## ORGANOMETALLK

Volume 9, Number 9, September 1990

© Copyright 1990 American Chemical Society

## Communications

## Synthesis of Cationic ( $\pi$ -Allyl)rhenium Complexes and Their Reactions with Carbon Nucleophiles

Charles P. Casey\* and Chae S. Yi

Department of Chemistry, University of Wisconsin, Madison, Wisconsin 53706 Received January 22, 1990

Summarv: The cationic  $(\pi$ -allyl)rhenium complexes  $C_5H_5(CO)_2Re(\eta^3-CH_2CHCH_2)^+PF_6^-$  (2) and  $C_5H_5(CO)_2Re^ (\eta^3$ -CH<sub>2</sub>CHCHCH<sub>3</sub>)<sup>+</sup>PF<sub>6</sub><sup>-</sup> (3) were synthesized from rhenium alkene complexes  $C_5H_5(CO)_2Re(\eta^2-CH_2=CHCH_3)$  (1) and  $C_5H_5(CO)_2Re(\eta^2-cis-CH_3CH=CHCH_3)$  (4) by hydride abstraction with (C6H5)3C+PF6-. Allyl complexes 2 and 3 reacted with carbon nucleophiles to produce elaborated rhenium alkene complexes.

The addition of carbon nucleophiles to  $(\eta^3$ -allyl)metal complexes of Pd,<sup>1</sup> Mo,<sup>2</sup> and Fe<sup>3</sup> has been developed into an extremely useful method in organic synthesis. Here we describe the synthesis of stable  $(\eta^3$ -allyl)rhenium complexes from rhenium alkene complexes and their reactions with carbon nucleophiles to produce stable elaborated rhenium alkene complexes.

Hydride abstraction from rhenium alkene complexes provides a convenient, high-yield route to  $(\eta^3$ -allyl)rhenium complexes. Addition of  $Ph_3C^+PF_6^-$  (700 mg, 2.5 mmol) to a  $CH_2Cl_2$  solution of the rhenium complex  $C_5H_5(CO)_2Re$ - $(\eta^2 - CH_2 - CHCH_3)$  (1;<sup>4</sup> 800 mg, 2.5 mmol) gave a purple solution from which a brown solid precipitated over 5 h. Solvent was evaporated, and the residue was washed several times with diethyl ether and recrystallized from ace-

Wilkinson, G., Stone, F. G. A., Abel, E. W., Eds.; Pergamon Press: Oxford, England, 1982; Chapter 57. (b) Trost, B. M. Acc. Chem. Res. 1980, 13, 385. (c) Tsuji, J.; Minami, I. Acc. Chem. Res. 1987, 20, 140.
(2) (a) Van Arsdale, W. E.; Winter, R. E. K.; Kochi, J. K. Organometallics 1986, 5, 645. (b) Adams, R. D.; Chodosh, D. F.; Faller, J. W.; Rosan, A. M. J. Am. Chem. Soc. 1979, 101, 2570. (c) Faller, J. W.; Linebarrier, D. L. J. Am. Chem. Soc. 1979, 101, 2570. (c) Faller, J. W.; (3) (a) Whitesides, T. H.; Neilan, J. P. J. Am. Chem. Soc. 1976, 98, 63.
(b) Whitesides, T. H.; Arhart, R. W.; Slaven, R. W. J. Am. Chem. Soc. 1973, 95, 5792. (c) Roustan, J. L.; Merour, J. Y.; Houlihan, F. Tetrahedron Lett. 1979, 3721. (d) Pearson, A. J. Acc. Chem. Res. 1980, 13, 463. (e) Eberhardt, U.; Mattern, G. Chem. Ber. 1988, 121. 1531. (e) Eberhardt, U.; Mattern, G. Chem. Ber. 1988, 121, 1531.
 (4) Casey, C. P.; Rutter, E. W., Jr. J. Am. Chem. Soc. 1989, 111, 8917.



tone-diethyl ether to give the cationic  $(\eta^3$ -allyl)rhenium complex  $C_5H_5(CO)_2Re(\eta^3-CH_2CHCH_2)^+PF_6^-$  (2; 85% yield) as a brown solid.<sup>5</sup> The <sup>1</sup>H NMR spectrum of 2 in DMSO- $d_6$  at room temperature showed the presence of a 75:25 mixture of exo and endo rotational isomers. The major isomer was tentatively assigned as the exo configuration on the basis of NMR chemical shift arguments.<sup>6</sup> Variable-temperature NMR spectra established that the two isomers were in rapid equilibrium. Coalescence of the syn proton signals at  $\delta$  3.90 for the major isomer and  $\delta$  3.68 for the minor isomer occurred at 70 °C, and an averaged spectrum was observed at 112 °C. Simulation of the temperature-dependent NMR spectra between 23 and 112 °C with use of DNMR5 gave rate constants for the interconversion of exo- and endo-2. The rotational barrier for conversion of endo- to exo-2 was calculated to have  $\Delta G^*$ = 16.5 kcal mol<sup>-1</sup> at 73 °C ( $\Delta H^*$  = 13.7 kcal mol<sup>-1</sup>;  $\Delta S^*$  = -8.1 eu).

Similarly, the  $(\eta^3$ -methallyl)rhenium complex C<sub>5</sub>H<sub>5</sub>- $(CO)_2 Re(\eta^3 - CH_2 CHCHCH_3)^+ PF_6^-$  (3)<sup>5</sup> was obtained in

<sup>(1) (</sup>a) Trost, B. M. In Comprehensive Organometallic Chemistry; Wilkinson, G., Stone, F. G. A., Abel, E. W., Eds.; Pergamon Press: Ox-

<sup>(5)</sup> See the supplementary material for complete characterization of compounds.

<sup>(6)</sup> Faller, J. W.; Chen, C.-C.; Mattina, M. J.; Jakubowski, A. J. Organomet. Chem. 1973, 52, 361.

62% yield from the reaction of  $C_5H_5(CO)_2\text{Re}(\eta^2\text{-}cis-CH_3CH=CHCH_3)$  (4)<sup>4</sup> with  $\text{Ph}_3C^+\text{PF}_6^-$ . The <sup>1</sup>H NMR spectrum of 3 in acetone- $d_6$  showed the presence of three isomers, exo-syn-3, endo-syn-3, and anti-3 in a 62:29:9 ratio. Direct hydride abstraction from the cis-2-butene complex should have produced only anti-methallyl complexes. The predominant formation of syn-methallyl complexes requires an isomerization, possibly via a  $\sigma$ -allyl intermediate or alternatively by reversible addition of a weak nucleophile to the more substituted allyl carbon.

The only previous report of the generation of a  $(\pi$ -allyl)metal complex by hydride abstraction from an alkene complex is the conversion of iron diene complex 5 to the iron alkene $-\pi$ -allyl complex 6 reported by Rosenblum.<sup>7</sup> In



other related chemistry, Fischer reported the synthesis of  $(\eta^5$ -cyclohexadienyl)Fe(CO)<sub>3</sub><sup>+</sup> by hydride abstraction from  $(\eta^4$ -cyclohexadiene)Fe(CO)<sub>3</sub>.<sup>8</sup>

The cationic ( $\pi$ -allyl)rhenium complexes 2 and 3 readily reacted with organic nucleophiles to produce neutral elaborated rhenium alkene complexes. A slurry of the rhenium allyl complex 2 (100 mg, 0.20 mmol) and sodium diethyl malonate (37 mg, 0.20 mmol) in THF was stirred for 5 h. After evaporation of solvent, the residue was chromatographed (silica gel, hexane-ether) to give C<sub>5</sub>H<sub>5</sub>-(CO)<sub>2</sub>Re[ $\eta^2$ -CH<sub>2</sub>=CHCH<sub>2</sub>CH(CO<sub>2</sub>Et)<sub>2</sub>] (7; 89 mg, 90%)



as a colorless liquid.<sup>5</sup> Similarly, addition of  $LiCu(CH_3)_2$ (0.20 mmol) to a THF solution of **2** (100 mg, 0.20 mmol) led to the isolation of  $C_5H_5(CO)_2Re(\eta^2-CH_2=CHCH_2CH_3)$ (8,<sup>5</sup> 56 mg, 76%).

Predominant addition to the less substituted allyl carbon was observed in the addition of LiCu(CH<sub>3</sub>)<sub>2</sub> (0.20 mmol) (53 mM, 1.87 mL) to 3 (100 mg, 0.20 mmol), which produced a 65:35 mixture of  $C_5H_5(CO)_2Re[\eta^2$ -transCH<sub>3</sub>CH=CHCH<sub>2</sub>CH<sub>3</sub>] (9)<sup>5</sup> and C<sub>5</sub>H<sub>5</sub>(CO)<sub>2</sub>Re[ $\eta^2$ -cis-CH<sub>3</sub>CH=CHCH<sub>2</sub>CH<sub>3</sub>] (10)<sup>5</sup> in 50% combined yield. The



coupling constant between the vinylic hydrogens of 9 (J = 10.2 Hz) was slightly larger than in the case of 10 (J = 9.0 Hz); therefore, 9 was tentatively assigned as the trans isomer and 10 was assigned as the cis isomer. Stereospecific addition of  $\text{LiCu}(\text{CH}_3)_2$  to 3 (91:9 syn:anti) should have produced a similar ratio of trans isomer 9 to cis isomer 10, but only a 65:35 ratio of 9 to 10 was observed. This suggests that some syn to anti isomerization is occurring prior to or during nucleophilic addition to 3. We are confident that the alkene isomers 9 and 10 do not isomerize after formation, since we have shown that the *cis*-2-butene complex 4 was not isomerized by LiCuMe<sub>2</sub>.

Some regioselectivity for addition of malonate to the less substituted allyl carbon of the (methallyl)rhenium complex 3 was also observed. Reaction of 3 (200 mg, 0.39 mmol) with sodium diethyl malonate (70 mg, 0.39 mmol) in THF gave a 92% yield of a mixture of  $C_5H_5(CO)_2Re[\eta^2-cis CH_3CH = CHCH_2CH(CO_2Et)_2$ ] (11),  $C_5H_5(CO)_2Re[\eta^2-trans-CH_3CH = CHCH_2CH(CO_2Et)_2$ ] (12), and two diastereomers of  $C_5H_5(CO)_2Re[\eta^2-CH_2=CHCH(CH_3)CH_3$  $(CO_2Et)_2$ ] (13A and 13B) in a ratio of 54:6:25:15.<sup>5</sup> The stereochemistries of cis isomer 11 (J = 9.3 Hz) and of trans isomer 12 (J = 10.2 Hz) were tentatively assigned on the basis of the vinylic coupling constants in the <sup>1</sup>H NMR spectra. If this assignment is correct, then the formation of a 54:6 ratio of cis isomer 11 to trans isomer 12 from a 91:9 ratio of syn-3 to anti-3 requires substantial syn/anti isomerization of 3 during the course of nucleophilic addition.

Acknowledgment. Financial support from the National Science Foundation is gratefully acknowledged.

**Supplementary Material Available:** Spectral and characterization data for compounds **2**, **3**, and **7–13** (4 pages). Ordering information is given on any current masthead page.

<sup>(7)</sup> Margulis, T. N.; Schiff, L.; Rosenblum, M. J. Am. Chem. Soc. 1965, 87, 3269.

<sup>(8)</sup> Fischer, E. O.; Fischer, R. D. Angew. Chem. 1960, 72, 919.