Synthesis and Structure of $[(C_6F_5)(8-mq)Pd(\mu-8-mq)Pd(C_6F_5)(phen)]$, a Binuclear Derivative Containing an Unprecedented 8-Quinolylmethyl-C,NBridging Ligand

Juan Forniés,* Rafael Navarro, Violeta Sicilia, and Milagros Tomas

Departamento de Química Inorgánica, Instituto de Ciencia de Materiales de Aragón, Universidad de Zaragoza-CSIC, 50009 Zaragoza, Spain

Received April 24, 1990

Summary: When $[Pd(8-mq)(C_6F_5)(NCMe)]$ (1; 8-mq = 8-quinolylmethyl-C,N) is reacted with 1,10-phen, the binuclear complex $[(C_6F_5)(8-mq)Pd(\mu-8-mq)Pd(C_6F_5)(phen)]$ (2), containing one 8-mq group coordinated as a chelate ligand and the other acting as an unprecedented bridging one, is obtained.

8-Methylquinoline and its derivatives have been extensively used as cyclometalating ligands,¹ for the preparation of five-membered-ring complexes containing these groups acting as C,N-chelate ligands (Figure 1A). No complexes containing 8-quinolylmethyl-C,N (8-mq) acting as a bridging ligand (Figure 1B) have been synthesized, probably because the structure of the ligand forces the chelate coordination. We herein report the synthesis and structural characterization of $[(C_6F_5)(8-mq)Pd(\mu-8-mq)Pd-(C_6F_5)(phen)]$, a binuclear derivative that contains two 8-mq groups in very different structural situations, one acting as a chelate ligand and the other as a bridging one.

Recently, we reported on the chemistry of C,N-cyclopalladated derivatives,² and now we present the reactions between $[Pd(8-mq)(NCMe)_2]ClO_4^3$ and $(NBu_4)_2[M(C_6F_5)_4]$ (M = Pd, Pt),⁴ which give $[Pd(8-mq)(C_6F_5)(NCMe)]$ (1) according to eq 1, through an arylation process in which $(NBu_4)_2[M(C_6F_5)_4]$ is the arylating agent.^{4,5a}

 $[Pd(8-mq)(NCMe)_2]ClO_4 + (NBu_4)_2[M(C_6F_5)_4] \xrightarrow{CH_2Cl_2} \\ [Pd(8-mq)(C_6F_5)(NCMe)] + \\ (NBu_4)[M(C_6F_5)_3(NCMe)] + (NBu_4)ClO_4 (1)$

(3) Forniés, J.; Navarro, R.; Sicilia, V. Polyhedron 1988, 7, 2659.
(4) Usón, R.; Forniés, J.; Martinez, F.; Tomás, M. J. Chem. Soc., Dalton Trans. 1980, 888.

(5) (a) Preparation of 1: To a CH_2Cl_2 (20 mL) solution of $(NBu_4)_{2^-}$ [Pd(C_8F_8)₄] (0.585 g, 0.465 mmol) was added [Pd(8-mq)(CNMe)_2]ClO₄³ (0.200 g, 0.465 mmol) in CH₂Cl₂ (25 mL), and the mixture was stirred at room temperature for 20 min, so that a white solid precipitated. The suspension was evaporated to ~15 mL, and the white solid 1 (0.148 g, 70% yield) was separated by filtration. When the mother liquor was evaporated to dryness and the residue was washed with Et₂O (20 mL), a mixture of (NBu₄)ClO₄ and (NBu₄)[Pd(C₆F₆)₃(NCMe)] was obtained. The separation was carried out by washing with isopropyl alcohol, in which the palladium derivative is insoluble. 1 was recrystallized from CH₂Cl₂. A similar reaction takes place when (NBu₄)₂[Pt(C₆F₅)₄] is used as the arylating agent, although the required reaction time is longer (5 h). Anal. Calcd (found) for PdC₁₈F₅H₁IN₂: C, 47.27 (47.34); H, 2.75 (2.43); N, 6.04 (6.13). IR (Nujol, cm⁻¹): C₆F₅, 1492 vs, 1051 vs, 1042 vs, 946 vs; 8-mq 1590 m, 816 m, 751 s; NCMe, 2314 m, 2284 m. ⁻¹H NMR (room temperature, acetone-d₆, 200 MHz; δ , ppm): 7.7 (m, 5 H), 8.6 (4, 1 H) (aryl); 3.19 (s, 2 H, -CH₂-); 2.15 (s, 6 H, -CH₃). ⁻¹⁹F NMR (CFCl₃ reference, 188 MHz, δ): -112.6 (o-F), -164.3 (m-F), -163.2 (p-F). (b) Preparation of 2: To a solution of [Pd(C₆F₆)(8-mq)(NCMe)] (1; 0.223 g, 0.489 mmol) in CH₂Cl₂/acetone (30 mL/10 mL) was added 1,10-phen-H₂O (0.048 g, 0.244 mmol), and the mixture was stirred at room temperature for 10 min. The evaporation of the solution to ~5 mL gives the yellow solid 2 (0.162 g, 66% yield). Anal. Calcd (found) for Pd₂C₄₄F₁₀H₂₄N₂: C, 52.03 (52.25); H, 2.57 (2.39); N, 5.77 (5.54). IR (Nujol, cm⁻¹): C₆F₅, 1490 vs, 1051 s, 1041 s, 946 vs; 8-mq, 829 s, 822 s; phen, 1511 m, 843 vs. Complex 2 is not soluble enough in any donor solvents for significative NMR studies.

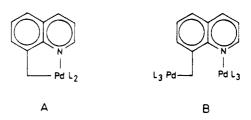
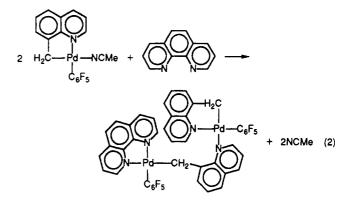



Figure 1.

1 reacts with 1,10-phen·H₂O (molar ratio 2:1) in $CH_2Cl_2/acetone$, yielding the binuclear derivative $[(C_6F_5)(8-mq)Pd(\mu-8-mq)Pd(C_6F_5)(phen)]$ (2), which shows an unprecedented bridging 8-mq group (eq 2).^{5b}

Other syntheses with 1 as the starting material are presently under study in our laboratory.

The molecular structure of 2 has been determined by single-crystal X-ray crystallography (Figure 2).⁶ The main distances and angles are given in the caption to Figure 2. As can be seen from this figure, two palladium centers are bridged by an 8-mq group. Each palladium atom is located in a distorted-square-planar environment. Pd(1) is bonded to a C_6F_5 group, a 8-mq chelate ligand, and the N atom of the 8-mq bridging ligand, while Pd(2) is bonded to a C_6F_5 group, the phenanthroline, and the $C(sp^3)$ atom of the bridging 8-mq ligand. The dihedral angle formed by the best least-squares planes through Pd(1), N(1), N(4), C(1), C(22) (plane 1) and through Pd(2), N(2), N(3), C(7), C(35) (plane 2) is 9.40 (13)°;⁷ i.e., both coordination planes are almost parallel. The pentafluorophenyl groups are in a cisoidal arrangement, the torsion angle C(1)-Pd(1)-Pd-(2)-C(7) being 64.07 $(27)^{\circ}$.

⁽¹⁾ Evans, D. W.; Baker, G. R.; Newkome, G. R. Coord. Chem. Rev. 1989, 93, 155 and references therein.

⁽²⁾ Forniés, J.; Navarro, R.; Sicilia, V.; Tomás, M. Inorg. Chim. Acta 1990, 168, 201.

⁽⁶⁾ Suitable crystals for X-ray study were obtained by slow diffusion at 0 °C of *n*-hexane into a solution of **2** in CH₂Cl₂. Crystal data: monoclinic, space group P2₁/c; *a* = 12.3935 (5) Å, *b* = 12.9381 (6) Å, *c* = 24.1387 (12) Å, $\beta = 102.721$ (4)°, Z = 4, V = 3775.6 Å³; d(calcd) = 1.78 g cm⁻³, $\mu(\text{Mo K}\alpha) = 9.79$ cm⁻¹; F(000) = 1992; four-circle diffractometer, Siemens/Stoe AED2; crystal size (mm) 0.23 × 0.4 × 0.23; scan mode $\omega/2\theta$, T = 296 K; 7330 measured reflections; range of hkl 0–15, 0–15, –29 to +29 ($2\theta_{\text{max}} = 50^{\circ}$); 5986 unique reflections ($R_{\text{merge}} = 0.0162$); 3791 reflections used in analysis ($F_o^2 > 3\sigma(F_o^2)$; structure solved by heavy-atom method and refined to R = 0.034 and $R_w = 0.036$.³ All atoms were refined with anisotropic temperature factors. The weighting scheme was $w^{-1} = \sigma^2(F) + 0.00072F^2$: 541 variables; $\Delta/\text{esd}_{\text{max}}$ 0.136; highest peak 0.57 e Å⁻³. (7) Nardelli, M. Comput. Chem. 1983, 7, 95.

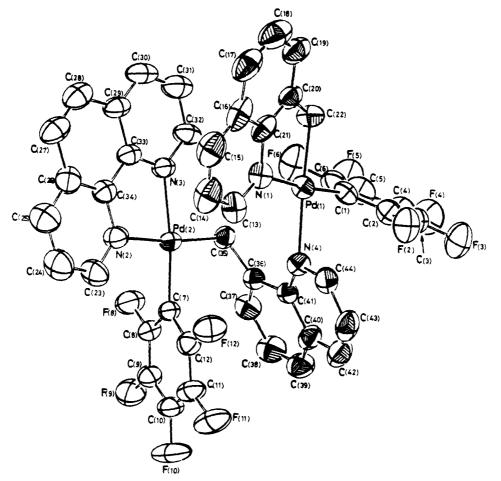


Figure 2. Molecular structure of complex 2. Selected bond lengths (Å) and bond angles (deg): Pd(1)-C(1) = 2.016 (7), Pd(1)-C(22) $= \overline{2.038} (6), Pd(1) - N(1) = 2.078 (6), Pd(1) - N(4) = 2.188 (4), Pd(\overline{2}) - C(7) = 2.009 (6), Pd(2) - C(\overline{35}) = 2.061 (7), Pd(2) - N(2) = 2.124 (6), Pd(2) =$ Pd(2)-N(3) = 2.124 (4); C(22)-Pd(1)-N(1) = 83.9 (2), N(1)-Pd(1)-N(4) = 96.0 (2), N(4)-Pd(1)-C(1) = 88.6 (2), C(1)-Pd(1)-C(22) = 88.6 (2), C(1)-Pd(1)-91.3 (2), N(3)-Pd(2)-N(2) = 78.6 (2), N(2)-Pd(2)-C(7) = 97.8 (2), C(7)-Pd(2)-C(35) = 89.1 (2) C(35)-Pd(2)-N(3) = 94.7 (2).

The most remarkable structural feature in complex 2 is the presence of two very different 8-mq groups. One of them displays the usual C,N-cyclometalated chelate coordination mode on Pd(1); the structural parameters related to this ligand are similar to those in other palladium complexes containing 8-mq.⁸ The other 8-mq group is acting as a bridging ligand between the palladium centers. Several points concerning this unprecedented μ -8-mq ligand are as follows. (a) The μ -8-mq ligand is almost perpendicular to the Pd(1) and Pd(2) coordination planes (plane 1 and plane 2, respectively), the dihedral angles formed by the best least-squares plane through the atoms of the aromatic rings (plane 3) and the coordination planes around Pd(1) and Pd(2) being 85.68 (12) and 83.18 (12)°, respectively.⁷ (b) The quinoline moiety of the bridging ligand is not planar, the dihedral angle formed by the two aromatic rings being $4.24 (20)^{\circ,7}$ (c) Another interesting structural feature is that Pd(1) is 1.094 (5) Å from plane 3, and this is very surprising since N(4) is bonded to metal center Pd(1) and to the carbon atoms of the aromatic ring C(41) and C(44) through sp² planar orbitals. (d) Finally the Pd(1)-N(1) (terminal chelate 8-mq ligand) and Pd-(1)-N(4) (bridging 8-mq) distances are rather different (2.078 (6) and 2.188 (4) Å, respectively), indicating a stronger Pd(1)-N(1) bond. All these structural data suggest that, as expected, the μ -8-mq group is more strained than the usual terminal 8-mg ligand.

Acknowledgment. We thank the CICYT (Spain) (Project PB85-0128) for financial support and for a grant to V.S.

Supplementary Material Available: Listings of bond distances and angles, atomic positional parameters, and thermal parameters (4 pages); a listing of observed and calculated structure factors (21 pages). Ordering information is given on any current masthead page.

^{(8) (}a) Pfeffer, M.; Grandjean, D.; Le Borgue, G. Inorg. Chem. 1981, 4426. (b) Dehand, J.; Mauro, A.; Ossor, H.; Pfeffer, M.; Santos, R.
 A.; Lechat, J. R. J. Organomet. Chem. 1983, 250, 537.
 (9) Sheldrick, G. M. SHELX-76 Program of Crystal Structure Deter-

mination; University of Cambridge: Cambridge, England, 1976.