ORGANOMETALL

Volume 9, Number 9, September 1990

0 Copyright 7990 American Chemical Society

$$

Synthesis of Cationic (π-AllyI)rhenium Complexes and Their Reactions with Carbon Nucleophiles

Charles P. Casey" and Chae S. Yi

Depalfment of Chemistry, University of Wisconsin, Madison, Wisconsin 53706 Received January 22, 1990

Summary: The cationic $(\pi$ -allyl)rhenium complexes $C_5H_5(CO)_2Re(\eta^3-CH_2CHCH_2)^+PF_6^-$ (2) and $C_5H_5(CO)_2Re (\eta^3$ -CH₂CHCHCH₃)⁺PF₆-(3) were synthesized from rhenium alkene complexes C₅H₅(CO)₂Re(η ²-CH₂=CHCH₃) (1) and $C_5H_5(CO)_2Re(\eta^2-cis-CH_3CH=CHCH_3)$ (4) by hydride abstraction with $(C_6H_5)_3C^+PF_6^-$. Allyl complexes 2 and 3 reacted with carbon nucleophiles to produce elaborated rhenium alkene complexes.

The addition of carbon nucleophiles to $(\eta^3$ -allyl)metal complexes of $Pd¹$ Mo,² and $Fe³$ has been developed into an extremely useful method in organic synthesis. Here we describe the synthesis of stable $(\eta^3$ -allyl)rhenium complexes from rhenium alkene complexes and their reactions with carbon nucleophiles to produce stable elaborated rhenium alkene complexes.

Hydride abstraction from rhenium alkene complexes provides a convenient, high-yield route to $(\eta^3$ -allyl)rhenium complexes. Addition of $Ph_3C^+PF_6^-$ (700 mg, 2.5 mmol) to a $\rm CH_2Cl_2$ solution of the rhenium complex $\rm C_5H_5(CO)_2Re$ -(q2-CH2=CHCH3) **(l;4** 800 mg, 2.5 mmol) gave a purple solution from which a brown solid precipitated over 5 h. Solvent was evaporated, and the residue was washed several times with diethyl ether and recrystallized from ace-

Wilkinson, G., Stone, F. G. A., Abel, E. W., Eds.; Pergamon Press: Oxford, England, 1982; Chapter 57. (b) Trost, B. M. Acc. Chem. Res. 1980, 13, 385. (c) Tsuji, J.; Minami, I. Acc. Chem. Res. 1987, 20, 140.

(2) (a) Van Ar

(e) Eberhardt, U.; Mattern, G. Chem. Ber. 1988, 121, 1531. (4) Casey, C. P.; Rutter, E. W., Jr. J. Am. *Chem.* SOC. 1989,111,8917.

tone–diethyl ether to give the cationic (η^3 -allyl)rhenium $\text{complex } C_5H_5(CO)_2\text{Re}(\eta^3\text{-CH}_2\text{CHCH}_2)^+\text{PF}_6$ (2; 85% yield) as a brown solid.5 The 'H NMR spectrum of *2* in $\text{DMSO-}d_6$ at room temperature showed the presence of a 75125 mixture of exo and endo rotational isomers. The major isomer was tentatively assigned as the exo configuration on the basis of NMR chemical shift arguments.⁶ Variable-temperature NMR spectra established that the two isomers were in rapid equilibrium. Coalescence of the syn proton signals at *6* 3.90 for the major isomer and **6** 3.68 for the minor isomer occurred at 70 °C, and an averaged spectrum was observed at 112 "C. Simulation of the temperature-dependent NMR spectra between 23 and 112 °C with use of DNMR5 gave rate constants for the interconversion of *exo*- and *endo-2*. The rotational barrier for conversion of *endo-* to *exo-2* was calculated to have ΔG^* $= 16.5$ kcal mol⁻¹ at 73 °C ($\Delta H^* = 13.7$ kcal mol⁻¹; $\Delta S^* =$ -8.1 eu).

Similarly, the $(\eta^3$ -methallyl)rhenium complex C_5H_5 - $(CO)_2$ Re(η^3 -CH₂CHCHCH₃)⁺PF₆⁻ (3)⁵ was obtained in

^{(1) (}a) Trost, B. M. In Comprehensive Organometallic Chemistry;

⁽⁵⁾ See the supplementary material for complete characterization of compounds.

⁽⁶⁾ Faller, J. W.; Chen, C.-C.; Mattina, M. J.; Jakubowski, **A.** J. **Or**ganomet. Chem. 1973,52, 361.

62% yield from the reaction of $C_5H_5(CO)_2Re(\eta^2-cis CH_3CH=CHCH_3$) (4)⁴ with $Ph_3C^+P\ddot{F}_6$. The ¹H NMR spectrum of 3 in acetone- d_6 showed the presence of three isomers, exo-syn-3, endo-syn-3, and anti-3 in a 62:29:9 ratio. Direct hydride abstraction from the cis-2-butene complex should have produced only anti-methallyl complexes. The predominant formation of syn-methallyl complexes requires an isomerization, possibly via a σ -allyl intermediate or alternatively by reversible addition of a weak nucleophile to the more substituted allyl carbon.

The only previous report of the generation of a $(\pi$ -al-1yl)metal complex by hydride abstraction from an alkene complex is the conversion of iron diene complex *5* to the iron alkene- π -allyl complex 6 reported by Rosenblum.⁷ In

other related chemistry, Fischer reported the synthesis of $(\eta^5$ -cyclohexadienyl)Fe(CO)₃⁺ by hydride abstraction from (n^4 -cyclohexadiene)Fe(CO)₃.⁸

The cationic $(\pi$ -allyl)rhenium complexes 2 and 3 readily reacted with organic nucleophiles to produce neutral elaborated rhenium alkene complexes. **A** slurry of the rhenium allyl complex 2 (100 mg, 0.20 mmol) and sodium diethyl malonate (37 mg, 0.20 mmol) in THF was stirred for 5 h. After evaporation of solvent, the residue was chromatographed (silica gel, hexane-ether) to give C_5H_5 - $(CO)_{2}$ Re[η^{2} -CH₂=CHCH₂CH(CO₂Et)₂] (7; 89 mg, 90%)

as a colorless liquid.⁵ Similarly, addition of $LiCu(CH_3)$, (0.20 mmol) to a THF solution of 2 (100 mg, 0.20 mmol) led to the isolation of $C_5H_5(CO)_2Re(\eta^2-CH_2=CHCH_2CH_3)$ *(S;5* 56 mg, 76%).

Predominant addition to the less substituted allyl carbon was observed in the addition of $LiCu(CH₃)₂$ (0.20 mmol) **(53** mM, 1.87 mL) to 3 (100 mg, 0.20 mmol), which produced a 65:35 mixture of $C_5H_5(CO)_2Re[\eta^2-trans-$ $CH_3CH=CHCH_3CH_3$] (9)⁵ and $C_5H_5(CO)_3Re[n^2-cis CH₃CH=CHCH₂CH₃$ (10)⁵ in 50% combined yield. The

coupling constant between the vinylic hydrogens of $9 \cdot (J = 10.2 \text{ Hz})$ was slightly larger than in the case of $10 \cdot (J =$ 9.0 Hz); therefore, **9** was tentatively assigned as the trans isomer and 10 was assigned as the cis isomer. Stereospecific addition of $LiCu(CH_3)_2$ to 3 (91:9 syn:anti) should have produced a similar ratio of trans isomer **9** to cis isomer 10, but only a 65:35 ratio of **9** to 10 was observed. This suggests that some syn to anti isomerization is occurring prior to or during nucleophilic addition to 3. We are confident that the alkene isomers **9** and 10 do not isomerize after formation, since we have shown that the cis-2-butene complex **4** was not isomerized by LiCuMe,.

Some regioselectivity for addition of malonate to the less substituted allyl carbon of the (methallyl)rhenium complex 3 was also observed. Reaction of 3 (200 mg, 0.39 mmol) with sodium diethyl malonate (70 mg, 0.39 mmol) in THF gave a 92% yield of a mixture of $C_5H_5(CO)_2Re[\eta^2-cis CH_3CH=CHCH_2CH(CO_2Et)_2$] (11), $C_5H_5(CO)_2Re[\eta^2$ **trans-CH3CH=CHCH2CH(C02Et),]** (12), and two diastereomers of $C_5H_5(CO)_2Re[\eta^2-CH_2=CHCH(CH_3)CH (CO_2Et)_2$] (13A and 13B) in a ratio of 54:6:25:15.⁵ The stereochemistries of cis isomer 11 $(J = 9.3 \text{ Hz})$ and of trans isomer 12 $(J = 10.2 \text{ Hz})$ were tentatively assigned on the basis of the vinylic coupling constants in the 'H NMR spectra. If this assignment is correct, then the formation of a 54:6 ratio of cis isomer 11 to trans isomer 12 from a 91:9 ratio of syn-3 to anti-3 requires substantial syn/anti isomerization of 3 during the course of nucleophilic addition.

Acknowledgment. Financial support from the National Science Foundation is gratefully acknowledged.

Supplementary Material Available: Spectral and characterization data for compounds **2,3,** and **7-13 (4** pages). Ordering information is given on any current masthead page.

⁽⁷⁾ Margulis, T. N.; Schiff, L.; Rosenblum, M. *J. Am. Chern.* **SOC. 1965, 87, 3269.**

⁽⁸⁾ Fischer, E. *0.;* Fischer, R. D. *Angew. Chern.* **1960, 72,** 919.