Cp2Fe2(CO)3(p-CH=C=O)]+,n respectively. Work aimed 
at the direct observation of intermediates in the triosmium 
reactions is underway. 
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Summary: The reactivity of the titanacyclopentadiene 
ring in [(Ar"O),Ti(C,Et,)] can best be explained on the 
basis of facile fragmentation into a titanium bis(alkyne) 
complex. 

The last few years have seen an intense research interest 
into the structure and reactivity of metallacycle- and 
heterometallacycle-containing A particu- 
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Figure 1. ORTEP view of molecule 1 of [(Ar"O),Ti(C,Et,)] (1). 
Selected bond distances (A) and angles (deg) for molecules 1 and 
2: Ti-O(ll0) = 1.806 (6), 1.788 (6); Ti-O(120) = 1.804 (6), 1.828 
(6); Ti-C(101) = 2.016 (9), 1.983 (9); Ti-C(l04) = 1.986 (9), 2.02 
(1); C(lOl)-C(l02) = 1.35 (l), 1.33 (1); C(102)-C(103) = 1.52 (l), 
1.55 (1); C(103)-C(104) = 1.33 (l), 1.34 (1); 0(110)-Ti-0(120) = 
116.5 (3), 111.1 (3); C(lOl)-Ti-C(104) = 94.3 (4), 98.5 (4). 

larly well-studied area has been the development of useful 
synthetic methodologies based upon the reactivity of in- 
termediate metallacyclopentadiene rings formed by in- 
tramolecular coupling of two alkyne units a t  transition- 
metal During our studies of the organometallic 
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chemistry of titanium that can be supported by aryloxide 
ligation,' we have isolated and investigated the reactivity 
of a new titanacyclopentadiene complex. The reactivity 
of this complex can be explained on the basis of initial 
fragmentation back into a titanium bis(a1kyne) complex 
and rapid isomerization of subsequent heterometallacycle 
compounds. 

The room-temperature sodium amalgam reduction (2:l 
Na:Ti) of toluene solutions of the dichloride Ti(OAr")zC12 
(OAr" = 2,6-diphenylphenoxide)* in the presence of 3- 
hexyne ( 1 2  equiv) leads to formation of the orange tita- 
nacyclopentadiene compound [ (Ar"O),Ti(C,Et,)] (1) in 
80-90% yields (Scheme A structural study of 1 
(Figure 1)'O shows the molecule to contain an essentially 
planar metallacycle ring, in contrast to the case for the 
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total of 10099 unique mtensities were collected by using Mo Ka radiation 
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6 2.02 (q), 1.59 (q, CH&Hd; 0.87 (t), 0.42 (t, CHZCHS). S e l d  Bc NMR 
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c255 

Figure 2. ORTEP view of [(Ar"O),Ti(~z-ButNCCIEt4)(py)] (2). 
Selected bond distances (A) and angles (deg): Ti-O(l0) = 1.861 
(2); Ti-0(20) = 1.841 (2); Ti-N(31) = 2.142 (2); Ti-N(5O) = 1.860 
(2); TiC(41) = 2.262 (3); C(41)-N(50) = 1.417 (3); O(lO)-Ti-0(20) 
= 111.36 (8); C(41)-Ti-N(50) = 36.68 (9). 

folded tungstacyclopentatriene compound [ (Ar"O),W- 
(C4Et4)].5bJ1 Compound 1 shows many of the reactions 
typical of other metallacyclopentadiene c o m p l e x e ~ . ~ ~  
Hence, treatment with excess 3-hexyne at 110 "C leads to 
the catalytic formation of hexaethylbenzene, while treat- 
ment with MeCN leads to the liberation of the corre- 
sponding substituted pyridine (Scheme I). Reaction of 1 
with ButNC in the presence of an additional 1 equiv of 
C5H5N (py) rapidly leads to the formation of the new 
iminocyclopentadiene complex [(Ar"O),Ti(s2- 
ButNCC4Et4)(py)] (2; Scheme 1),l2 which has been struc- 

(11) Kerschner, J. L.; Fanwick, P. E.; Rothwell, I. P. J .  Am. Chem. SOC. 
1988, 110, 8235. 
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turally characterized (Figure Besides the normal 
coordination of the pyridine and aryloxide ligands, the 
titanium metal center in 2 can be seen to be bound to the 
imine function of the iminocyclopentadiene molecule in 
an q2(C,N) fashion. The structural features and reactivity 
of directly related q2-imine (azametallacyclopropane) 
complexes have been discu~sed.'~ 

A number of reactions of metallacycle 1, however, can 
be seen to proceed via fragmentation back into its com- 
ponent alkyne units." Hence, treatment of C6D6 solutions 
of 1 with the 1,4-diaza-1,3-butadiene compound PhN= 
CMeCMe=NPh can be shown to lead to the enediamido 
compound [ (Ar"O)2Ti(PhNCMe=CMeNPh)] (3)15 and 2 
equiv of 3-hexyne at  room temperature. The analogous 
enediamido compound [ (Ar"O),Ti(PhNCEt=CEtNPh)] 
(4) is also formed when titanacyclopentadiene 1 is heated 
with azobenzene (PhN=NPh) at  110 "C for 60 min.'"18 

(12) Anal. Calcd for TiCuH NzOZ (2): C, 80.53; H, 6.99 N, 3.24. 
Found C. 80.29: H. 7.01: N. 3.62.BpH NMR ICA.  30 OC): 6 8.51 Id. ortho . " " ,  
protons on pyridine); 6.3-7.7 (m, aromatics); 1.69 (m, CHZCHS); 1.03 
(broad t, CH,CH,); 6 0.64 (a, ButN). Selected lsC NMR data (CeDe, 30 
OC): 6160.6 (Ti-O-C); 139.6, 132.7 (CCH&HI); 6 115.2 (Bu'NC); 6 65.1 
(Me&); 31.7 (Me&); 19.4, 18.1 (CH,CH,k 16;5 (CHzCHS). 

(13) Crystal data for TiCSBHa2O2 (2) at -105 OC: a = 12.554 (4) A, 
b = 17.934 (5) A, c = 21.567 (6) A, 6 = 102.39 (2)O, V = 4742 (5) 49, 2 
= 4, doJd = 1.211 g cm-s in space group ml/n. A total of 6424 unique 
intensities were collected by using Mo Ka radiation (4 5 26 I 45O), of 
which 4739 with I > 3a(n were used in the final refinement. Final 
residuals are R = 0.040 and R, = 0.055. 
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olefii groups is well-known; for example see: (a) Takahashi, T.; Fujimori, 
T.; Seki, T.; Saburi, M.; Uchida, Y.; Rousset, C. J.; Negishi, E. J. Chem. 
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Monitoring the reaction by 'H NMR spectroscopy shows 
the formation of 3-hexyne as well as smaller amounts of 
hexethylbenzene. A viable pathway for the formation of 
4 from 1 + PhN=NPh involves initial fragmentation of 
1 to a bis(a1kyne) intermediate. Displacement of one of 
the alkyne groups by PhN=NPh followed by intramo- 
lecular coupling leads to a diazametallacyclopentene ring 
(Scheme 11). This step, which has been recently demon- 
strated by Bergman et al.,I9 leads to a 2,3-diazametalla- 
cyclopentene complex. Formation of the observed, final 
enediamido (2,5-diazametallacyclopentene) compound 
would then require a previously uncharacterized isomer- 
ization process (Scheme TI). Further synthetic and 
mechanistic studies of this reactivity are in progress. 
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