character. Because of the distortion a large number of energy levels can be populated either by thermal means or by low energy radiation. Whereas $[CpCr(\mu_3-O)]_4$ is diamagnetic below 50 K, $[CpCr]_4(\mu_3-\eta^2-C_5H_4)(\mu_3-O)_3$ is paramagnetic, because two singly degenerate levels have very similar energies.

Acknowledgment. We thank Sarajane MacIntosh for assistance with the determination of the electronic spectrum of I, Professor Friedrich Grein for assistance with the molecular orbital calculations, and Professor K. Wieghardt, Ruhr Universität, Bochum, FRG, and Professor A. B. P. Lever of York University, Ontario, Canada, for magnetic measurements. The Natural Sciences and Engineering Research Council (operating grants to F.B., R.C.T., and N.P.C.W.) and the donors of the Petroleum Research Fund, administered by the American Chemical Society (operating grant to F.B.), are gratefully acknowledged for financial support.

Registry No. I, 79417-63-3; II, 99714-79-1; Cp₂Cr, 1271-24-5.

Supplementary Material Available: Tables of temperature-dependent ¹H NMR shifts and orbital energy levels, symmetries, and metal d compositions, tables of atomic parameters of hydrogen atoms, thermal parameters, all bond distances and angles, and least-squares planes at 295 and 100 K, and a drawing of I (20 pages); tables of observed and calculated structure factors for I at 295 and 100 K (46 pages). Ordering information is given on any current masthead page.

Nature of the Fe–Si Bonds in Oligosilane Complexes of the Indenyliron Dicarbonyl System: $(\eta^5-C_9H_7)Fe(CO)(L)Si_n$ (Si_n = SiMe₃, Si₂Me₅, 2-Si₃Me₇; L = CO, PPh₃)¹

Keith H. Pannell,* Sheng-Hsien Lin, Ramesh N. Kapoor, Francisco Cervantes-Lee, Manuel Pinon, and Laszlo Parkanyi[†]

Department of Chemistry, University of Texas at El Paso, El Paso, Texas 79968-0513

Received November 7, 1989

Complexes of the general type $(\eta^5-C_9H_7)Fe(CO)(L)Si_n$ $(\eta^5-C_9H_7 = \eta^5$ -indenyl; $Si_n = SiMe_3$, Si_2Me_5 , 2-Si₃Me₇; L = CO, PPh₃) have been synthesized and characterized via X-ray crystallography. Substitution of the CO ligand by PPh₃ results in a significant increase in both the Fe–Si and Si–Si bond distances. The results rule out a significant contribution of any π -bonding to the Fe–Si bond in both the dicarbonyl and carbonyl phosphine systems and imply that steric considerations dominate the various structural changes. The η^5 -indenyl groups exhibit their characteristic "slipfold" distortion, which becomes larger as the steric bulk of the other ligands increases. The synthesis of $(\eta^5-C_9H_7)Fe(CO)(L)SiMe(SiMe_3)_2$ was accomplished via photochemical rearrangement of $(\eta^5-C_9H_7)Fe(CO)_2SiMe_2SiMe_2SiMe_3$ in the presence or absence of PPh₃. ²⁹Si NMR data are in accord with the structures and previous NMR studies on silyliron complexes.

Introduction

The study of transition-metal-substituted silanes is a well-established area of organometallic chemistry due to the potential of transition metals to catalyze the reactions of organosilicon compounds, especially hydrosilylation and the formation of Si–Si bonds.^{2,3} The nature of the silicon-transition-metal bond has been studied extensively, and the degree to which π -bonding between filled *n*d metal orbitals and vacant 3d silicon orbitals is important has been a matter of considerable interest. Most of the studies concerning such bonding have involved spectroscopic techniques, and the systematic structural data needed to evaluate the possibility of multiple bonding have not been available.

One series of transition-metal silvl compounds that has been well studied spectroscopically is the $(\eta^5-C_5H_5)Fe-(CO)_2$ -silvl system, but, since such complexes usually are oils and waxes, only a few structural studies have been published.⁴ Furthermore, those few structures have not Chart I

Fe(CO)(L)SiMe₃

L = CO (a), PPh₃ (b); R₃Si = Me₃Si (Ia,b), Me₅Si (IIa,b), 2-MeSi₃ (IIIa,b)

allowed a discussion of the contribution of π -bonding to the Fe–Si bond.

[†]On leave of absence from the Central Research Institute for Chemistry of the Hungarian Academy of Sciences, Budapest, Hungary.

⁽¹⁾ Organometalloidal Derivatives of the Transition Metals. 25. Part 24: Sharma, H. K.; Vincenti, S. P.; Vicari, R.; Cervantes, F.; Pannell, K. H. Organometallics 1990, 9, 2109.

⁽²⁾ For reviews on transition-metal silicon chemistry see: (a) Aylett, B. J. Adv. Inorg. Chem. Radiochem. 1982, 25, 1. (b) Pannell, K. H. In Silicon Compounds Register and Review; Anderson, R., Arkles, B., Larson, G. L., Eds.; Petrarch Systems: Bristol, PA, 1987; Vol. 4, p 32. (c) Tilley, D. J. In Chemistry of the Functional Groups: Chemistry of Organosilicon Compounds; Patai, S., Rappaport, Z., Eds.; Wiley: New York, 1989.

⁽³⁾ For reviews on hydrosilylation see: (a) Lukevics, E.; Belyakova, Z. V. J. Organomet. Chem. Libr. 1977, 5, 1. (b) Harrod, J. F.; Chalk, A. J. In Organic Synthesis via Metal Carbonyls; Wender, I., Pino, P., Eds.; Wiley-Interscience: New York, 1977; Eds.; (c) Speier, J. L. Adv. Organomet. Chem. 1979, 17, 407.

Fe-Si Bonds in Oligosilane Complexes

We have initiated a study of the related η^5 -indenyl complexes $(\eta^5 - C_9 H_7) Fe(CO)_2$ -silane, and thus far most of the complexes have been isolated as stable crystalline materials. We have performed an X-ray crystallographic analysis of mono-, di-, and trisilane derivatives of this system. Furthermore, photochemical treatment of these silyl complexes has yielded the corresponding phosphine-substituted complexes $(\eta^5-C_9H_7)Fe(CO)(PPh_3)Si_n$ (n = 1-3) without loss of silvl fragments. This latter result is in direct contrast to that obtained with use of permethylated di- and trisilyl complexes of the cyclopentadienyl system (η^5 -C₅H₅)Fe(CO)₂Si_n (n = 2, 3; Fp-Si_n), where irradiation leads to the formation of monosilyl complexes FpSiMe₃.⁵

Using the $(\eta^5 - C_9 H_7) Fe(CO)(L)$ system (L = CO, PPh₃), we have obtained a suite of complexes (Chart I) that permits assessment of the π -bonding possibilities in the Fe-Si bond and present here the results of this study.

Experimental Section

All manipulations were performed under inert atmospheres of N_2 or Ar with use of dry, oxygen-free solvents. Organosilicon compounds were synthesized with use of literature procedures (Me₃SiSiMe₂Cl,⁶ Me₃SiSiMe₂SiMe₂Cl⁷) from starting silicon materials purchased from Petrarch Systems Inc., Bristol, PA; Fe(CO)₅ was purchased from Strem Chemicals, Newburyport, MA. Reagent-grade silica gel (grade 950, 60-200 mesh) was purchased from MCB Reagents, Gibbstown, NJ. Analyses were performed by Galbraith Laboratories, Knoxville, TN. Infrared spectra were recorded on a Perkin-Elmer 580B grating spectrophotometer and NMR spectra on a Bruker NR 200-MHz spectrometer.

Typical experimental procedures are outlined below.

Synthesis of $(\eta^5 - C_9 H_7) Fe(CO)_2 SiMe_2 SiMe_3$ (IIa). To a solution of $[(\eta^5-C_9H_7)Fe(CO)_2]$ -Na⁺ prepared from 2.57 g (5.65 mmol) of $[(\eta^5-C_9H_7)Fe(CO)_2]_2^8$ at 0 °C was added 2.0 g (12 mmol) of Me₃SiSiMe₂Cl over a period of 20 min. The solution was stirred for 30 min and warmed to room temperature and stirred for a further 12 h. The solvent was removed under vacuum, and the residue was extracted with 2×25 mL of hexane. This solution was filtered, the solvent removed, and the residue placed upon a silica gel column (2.0 \times 20 cm) made up in hexane. Elution with hexane formed a yellow band that produced a yellow semisolid after elution and removal of the solvent. The semisolid was placed in a sublimation apparatus and heated to 45 °C at 0.1 mmHg for 24 h to remove residual indene. Further heating to 60 °C produced the title complex, which could be further purified by crystallization from hexane; yield 2.0 g (5.6 mmol, 50%). Analytical and spectral data for the complexes are presented in Table I.

Photochemical Treatment of $(\eta^5 - C_9 H_7) Fe(CO)_2 SiMe_2 SiMe_3$ with PPh₃. To a solution of $(\eta^5 - C_9 H_7) Fe(CO)_2 Si Me_2 Si Me_3 (0.54)$ g, 1.5 mmol) in 15 mL of hexane, in a quartz flask, was added 0.42 g (1.6 mmol) of PPh₃. The solution was irradiated by a Hanovia 450-W medium-pressure lamp at a distance of 5 cm. Monitoring of the reaction with use of infrared spectroscopy

(5) (a) Pannell, K. H.; Cervantes, J.; Hernandez, C.; Cassias, J.; Vin-centi, S. R. Organometallics 1986, 5, 1056. (b) Ueno, K.; Ogino, H. Chem. Lett. 1986, 1777. (c) Pannell, K. H.; Rozell, J. M.; Hernandez, C. J. Am. Chem. Soc. 1989, 111, 4482.

(6) Sakurai, H.; Tominaga, K.; Watanabe, T.; Kumada, M. Tetrahedron Lett. 1966, 45, 5493.

(7) Kumada, M.; Ishikawa, M.; Maeda, S. J. Organomet. Chem. 1964, 2, 478.

(8) Forschner, T. C.; Cutler, A. R. Inorg. Chim. Acta 1985, 102, 113.

Table I.	Spectral as	nd Analytics	al Data	for the	New
(Complexes ($\eta^5 \cdot \mathbf{C_9H_7})\mathbf{Fe}(\mathbf{C})$	CO)(L)S	§i R₃ ª	

Compl	$exes (\eta^{\circ} - U_9H_7) Fe(UU)(L)SIR_3^{\circ}$
¹ H ¹³ C	 ⁵-C₉H₇)Fe(CO)₂SiMe₃ (Ia) 7.45, 7.18 (C₆H₄); 4.89 (m) 0.35 (SiMe₃) 215.0 (CO); 126.4, 124.1, 105.4, 91.9, 71.7 (C₉H₇); 7.2 (SiMe₃)
$^{29}\text{Si}_{\nu(\text{CO})^b}$	47.5 1993, 1941
anal. calcd (found) mp ^c	C, 56.0 (55.9); H, 5.37 (5.33) 75–76
1 ¹ Η	C ₉ H ₇)Fe(CO)(PPh ₃)SiMe ₃ (Ib) 7.1-7.7, 5.01, 4.53, 3.75 (C ₉ H ₇ , Ph); 0.1 (SiMe.)
¹³ C	(C_{0}); 127.3, 126.1, 105.5, 91.0, 71.0 ($C_{g}H_{7}$); 136.8, 136.1, 133.5, 129.0, 104.8 (Pb P): 7.5 (Me Si)
²⁹ Si ν(CO)	$(1 \text{ Ig }), 7.5 (\text{He}_{351})$ 41.7 (d, ${}^2J_{\text{Si-P}} = 27.7 \text{ Hz})$ 1911
anal. calcd (found)	C, 66.8 (67.0), H, 5.97 (5.74)
¹ Η	¹ 9H ₇)Fe(CO) ₂ SiMe ₂ SiMe ₃ (IIa) 7.09, 6.83, 4.89 (m, C ₉ H ₇); 0.46, 0.22 (Si ₂ Me ₅)
¹³ C	215.0 (CO); 127.0, 124.5, 105.8, 90.9, 72.0 (C_0H_2) ; 3.67, -0.16 (Si_0Me_s)
²⁹ Si ν(CO)	25.1 (Fe-Si); -11.9 (Fe-Ši-Si) 1994, 1944
anal. calcd (found) mp	C, 53.6 (53.4); H, 6.19 (6.23) 59-60
(m ⁵ .C.H)Fe(CO)(PPh.)SiMe.SiMe. (IIb)
¹ H	7.8–6.8, 5.0, 4.54, 3.8 (Ph, C_9H_7); 0.25, 0.15 (Si ₉ Me ₂)
²⁹ Si	18.2 (Fe-Si, d, ${}^{2}J_{Si-P} = 27.5$ Hz); -10.3 (Fe-Si-Si)
ν(CO) anal. calcd (found)	1911 C, 66.9 (67.4); H, 6.30 (6.37)
$(n^5 - C_n)$	H_)Fe(CO)_SiMe(SiMe_)_ (IIIe)
¹ H	7.47, 7.21, 4.99 (m, C_9H_7); 0.20, 0.16 (Si ₂ Me ₇)
¹³ C	215.0 (CO); 127.2, 124.5, 105.4, 89.3, 71.8 (C ₉ H ₇); 1.44, -3.0 (Si ₃ Me ₇)
²⁹ Si ν(CO)	-8.7 (SiMe ₃); -12.7 (Fe-Si) 1996, 1946
anal. calcd (found) mp	C, 51.9 (51.7); H, 6.78 (6.72) 85–86
$(\eta^5 - C_0 H_7)$	Fe(CO)(PPh ₃)SiMe(SiMe ₃) ₂ (IIIb)
¹ H	7.9-6.8, 5.00, 4.54 (m, Ph, C ₉ H ₇); 0.10, 0.0 (Si ₃ Me ₇)
²⁹ Si	-7.2 (SiMe ₃); -20.5 (Fe-Si, d, ${}^{2}J_{Si-P} = 27.9$ Hz)
$\nu(CO)$	1911 C 64 6 (64 7): H 6 60 (6 39)

Anal. calcd (found) C, 64.6 (64.7); H, 6.60 (6.39)

^a NMR spectral data are all relative to TMS at 0.0 ppm. ¹H and ¹³C spectra were recorded in CDCl₃ and ²⁹Si data in C₆D₆. ^bIR data (in cm⁻¹) for dicarbonyls were recorded in hexane and for phosphine complexes in CH₂Cl₂. ^cAll melting points (in °C) were determined in open capillary tubes and are uncorrected.

indicated that after 6 h the ν (CO) bands of the starting material had been replaced by a single CO stretching frequency at 1911 cm⁻¹. The solvent was removed under vacuum, the residue was dissolved in the minimum volume of a 1:1 methylene chloridehexane mixture, the solution was placed upon a silica gel column $(15 \times 2 \text{ cm})$, and the column was eluted with hexane. A bright red band yielded 0.44 g (0.74 mmol, 49%) of $(\eta^5-C_9H_7)Fe(CO)$ -(PPh₃)SiMe₃ (IIb). Full spectral and analytical details are presented in Table I.

X-ray Structural Determination. Intensity data for all compounds were collected on a Nicolet-Siemens R3m/V four-circle diffractometer at room temperature, using graphite-mono-chromated Mo K $\bar{\alpha}$ radiation ($\lambda = 0.71073$ Å). The ω -scan technique was applied in the 2θ range $3.5 \le 2\theta \le 45.0^\circ$ with variable scan speeds. The intensities of 3 check reflections were measured every 50 reflections (100 for Ib), and these decreased only slightly. Compounds Ia and IIa proved to be sensitive to air and humidity;

^{(4) (}a) Honle, W.; von Schering, H. G. Z. Anorg. Allg. Chem. 1980, 464, 139. (b) Drahnak, T. J.; West, R.; Calabrese, J. C. J. Organomet. Chem. 1980, 198, 55. (c) Holmes-Smith, R. D.; Stobart, S. R.; Atwood, J. L.; Hunter, W. E. J. Chem. Soc., Dalton Trans. 1982, 2461. (d) Parkanyi, L.; Pannell, K. H.; Hernandez, C. J. Organomet. Chem. 1983, 252, 127. (e) Schubert, U., Kraft, G.; Walther, E. Z. Anorg. Allg. Chem. 1984, 519,
 96. (f) Ries, W.; Albright, T. A.; Silvestre, J.; Bernal, I.; Malisch, W.; Burschke, C. Inorg. Chim. Acta 1986, 111, 119. (g) Parkanyi, L; Her-nandez, C.; Pannell, K. H. J. Organomet. Chem. 1986, 301, 145. (h) Pannell, K. H.; Cervantes, J.; Parkanyi, L.; Cervantes-Lee, F. Organo-metallics 1990, 9, 859.

-

_

Table II

······································	Та	Ib	ĨĬa
empirical formula	$C_{14}H_{16}O_2S_1F_e$	C ₃₁ H ₃₁ OSiPFe	$C_{16}H_{22}O_2S_{12}Fe$
tw	300.2	534.5	358.4
cryst syst	monoclinic	triclinic	orthorhombic
space group	$P2_1/n$	P1	Pbca
a, A	10.769 (8)	10.574(2)	8.331 (5)
b, A	11.060 (9)	15.393 (3)	14.218 (8)
с, А	13.309 (9)	17.430 (3)	31.62(2)
α , deg		103.17(1)	
β , deg	111.19 (8)	93.02 (1)	
γ , deg		95.13 (1)	
V, Å	1478 (2)	2743.5 (8)	3745 (4)
Ζ	4	4	8
$D_{\text{calc}}, \text{Mg m}^{-3}$	1.349	1.294	1.271
$\mu(Mo K\bar{\alpha}), mm^{-1}$	1.089	0.669	0.930
F(000)	624	1120	1504
approx cryst size, mm	$0.10 \times 0.20 \times 0.30$	$0.20 \times 0.40 \times 0.50$	$0.06 \times 0.12 \times 0.13$
cryst color	orange	red	orange
scan speed, deg min ⁻¹	3.0-20.0	6.0-20.0	2.5-20
index ranges	$-2 \le h \le 11, 0 \le k \le 11,$	$-5 \le h \le 11, -16 \le k \le 16,$	$0 \le h \le 8, 0 \le k \le 15,$
	$-14 \le l \le 13$	-18 < / < 18	$0 \le l \le 34$
no. of rflns collected	2296	7865	2973
no. of indep rflps	1895	7155	2416
R	0.013	0.032	0.068
no of obset data $(F > 3.0\sigma(F))$	1392	7147	1715
structure soln	direct methods	direct methods	heavy-atom method
woighting g	0.0003	0.0013	0.0220
P	0.0003	0.0013	0.054
D D	0.031	0.043	0.004
	0.049	0.057	0.023
n _{tot}	1.41	1.09	0.072
goodness of fit	1.41	1.08	0.03
largest and mean Δ/σ	0.206, ~0.003	0.935, -0.005	0.043, -0.001
data-to-param ratio	8,5:1	11.3:1	9.0:1
	0.29	0.29	0.00
langest uni peak, e A	0.00	0.00	0.00
largest diff hole, e Å ⁻³	-0.30	-0.30	-0.39
largest diff hole, e Å ⁻³	-0.30 IIb	-0.30 IIIa	-0.39 IIIb
largest diff hole, e Å ⁻³	-0.30 <u>IIb</u> C ₃₃ H ₃₇ OSiPFe	-0.30 IIIa C ₁₈ H ₂₈ O ₂ Si ₃ Fe	-0.39 IIIb C ₃₅ H ₄₃ OSi ₃ PFe
empirical formula	-0.30 <u>IIb</u> C ₃₃ H ₃₇ OSiPFe 592.6	-0.30 <u>IIIa</u> C ₁₈ H ₂₈ O ₂ Si ₃ Fe 416.5	-0.39 IIIb C ₃₅ H ₄₃ OSi ₃ PFe 650.9
empirical formula fw cryst syst	-0.30 IIb C ₃₃ H ₃₇ OSiPFe 592.6 monoclinic	-0.30 IIIa C ₁₈ H ₂₈ O ₂ Si ₃ Fe 416.5 monoclinic	-0.39 IIIb C ₃₅ H ₄₃ OSi ₃ PFe 650.9 monoclinic
empirical formula fw cryst syst space group	-0.30 IIb C ₃₃ H ₃₇ OSiPFe 592.6 monoclinic P2 ₁ /c	-0.30 IIIa $C_{18}H_{28}O_2Si_3Fe$ 416.5 monoclinic $P2_1/a$	-0.39 IIIb $C_{35}H_{43}OSi_3PFe$ 650.9 monoclinic $P2_1/n$
empirical formula fw cryst syst space group a, Å	-0.30 IIb $C_{33}H_{37}OSiPFe$ 592.6 monoclinic $P2_1/c$ 14.520 (7)	-0.30 IIIa $C_{18}H_{28}O_2Si_3Fe$ 416.5 monoclinic $P2_1/a$ 14.865 (5)	-0.39 IIIb $C_{35}H_{43}OSi_3PFe$ 650.9 monoclinic $P2_1/n$ 11.195 (3)
empirical formula fw cryst syst space group a, Å b, Å	-0.30 IIb C ₃₃ H ₃₇ OSiPFe 592.6 monoclinic $P2_1/c$ 14.520 (7) 10.155 (5)	-0.30 <u>IIIa</u> $C_{18}H_{28}O_2Si_3Fe$ 416.5 monoclinic $P2_1/a$ 14.865 (5) 8.699 (5)	-0.39 IIIb $C_{35}H_{43}OSi_3PFe$ 650.9 monoclinic $P2_1/n$ 11.195 (3) 18.432 (5)
empirical formula fw cryst syst space group a, Å b, Å c, Å	-0.30 IIb C ₃₃ H ₃₇ OSiPFe 592.6 monoclinic P2 ₁ /c 14.520 (7) 10.155 (5) 21.096 (9)	-0.30 <u>IIIa</u> C ₁₈ H ₂₈ O ₂ Si ₃ Fe 416.5 monoclinic P2 ₁ /a 14.865 (5) 8.699 (5) 18.039 (9)	-0.39 IIIb C ₃₅ H ₄₃ OSi ₃ PFe 650.9 monoclinic $P2_1/n$ 11.195 (3) 18.432 (5) 17.184 (4)
empirical formula fw cryst syst space group a, Å b, Å c, Å β, deg	-0.30 IIb $C_{33}H_{37}OSiPFe$ 592.6 monoclinic $P2_{1/c}$ 14.520 (7) 10.155 (5) 21.096 (9) 98.59 (4)	-0.30 $IIIa$ $C_{18}H_{28}O_{2}Si_{3}Fe$ 416.5 monoclinic $P2_{1}/a$ 14.865 (5) 8.699 (5) 18.039 (9) 98.96 (5)	-0.39 IIIb C ₃₅ H ₄₃ OSi ₃ PFe 650.9 monoclinic $P2_1/n$ 11.195 (3) 18.432 (5) 17.184 (4) 98.07 (2)
empirical formula fw cryst syst space group a, Å b, Å c, Å ¢, deg V, Å	-0.30 IIb $C_{33}H_{37}OSiPFe$ 592.6 monoclinic $P2_{1/c}$ 14.520 (7) 10.155 (5) 21.096 (9) 98.59 (4) 3076 (3)	-0.30 $IIIa$ $C_{18}H_{28}O_{2}Si_{3}Fe$ 416.5 monoclinic $P2_{1}/a$ 14.865 (5) 8.699 (5) 18.039 (9) 98.96 (5) 2304 (2)	-0.39 IIIb C ₃₅ H ₄₃ OSi ₃ PFe 650.9 monoclinic P2 ₁ /n 11.195 (3) 18.432 (5) 17.184 (4) 98.07 (2) 3510.7 (14)
empirical formula fw cryst syst space group a, Å b, Å c, Å c, Å ¢, deg V, Å Z	-0.30 IIb $C_{33}H_{37}OSiPFe$ 592.6 monoclinic $P2_{1}/c$ 14.520 (7) 10.155 (5) 21.096 (9) 98.59 (4) 3076 (3) 4	-0.30 $IIIa$ $C_{18}H_{28}O_{2}Si_{3}Fe$ 416.5 monoclinic $P2_{1}/a$ 14.865 (5) 8.699 (5) 18.039 (9) 98.96 (5) 2304 (2) 4	-0.39 $IIIb$ $C_{35}H_{43}OSi_3PFe$ 650.9 monoclinic $P2_1/n$ 11.195 (3) 18.432 (5) 17.184 (4) 98.07 (2) 3510.7 (14) 4
empirical formula fw cryst syst space group a, Å b, Å c, Å b, Å c, Å Z D _{calc} , Mg m ⁻³	-0.30 IIb $C_{33}H_{37}OSiPFe$ 592.6 monoclinic $P2_{1}/c$ 14.520 (7) 10.155 (5) 21.096 (9) 98.59 (4) 3076 (3) 4 1.280	-0.30 $IIIa$ $C_{18}H_{28}O_{2}Si_{3}Fe$ 416.5 monoclinic $P2_{1}/a$ 14.865 (5) 8.699 (5) 18.039 (9) 98.96 (5) 2304 (2) 4 1.201	-0.39 $IIIb$ $C_{35}H_{43}OSi_3PFe$ 650.9 monoclinic $P2_1/n$ 11.195 (3) 18.432 (5) 17.184 (4) 98.07 (2) 3510.7 (14) 4 1.231
empirical formula fw cryst syst space group a, Å b, Å c, Å β, deg V, Å Z $D_{calc}, Mg m^{-3}$ $\mu(Mo K\bar{\alpha}), mm^{-1}$	-0.30 IIb $C_{33}H_{37}OSiPFe$ 592.6 monoclinic $P2_{1/c}$ 14.520 (7) 10.155 (5) 21.096 (9) 98.59 (4) 3076 (3) 4 1.280 0.640	-0.30 $IIIa$ $C_{18}H_{28}O_{2}Si_{3}Fe$ 416.5 monoclinic $P2_{1}/a$ 14.865 (5) 8.699 (5) 18.039 (9) 98.96 (5) 2304 (2) 4 1.201 0.813	-0.39 $IIIb$ $C_{35}H_{43}OSi_{3}PFe$ 650.9 monoclinic $P2_{1}/n$ 11.195 (3) 18.432 (5) 17.184 (4) 98.07 (2) 3510.7 (14) 4 1.231 0.598
empirical formula fw cryst syst space group a, Å b, Å c, Å b, deg V, Å Z D _{calc} , Mg m ⁻³ μ (Mo K $\tilde{\alpha}$), mm ⁻¹ F(000)	-0.30 IIb $C_{33}H_{37}OSiPFe$ 592.6 monoclinic $P2_{1}/c$ 14.520 (7) 10.155 (5) 21.096 (9) 98.59 (4) 3076 (3) 4 1.280 0.640 1248	-0.30 $IIIa$ $C_{18}H_{28}O_{2}Si_{3}Fe$ 416.5 monoclinic $P2_{1}/a$ 14.865 (5) 8.699 (5) 18.039 (9) 98.96 (5) 2304 (2) 4 1.201 0.813 880	-0.39 $IIIb$ $C_{35}H_{43}OSi_{3}PFe$ 650.9 monoclinic $P2_{1}/n$ 11.195 (3) 18.432 (5) 17.184 (4) 98.07 (2) 3510.7 (14) 4 1.231 0.598 1376
empirical formula fw cryst syst space group $a, \overset{A}{A}$ $b, \overset{A}{A}$ $c, \overset{A}{A}$ β, \deg $V, \overset{A}{A}$ Z $D_{calc}, Mg m^{-3}$ $\mu(Mo K\overline{\alpha}), mm^{-1}$ F(000) approx cryst size, mm	-0.30 IIb C ₃₃ H ₃₇ OSiPFe 592.6 monoclinic P2 ₁ /c 14.520 (7) 10.155 (5) 21.096 (9) 98.59 (4) 3076 (3) 4 1.280 0.640 1248 0.40 × 0.40 × 0.50	-0.30 IIIa C ₁₈ H ₂₈ O ₂ Si ₃ Fe 416.5 monoclinic P2 ₁ /a 14.865 (5) 8.699 (5) 18.039 (9) 98.96 (5) 2304 (2) 4 1.201 0.813 880 0.03 × 0.30 × 0.30	-0.39 $IIIb$ $C_{35}H_{43}OSi_3PFe$ 650.9 monoclinic $P2_1/n$ 11.195 (3) 18.432 (5) 17.184 (4) 98.07 (2) 3510.7 (14) 4 1.231 0.598 1376 0.40 × 0.22 × 0.60
empirical formula fw cryst syst space group a, \bar{A} b, \bar{A} c, \bar{A} β, \deg V, \bar{A} Z $D_{calc}, Mg m^{-3}$ $\mu(Mo K\bar{\alpha}), mm^{-1}$ F(000) approx cryst size, mm cryst color	-0.30 IIb C ₃₃ H ₃₇ OSiPFe 592.6 monoclinic P2 ₁ /c 14.520 (7) 10.155 (5) 21.096 (9) 98.59 (4) 3076 (3) 4 1.280 0.640 1248 0.40 × 0.40 × 0.50 red	-0.30 $IIIa$ $C_{18}H_{28}O_{2}Si_{3}Fe$ 416.5 monoclinic $P2_{1}/a$ 14.865 (5) 8.699 (5) 18.039 (9) 98.96 (5) 2304 (2) 4 1.201 0.813 880 0.03 × 0.30 × 0.30 orange	-0.39 $IIIb$ $C_{35}H_{43}OSi_{3}PFe$ 650.9 monoclinic $P2_{1}/n$ 11.195 (3) 18.432 (5) 17.184 (4) 98.07 (2) 3510.7 (14) 4 1.231 0.598 1376 0.40 × 0.22 × 0.60 red
empirical formula fw cryst syst space group a, Å b, Å c, Å β, deg V, Å Z $D_{calc}, Mg m^{-3}$ $\mu(Mo K\bar{\alpha}), mm^{-1}$ F(000) approx cryst size, mm cryst color scan speed, deg min^{-1}	-0.30 IIb C ₃₃ H ₃₇ OSiPFe 592.6 monoclinic P2 ₁ /c 14.520 (7) 10.155 (5) 21.096 (9) 98.59 (4) 3076 (3) 4 1.280 0.640 1248 0.40 × 0.40 × 0.50 red 3.0-20.0	-0.30 $IIIa$ $C_{18}H_{28}O_{2}Si_{3}Fe$ 416.5 monoclinic $P2_{1}/a$ 14.865 (5) 8.699 (5) 18.039 (9) 98.96 (5) 2304 (2) 4 1.201 0.813 880 0.03 × 0.30 × 0.30 orange 2.0-20.0	-0.39 $IIIb$ $C_{35}H_{43}OSi_{3}PFe$ 650.9 monoclinic $P2_{1}/n$ 11.195 (3) 18.432 (5) 17.184 (4) 98.07 (2) 3510.7 (14) 4 1.231 0.598 1376 0.40 × 0.22 × 0.60 red 3.0-15.0
empirical formula fw cryst syst space group a, Å b, Å c, Å c, Å b, Å c, Å c, Å b, Å c, Å c, Å b, Å c, S c, S	-0.30 IIb C ₃₃ H ₃₇ OSiPFe 592.6 monoclinic P2 ₁ /c 14.520 (7) 10.155 (5) 21.096 (9) 98.59 (4) 3076 (3) 4 1.280 0.640 1248 0.40 × 0.40 × 0.50 red 3.0-20.0 $-2 \le h \le 15, -5 \le k \le 10,$	-0.30 $IIIa$ $C_{18}H_{28}O_{2}Si_{3}Fe$ 416.5 monoclinic $P2_{1}/a$ 14.865 (5) 8.699 (5) 18.039 (9) 98.96 (5) 2304 (2) 4 1.201 0.813 880 0.03 × 0.30 × 0.30 orange 2.0-20.0 0 ≤ h ≤ 15, 0 ≤ k ≤ 9,	-0.39 IIIb $C_{35}H_{43}OSi_{3}PFe$ 650.9 monoclinic $P2_{1}/n$ 11.195 (3) 18.432 (5) 17.184 (4) 98.07 (2) 3510.7 (14) 4 1.231 0.598 1376 0.40 × 0.22 × 0.60 red 3.0-15.0 $-6 \le h \le 12, -19 \le k \le 19.$
empirical formula fw cryst syst space group a, Å b, Å c, Å b, Å c, Å g, deg V, Å Z $D_{calc}, Mg m^{-3}$ $\mu(Mo K\bar{\alpha}), mm^{-1}$ F(000) approx cryst size, mm cryst color scan speed, deg min ⁻¹ index ranges	-0.30 IIb $C_{33}H_{37}OSiPFe$ 592.6 monoclinic $P2_{1/c}$ 14.520 (7) 10.155 (5) 21.096 (9) 98.59 (4) 3076 (3) 4 1.280 0.640 1248 0.40 × 0.40 × 0.50 red 3.0-20.0 $-2 \le h \le 15, -5 \le k \le 10, -22 \le l \le 22$	-0.30 $IIIa$ $C_{18}H_{28}O_{2}Si_{3}Fe$ 416.5 monoclinic $P2_{1}/a$ 14.865 (5) 8.699 (5) 18.039 (9) 98.96 (5) 2304 (2) 4 1.201 0.813 880 0.03 × 0.30 × 0.30 orange 2.0-20.0 0 ≤ h ≤ 15, 0 ≤ k ≤ 9, -19 ≤ l ≤ 19	-0.39 $IIIb$ $C_{35}H_{43}OSi_{3}PFe$ 650.9 monoclinic $P2_{1}/n$ 11.195 (3) 18.432 (5) 17.184 (4) 98.07 (2) 3510.7 (14) 4 1.231 0.598 1376 0.40 × 0.22 × 0.60 red 3.0-15.0 $-6 \le h \le 12, -19 \le k \le 19, \\-18 \le l \le 18$
empirical formula fw cryst syst space group a, Å b, Å c, Å c, Å b, Å c, A b, Å c, A b, Å c, A b, Å c, A b, Å c, A b, Å c, A b, Å c, A c, A c, A b, Å c, A c, A	-0.30 IIb $C_{33}H_{37}OSiPFe$ 592.6 monoclinic $P2_{1}/c$ 14.520 (7) 10.155 (5) 21.096 (9) 98.59 (4) 3076 (3) 4 1.280 0.640 1248 0.40 × 0.40 × 0.50 red 3.0-20.0 -2 $\leq h \leq 15, -5 \leq k \leq 10,$ -22 $\leq l \leq 22$ 4615	-0.30 $IIIa$ $C_{18}H_{28}O_{2}Si_{3}Fe$ 416.5 monoclinic $P2_{1}/a$ $14.865 (5)$ $8.699 (5)$ $18.039 (9)$ $98.96 (5)$ $2304 (2)$ 4 1.201 0.813 880 $0.03 \times 0.30 \times 0.30$ orange $2.0-20.0$ $0 \le h \le 15, 0 \le k \le 9,$ $-19 \le l \le 19$ 3342	-0.39 $IIIb$ $C_{35}H_{43}OSi_{3}PFe$ 650.9 monoclinic $P2_{1}/n$ 11.195 (3) 18.432 (5) 17.184 (4) 98.07 (2) 3510.7 (14) 4 1.231 0.598 1376 0.40 × 0.22 × 0.60 red 3.0-15.0 -6 ≤ h ≤ 12, -19 ≤ k ≤ 19, -18 ≤ l ≤ 18 8728
empirical formula fw cryst syst space group a, Å b, Å c, Å c, Å b, Å c, Å	-0.30 IIb $C_{33}H_{37}OSiPFe$ 592.6 monoclinic $P2_{1}/c$ 14.520 (7) 10.155 (5) 21.096 (9) 98.59 (4) 3076 (3) 4 1.280 0.640 1248 0.40 × 0.40 × 0.50 red 3.0-20.0 -2 ≤ h ≤ 15, -5 ≤ k ≤ 10, -22 ≤ l ≤ 22 4615 4325	-0.30 IIIa C ₁₈ H ₂₈ O ₂ Si ₃ Fe 416.5 monoclinic P2 ₁ /a 14.865 (5) 8.699 (5) 18.039 (9) 98.96 (5) 2304 (2) 4 1.201 0.813 880 0.03 × 0.30 × 0.30 orange 2.0-20.0 0 ≤ h ≤ 15, 0 ≤ k ≤ 9, -19 ≤ l ≤ 19 3342 2871	-0.39 $IIIb$ $C_{35}H_{43}OSi_{3}PFe$ 650.9 monoclinic $P2_{1}/n$ 11.195 (3) 18.432 (5) 17.184 (4) 98.07 (2) 3510.7 (14) 4 1.231 0.598 1376 0.40 × 0.22 × 0.60 red 3.0-15.0 -6 $\leq h \leq 12, -19 \leq k \leq 19,$ -18 $\leq l \leq 18$ 8728 4251
empirical formula fw cryst syst space group a, Å b, Å c, Å β, deg V, Å Z $D_{calc}, Mg m^{-3}$ $\mu(Mo K\bar{\alpha}), mm^{-1}$ F(000) approx cryst size, mm cryst color scan speed, deg min ⁻¹ index ranges no. of rflns collected no. of indep rflns R_{int}	-0.30 IIb $C_{33}H_{37}OSiPFe$ 592.6 monoclinic $P2_{1}/c$ 14.520 (7) 10.155 (5) 21.096 (9) 98.59 (4) 3076 (3) 4 1.280 0.640 1248 0.40 × 0.40 × 0.50 red 3.0-20.0 $-2 \le h \le 15, -5 \le k \le 10,$ $-22 \le l \le 22$ 4615 4325 0.008	-0.30 IIIa $C_{18}H_{28}O_{2}Si_{3}Fe$ 416.5 monoclinic $P2_{1}/a$ 14.865 (5) 8.699 (5) 18.039 (9) 98.96 (5) 2304 (2) 4 1.201 0.813 880 0.03 × 0.30 × 0.30 orange 2.0-20.0 0 ≤ h ≤ 15, 0 ≤ k ≤ 9, -19 ≤ l ≤ 19 3342 2871 0.010	-0.39 $IIIb$ $C_{35}H_{43}OSi_{3}PFe$ 650.9 monoclinic $P2_{1}/n$ 11.195 (3) 18.432 (5) 17.184 (4) 98.07 (2) 3510.7 (14) 4 1.231 0.598 1376 0.40 × 0.22 × 0.60 red 3.0-15.0 -6 ≤ h ≤ 12, -19 ≤ k ≤ 19, -18 ≤ l ≤ 18 8728 4251 0.013
empirical formula fw cryst syst space group a, A b, A c, A β, deg V, A Z $D_{calc}, Mg m^{-3}$ $\mu(Mo K\bar{\alpha}), mm^{-1}$ F(000) approx cryst size, mm cryst color scan speed, deg min ⁻¹ index ranges no. of rflns collected no. of indep rflns R_{int} no. of obsd data $(F > 3.0\sigma(F))$	-0.30 IIb $C_{33}H_{37}OSiPFe$ 592.6 monoclinic $P2_{1}/c$ 14.520 (7) 10.155 (5) 21.096 (9) 98.59 (4) 3076 (3) 4 1.280 0.640 1248 0.40 × 0.40 × 0.50 red 3.0-20.0 $-2 \le h \le 15, -5 \le k \le 10, -22 \le l \le 22$ 4615 4325 0.008 4273	-0.30 $IIIa$ $C_{18}H_{28}O_{2}Si_{3}Fe$ 416.5 monoclinic $P2_{1}/a$ 14.865 (5) 8.699 (5) 18.039 (9) 98.96 (5) 2304 (2) 4 1.201 0.813 880 0.03 × 0.30 × 0.30 orange 2.0-20.0 0 ≤ h ≤ 15, 0 ≤ k ≤ 9, -19 ≤ l ≤ 19 3342 2871 0.010 2243 [F > 4.0\sigma(F)]	-0.39 $IIIb$ $C_{35}H_{43}OSi_{3}PFe$ 650.9 monoclinic $P2_{1/n}$ 11.195 (3) 18.432 (5) 17.184 (4) 98.07 (2) 3510.7 (14) 4 1.231 0.598 1376 0.40 × 0.22 × 0.60 red 3.0-15.0 $-6 \le h \le 12, -19 \le k \le 19,$ $-18 \le l \le 18$ 8728 4251 0.013 3639
empirical formula fw cryst syst space group a, A b, A c, A β, deg V, A Z $D_{calc}, Mg m^{-3}$ $\mu(Mo K\bar{\alpha}), mm^{-1}$ F(000) approx cryst size, mm cryst color scan speed, deg min ⁻¹ index ranges no. of rflns collected no. of of sold ata $[F > 3.0\sigma(F)]$ structure soln	-0.30 IIb C ₃₃ H ₃₇ OSiPFe 592.6 monoclinic P2 ₁ /c 14.520 (7) 10.155 (5) 21.096 (9) 98.59 (4) 3076 (3) 4 1.280 0.640 1248 0.40 × 0.40 × 0.50 red 3.0-20.0 $-2 \le h \le 15, -5 \le k \le 10,$ $-22 \le l \le 22$ 4615 4325 0.008 4273 direct methods	-0.30 $IIIa$ $C_{18}H_{28}O_{2}Si_{3}Fe$ 416.5 monoclinic $P2_{1}/a$ 14.865 (5) 8.699 (5) 18.039 (9) 98.96 (5) 2304 (2) 4 1.201 0.813 880 0.03 × 0.30 × 0.30 orange 2.0-20.0 0 ≤ h ≤ 15, 0 ≤ k ≤ 9, -19 ≤ l ≤ 19 3342 2871 0.010 2243 [F > 4.0\sigma(F)] heavy-atom method	-0.39 $IIIb$ $C_{35}H_{43}OSi_{3}PFe$ 650.9 monoclinic $P2_{1}/n$ 11.195 (3) 18.432 (5) 17.184 (4) 98.07 (2) 3510.7 (14) 4 1.231 0.598 1376 0.40 × 0.22 × 0.60 red 3.0-15.0 -6 ≤ h ≤ 12, -19 ≤ k ≤ 19, -18 ≤ l ≤ 18 8728 4251 0.013 3639 direct methods
empirical formula fw cryst syst space group a, Å b, Å c, Å β, deg V, Å Z $D_{calc}, Mg m^{-3}$ $\mu(Mo K\bar{\alpha}), mm^{-1}$ F(000) approx cryst size, mm cryst color scan speed, deg min ⁻¹ index ranges no. of rflns collected no. of indep rflns R_{int} no. of obsd data $[F > 3.0\sigma(F)]$ structure soln weighting μ	-0.30 IIb C ₃₃ H ₃₇ OSiPFe 592.6 monoclinic P2 ₁ /c 14.520 (7) 10.155 (5) 21.096 (9) 98.59 (4) 3076 (3) 4 1.280 0.640 1248 0.40 × 0.40 × 0.50 red 3.0-20.0 $-2 \le h \le 15, -5 \le k \le 10,$ $-22 \le l \le 22$ 4615 4325 0.008 4273 direct methods 0.0262	-0.30 $IIIa$ $C_{18}H_{28}O_{2}Si_{3}Fe$ 416.5 monoclinic $P2_{1}/a$ 14.865 (5) 8.699 (5) 18.039 (9) 98.96 (5) 2304 (2) 4 1.201 0.813 880 0.03 × 0.30 × 0.30 orange 2.0-20.0 0 ≤ h ≤ 15, 0 ≤ k ≤ 9, -19 ≤ l ≤ 19 3342 2871 0.010 2243 [F > 4.0\sigma(F)] heavy-atom method 0.0011	-0.39 IIIb $C_{35}H_{43}OSi_{3}PFe$ 650.9 monoclinic $P2_{1}/n$ 11.195 (3) 18.432 (5) 17.184 (4) 98.07 (2) 3510.7 (14) 4 1.231 0.598 1376 0.40 × 0.22 × 0.60 red 3.0-15.0 -6 ≤ h ≤ 12, -19 ≤ k ≤ 19, -18 ≤ l ≤ 18 8728 4251 0.013 3639 direct methods 0.0001
empirical formula fw cryst syst space group a, Å b, Å c, Å β, deg V, Å Z $D_{calc}, Mg m^{-3}$ $\mu(Mo K\bar{\alpha}), mm^{-1}$ F(000) approx cryst size, mm cryst color scan speed, deg min ⁻¹ index ranges no. of rflns collected no. of indep rflns R_{int} no. of obsd data $[F > 3.0\sigma(F)]$ structure soln weighting g R_{-1-}	-0.30 IIb $C_{33}H_{37}OSiPFe$ 592.6 monoclinic $P2_{1}/c$ 14.520 (7) 10.155 (5) 21.096 (9) 98.59 (4) 3076 (3) 4 1.280 0.640 1248 0.40 × 0.40 × 0.50 red 3.0-20.0 -2 ≤ h ≤ 15, -5 ≤ k ≤ 10, -22 ≤ l ≤ 22 4615 4325 0.008 4273 direct methods 0.0262 0.044	-0.30 $IIIa$ $C_{18}H_{28}O_{2}Si_{3}Fe$ 416.5 monoclinic $P2_{1}/a$ $14.865 (5)$ $8.699 (5)$ $18.039 (9)$ $98.96 (5)$ $2304 (2)$ 4 1.201 0.813 880 $0.03 \times 0.30 \times 0.30$ orange $2.0-20.0$ $0 \le h \le 15, 0 \le k \le 9,$ $-19 \le l \le 19$ 3342 2871 0.010 $2243 [F > 4.0\sigma(F)]$ heavy-atom method 0.0011 0.047	-0.39 IIIb $C_{35}H_{43}OSi_{3}PFe$ 650.9 monoclinic $P2_{1}/n$ 11.195 (3) 18.432 (5) 17.184 (4) 98.07 (2) 3510.7 (14) 4 1.231 0.598 1376 0.40 × 0.22 × 0.60 red 3.0-15.0 -6 $\leq h \leq 12, -19 \leq k \leq 19,$ -18 $\leq l \leq 18$ 8728 4251 0.013 3639 direct methods 0.0001 0 046
empirical formula fw cryst syst space group a, Å b, Å c, Å β , deg V, Å Z D _{calc} , Mg m ⁻³ μ (Mo K $\tilde{\alpha}$), mm ⁻¹ F(000) approx cryst size, mm cryst color scan speed, deg min ⁻¹ index ranges no. of rflns collected no. of indep rflns R_{int} no. of obsd data [$F > 3.0\sigma(F)$] structure soln weighting g R_{obs}	-0.30 IIb $C_{33}H_{37}OSiPFe$ 592.6 monoclinic $P2_{1}/c$ 14.520 (7) 10.155 (5) 21.096 (9) 98.59 (4) 3076 (3) 4 1.280 0.640 1248 0.40 × 0.40 × 0.50 red 3.0-20.0 -2 ≤ h ≤ 15, -5 ≤ k ≤ 10, -22 ≤ l ≤ 22 4615 4325 0.008 4273 direct methods 0.0262 0.044 0.089	-0.30 IIIa $C_{18}H_{28}O_{2}Si_{3}Fe$ 416.5 monoclinic $P2_{1}/a$ 14.865 (5) 8.699 (5) 18.039 (9) 98.96 (5) 2304 (2) 4 1.201 0.813 880 0.03 × 0.30 × 0.30 orange 2.0-20.0 0 ≤ h ≤ 15, 0 ≤ k ≤ 9, -19 ≤ l ≤ 19 3342 2871 0.010 2243 [F > 4.0 σ (F)] heavy-atom method 0.0011 0.047 0.061	-0.39 $IIIb$ $C_{35}H_{43}OSi_{3}PFe$ 650.9 monoclinic $P2_{1}/n$ 11.195 (3) 18.432 (5) 17.184 (4) 98.07 (2) 3510.7 (14) 4 1.231 0.598 1376 0.40 × 0.22 × 0.60 red 3.0-15.0 -6 ≤ h ≤ 12, -19 ≤ k ≤ 19, -18 ≤ l ≤ 18 8728 4251 0.013 3639 direct methods 0.0001 0.046 0.042
empirical formula fw cryst syst space group a, Å b, Å c, Å β , deg V, Å Z D_{calc} , Mg m ⁻³ μ (Mo K $\bar{\alpha}$), mm ⁻¹ F(000) approx cryst size, mm cryst color scan speed, deg min ⁻¹ index ranges no. of rflns collected no. of indep rflns R_{int} no. of obsd data [$F > 3.0\sigma(F)$] structure soln weighting g R_{obs} R_w R_{tot}	-0.30 IIb $C_{33}H_{37}OSiPFe$ 592.6 monoclinic $P2_{1}/c$ 14.520 (7) 10.155 (5) 21.096 (9) 98.59 (4) 3076 (3) 4 1.280 0.640 1248 0.40 × 0.40 × 0.50 red 3.0-20.0 -2 ≤ h ≤ 15, -5 ≤ k ≤ 10, -22 ≤ l ≤ 22 4615 4325 0.008 4273 direct methods 0.0262 0.044 0.089 0.058	-0.30 $IIIa$ $C_{18}H_{28}O_{2}Si_{3}Fe$ 416.5 monoclinic $P2_{1}/a$ $14.865 (5)$ $8.699 (5)$ $18.039 (9)$ $98.96 (5)$ $2304 (2)$ 4 1.201 0.813 880 $0.03 \times 0.30 \times 0.30$ orange $2.0-20.0$ $0 \le h \le 15, 0 \le k \le 9,$ $-19 \le l \le 19$ 3342 2871 0.010 $2243 [F > 4.0\sigma(F)]$ heavy-atom method 0.0011 0.047 0.061 0.062	-0.39 $IIIb$ $C_{35}H_{43}OSi_{3}PFe$ 650.9 monoclinic $P2_{1}/n$ 11.195 (3) 18.432 (5) 17.184 (4) 98.07 (2) 3510.7 (14) 4 1.231 0.598 1376 0.40 × 0.22 × 0.60 red 3.0-15.0 -6 ≤ h ≤ 12, -19 ≤ k ≤ 19, -18 ≤ l ≤ 18 8728 4251 0.013 3639 direct methods 0.0001 0.046 0.042 0.057
empirical formula fw cryst syst space group a, Å b, Å c, Å β, deg V, Å Z $D_{calc}, Mg m^{-3}$ $\mu(Mo K\bar{\alpha}), mm^{-1}$ F(000) approx cryst size, mm cryst color scan speed, deg min ⁻¹ index ranges no. of rflns collected no. of indep rflns R_{int} no. of obsd data [$F > 3.0\sigma(F)$] structure soln weighting g R_{w} R_{w} R_{tot} goodness of fit	-0.30 IIb $C_{33}H_{37}OSiPFe$ 592.6 monoclinic $P2_{1}/c$ 14.520 (7) 10.155 (5) 21.096 (9) 98.59 (4) 3076 (3) 4 1.280 0.640 1248 0.40 × 0.40 × 0.50 red 3.0-20.0 -2 ≤ h ≤ 15, -5 ≤ k ≤ 10, -22 ≤ l ≤ 22 4615 4325 0.008 4273 direct methods 0.0262 0.044 0.089 0.058 0.50	-0.30 $IIIa$ $C_{18}H_{28}O_{2}Si_{3}Fe$ 416.5 monoclinic $P2_{1}/a$ $14.865 (5)$ $8.699 (5)$ $18.039 (9)$ $98.96 (5)$ $2304 (2)$ 4 1.201 0.813 880 $0.03 \times 0.30 \times 0.30$ orange $2.0-20.0$ $0 \le h \le 15, 0 \le k \le 9,$ $-19 \le l \le 19$ 3342 2871 0.010 $2243 [F > 4.0\sigma(F)]$ heavy-atom method 0.0011 0.047 0.061 0.062 1.42	-0.39 $IIIb$ $C_{35}H_{43}OSi_{3}PFe$ 650.9 monoclinic $P2_{1}/n$ 11.195 (3) 18.432 (5) 17.184 (4) 98.07 (2) 3510.7 (14) 4 1.231 0.598 1376 0.40 × 0.22 × 0.60 red 3.0-15.0 -6 ≤ h ≤ 12, -19 ≤ k ≤ 19, -18 ≤ l ≤ 18 8728 4251 0.013 3639 direct methods 0.0001 0.046 0.042 0.057 2.07
empirical formula fw cryst syst space group a, A b, A c, A β, deg V, A Z $D_{calc}, Mg m^{-3}$ $\mu(Mo K\bar{\alpha}), mm^{-1}$ F(000) approx cryst size, mm cryst color scan speed, deg min ⁻¹ index ranges no. of rflns collected no. of indep rflns R_{int} no. of obsd data [$F > 3.0\sigma(F)$] structure soln weighting g R_{obs} R_w R_{tot} goodness of fit largest and mean Δ/σ	-0.30 IIb C ₃₃ H ₃₇ OSiPFe 592.6 monoclinic P2 ₁ /c 14.520 (7) 10.155 (5) 21.096 (9) 98.59 (4) 3076 (3) 4 1.280 0.640 1248 0.40 × 0.40 × 0.50 red 3.0-20.0 $-2 \le h \le 15, -5 \le k \le 10,$ $-22 \le l \le 22$ 4615 4325 0.008 4273 direct methods 0.0262 0.044 0.089 0.058 0.50 3.467, 0.064	-0.30 $IIIa$ $C_{18}H_{28}O_{2}Si_{3}Fe$ 416.5 monoclinic $P2_{1}/a$ 14.865 (5) 8.699 (5) 18.039 (9) 98.96 (5) 2304 (2) 4 1.201 0.813 880 0.03 × 0.30 × 0.30 orange 2.0-20.0 0 ≤ h ≤ 15, 0 ≤ k ≤ 9, -19 ≤ l ≤ 19 3342 2871 0.010 2243 [F > 4.0\sigma(F)] heavy-atom method 0.0011 0.047 0.061 0.062 1.42 0.245, -0.009	-0.39 IIIb $C_{35}H_{43}OSi_{3}PFe$ 650.9 monoclinic $P2_{1/n}$ 11.195 (3) 18.432 (5) 17.184 (4) 98.07 (2) 3510.7 (14) 4 1.231 0.598 1376 0.40 × 0.22 × 0.60 red 3.0-15.0 -6 $\leq h \leq 12, -19 \leq k \leq 19,$ -18 $\leq l \leq 18$ 8728 4251 0.013 3639 direct methods 0.0001 0.046 0.042 0.057 2.07 0.554, -0.008
empirical formula fw cryst syst space group a, \bar{A} b, \bar{A} c, \bar{A} β, deg V, \bar{A} Z $D_{calc}, Mg m^{-3}$ $\mu(Mo K\bar{\alpha}), mm^{-1}$ F(000) approx cryst size, mm cryst color scan speed, deg min ⁻¹ index ranges no. of rflns collected no. of indep rflns R_{int} no. of obsd data [$F > 3.0\sigma(F)$] structure soln weighting g R_{obs} R_w R_{tot} goodness of fit largest and mean Δ/σ data-to-param ratio	-0.30 IIb C ₃₃ H ₃₇ OSiPFe 592.6 monoclinic P2 ₁ /c 14.520 (7) 10.155 (5) 21.096 (9) 98.59 (4) 3076 (3) 4 1.280 0.640 1248 0.40 × 0.40 × 0.50 red 3.0-20.0 $-2 \le h \le 15, -5 \le k \le 10,$ $-22 \le l \le 22$ 4615 4325 0.008 4273 direct methods 0.0262 0.044 0.089 0.058 0.50 3.467, 0.064 12.5:1	-0.30 $IIIa$ $C_{18}H_{28}O_{2}Si_{3}Fe$ 416.5 monoclinic $P2_{1}/a$ 14.865 (5) 8.699 (5) 18.039 (9) 98.96 (5) 2304 (2) 4 1.201 0.813 880 0.03 × 0.30 × 0.30 orange 2.0-20.0 0 ≤ h ≤ 15, 0 ≤ k ≤ 9, -19 ≤ l ≤ 19 3342 2871 0.010 2243 [F > 4.0\sigma(F)] heavy-atom method 0.0011 0.047 0.061 0.062 1.42 0.245, -0.009 10.3:1	$\begin{array}{r} -0.39 \\ \hline \\ $
empirical formula fw cryst syst space group a, \dot{A} b, \dot{A} c, \dot{A} β, deg V, \dot{A} Z $D_{calc}, Mg m^{-3}$ $\mu(Mo K\bar{\alpha}), mm^{-1}$ F(000) approx cryst size, mm cryst color scan speed, deg min ⁻¹ index ranges no. of rflns collected no. of indep rflns R_{int} no. of obsd data [$F > 3.0\sigma(F)$] structure soln weighting g R_{obs} R_w R_{tot} goodness of fit largest and mean Δ/σ data-to-param ratio largest diff peak. e \dot{A}^{-3}	-0.30 IIb C ₃₃ H ₃₇ OSiPFe 592.6 monoclinic P2 ₁ /c 14.520 (7) 10.155 (5) 21.096 (9) 98.59 (4) 3076 (3) 4 1.280 0.640 1248 0.40 × 0.40 × 0.50 red 3.0-20.0 $-2 \le h \le 15, -5 \le k \le 10,$ $-22 \le l \le 22$ 4615 4325 0.008 4273 direct methods 0.0262 0.044 0.089 0.058 0.50 3.467, 0.064 12.5:1 0.47	-0.30 $IIIa$ $C_{18}H_{28}O_{2}Si_{3}Fe$ 416.5 monoclinic $P2_{1}/a$ 14.865 (5) 8.699 (5) 18.039 (9) 98.96 (5) 2304 (2) 4 1.201 0.813 880 0.03 × 0.30 × 0.30 orange 2.0-20.0 0 ≤ h ≤ 15, 0 ≤ k ≤ 9, -19 ≤ l ≤ 19 3342 2871 0.010 2243 [F > 4.0\sigma(F)] heavy-atom method 0.0011 0.047 0.061 0.062 1.42 0.245, -0.009 10.3:1 0.22	$\begin{array}{r} -0.39 \\ \hline \\ $
empirical formula fw cryst syst space group a, \tilde{A} b, \tilde{A} c, \tilde{A} β, deg V, \tilde{A} Z $D_{calc}, Mg m^{-3}$ $\mu(Mo K\bar{\alpha}), mm^{-1}$ F(000) approx cryst size, mm cryst color scan speed, deg min ⁻¹ index ranges no. of rflns collected no. of rflns collected no. of of sold ata [$F > 3.0\sigma(F)$] structure soln weighting g R_{obs} R_w R_{tot} goodness of fit largest and mean Δ/σ data-to-param ratio largest diff peak, e Å ⁻³ largest diff hol, e Å ⁻³	-0.30 IIb C ₃₃ H ₃₇ OSiPFe 592.6 monoclinic P2 ₁ /c 14.520 (7) 10.155 (5) 21.096 (9) 98.59 (4) 3076 (3) 4 1.280 0.640 1248 0.40 × 0.40 × 0.50 red 3.0-20.0 $-2 \le h \le 15, -5 \le k \le 10,$ $-22 \le l \le 22$ 4615 4325 0.008 4273 direct methods 0.0262 0.044 0.089 0.058 0.50 3.467, 0.064 12.5:1 0.47 -0.46	-0.30 $IIIa$ $C_{18}H_{28}O_{2}Si_{3}Fe$ 416.5 monoclinic $P2_{1}/a$ $14.865 (5)$ $8.699 (5)$ $18.039 (9)$ $98.96 (5)$ $2304 (2)$ 4 1.201 0.813 880 $0.03 \times 0.30 \times 0.30$ orange $2.0-20.0$ $0 \le h \le 15, 0 \le k \le 9,$ $-19 \le l \le 19$ 3342 2871 0.010 $2243 [F > 4.0\sigma(F)]$ heavy-atom method 0.0011 0.047 0.061 0.062 1.42 $0.245, -0.009$ $10.3:1$ 0.22 -0.24	$\begin{array}{r} -0.39\\ \hline \\ \hline$

therefore, these crystals were fully covered by glue. ψ -Scan data were collected for Ib and IIIa (minimum and maximum transmission factors were nearly equal: Ib, 0.559 and 0.581; IIIa, 0.423 and 0.494), showing that the data are not subject to serious absorption effects.

The structures were refined by anisotropic, full-matrix least squares. The quantity minimized was $\sum w(F_o - F_o)^2$, where $w^{-1} = \sigma^2(F) + gF^2$ with variable g. Hydrogen atomic positions were

generated from the assumed geometry. They were included in structure factor calculations with their isotropic U values fixed at 0.08. Crystal data, data collection, and least-squares parameters are listed in Table II. All calculations were performed by the Nicolet SHELXTL PLUS program package on a MicroVAX II computer. Atomic coordinates are reported in Table III, and relevant bond angles and distances were presented in Table IV. The structures of the new complexes are presented in Figure 1.

Results and Discussion

The monosilyl-, disilyl-, and trisilyl(η^5 -indenyl)dicarbonyliron complexes were prepared in moderate to good yields via the standard salt elimination reaction outlined in eq 1.

$$[(\eta^{5}-C_{9}H_{7})Fe(CO)_{2}]^{-}Na^{+} + R_{3}SiCl \xrightarrow{THF} (\eta^{5}-C_{9}H_{7})Fe(CO)_{2}SiR_{3} + NaCl (1) Ia-IIIa$$

 $R_3Si =$

Me₃Si (Ia), Me₅Si₂ (IIa), 1-Me₇Si₃, 2-Me₇Si₃ (IIIa)

All the complexes are yellow, crystalline materials whose spectroscopic data are recorded in Table I. The branched trisilyl complex $(\eta^5 - C_9 H_7)$ Fe(CO)₂SiMe(SiMe₃)₂ (IIIa) was more conveniently synthesized via the photochemical transformation of the linear trisilyl complex (eq 2).

$$(\eta^5-C_9H_7)Fe(CO)_2SiMe_2SiMe_2SiMe_3 \xrightarrow{h\nu} (\eta^5-C_9H_7)Fe(CO)_2SiMe(SiMe_3)_2$$
 (2)

This latter reaction is an example of the general transformation of oligosilyl complexes that we have previously observed for the $(\eta^5-C_5H_5)Fe(CO)_2$ -silyl (Fp-silyl) systems.⁹ There is a difference between the cyclopentadienyl and the indenyl complexes. In the former case the linear trisilane finally transforms to the monosilane complex, Fp-SiMe₃, via the 2-substituted trisilane and disilane (eq 3).

$$Fp-SiMe_{2}SiMe_{2}SiMe_{3} \xrightarrow{h_{\nu}} Fp-SiMe(SiMe_{3})_{2} \xrightarrow{h_{\nu}} Fp-SiMe_{2}SiMe_{3} \xrightarrow{h_{\nu}} Fp-SiMe_{3} (3)$$

The absence of the silyl group expulsions in the case of the indenyl complexes is currently under investigation and will be the subject of a forthcoming article. The phosphine derivatives were obtained in good yields via the photochemical substitution reactions outlined in eq 4.

$$(\eta^{5}-C_{9}H_{7})Fe(CO)_{2}SiR_{3} + PPh_{3} \xrightarrow[THF]{h\nu} \\ (\eta^{5}-C_{9}H_{7})Fe(CO)(PPh_{3})SiR_{3} + CO (4) \\ Ib-IIIb$$

 $R_3Si = Me_3Si$ (Ib), Me_5Si_2 (IIb), 2- Me_7Si_3 (IIIb)

The ²⁹Si NMR data for the new complexes are recorded in Table I and verify the various conclusions we have reached from the corresponding data for the Fp-oligosilyl complexes.^{5,9,10} Bonding of the iron group to a silicon atom causes a significant low-frequency shift of the silicon resonance compared to that for the methyl-substituted counterpart. Thus, for $(\eta^5-C_9H_7)Fe(CO)_2SiMe_3$ the resonance occurs at +47.5 ppm, a shift of 47.5 ppm compared to Me–SiMe3. This shift, $\Delta\delta,$ is tabulated in Table V for the six complexes that we have structurally characterized in this paper. The silicon atoms directly bonded to Fe (α -position) have shifts in the range 35-48 ppm, and those in the β -position, 6–12 ppm. When the CO ligand is replaced with PPh₃, the shifts of the silicon atoms in the α -position are attenuated by approximately 6-8 ppm due to the electron-donating capacity of the phosphine. The $\Delta \delta$ values for silicon atoms in the β -position are actually increased by 1-2 ppm upon phosphine substitution.

In theory, the electron donation of the phosphine ligands could alter the capacity of the silyl groups to accept

electron density from the Fe atom via π -bonding since the more strongly electron-donating, but more weakly π -accepting, phosphine increases the electron density at the Fe atom. This buildup of electron density results in significantly reduced stretching frequencies for the remaining CO group, which are generally thought to result from an increase in retrodative π -bonding between filled Fe d orbitals and the empty π^* orbitals of the CO group. It has been claimed, and this claim is generally accepted, that "the most convincing evidence, pro or con, in the π -bonding controversy comes from crystallographic determination of bond lengths".¹¹ Close inspection of the Fe-C(CO) and C-O bond lengths of the complexes recorded in Table IV illustrates this aspect of the phosphine substitution process. There is a clear decrease in the Fe-C(CO) bond lengths upon changing from the dicarbonyl complexes to the monocarbonyl phosphine complexes. Thus, the average Fe-C(CO) bond length for the six Fe-CO groups in the dicarbonyl complexes Ia, IIa, and IIIa is 1.743 (6) Å compared to an average value of 1.719 (4) Å for the monocarbonyl phosphine complexes. These data reflect the increase in retrodative π -bonding in the phosphine complex, thereby increasing the contribution of the resonance structure Fe=C=O to the iron carbonyl group. At the same time, it is possible to observe a corresponding small elongation in the C-O bond lengths of the phosphinesubstituted complexes. Overall, the decrease in $\nu(CO)$, decrease in Fe-C(CO) bond length, and increase in C-Obond length support the idea of increased retrodative π -bonding between the CO group and Fe in the phosphine-substituted complexes Ib, IIb, and IIIb.

The same variations with respect to the Fe–Si bond logically could be expected if there is any significant π -bonding between the Fe and Si atoms. We have not attempted to characterize ν (FeSi); thus, infrared spectroscopic analysis of this bond is not yet possible. Previous studies of the ν (CO) stretching frequencies of (η^5 -C₅H₅)-Fe(CO)₂-silyl complexes, coupled with a Mössbauer spectroscopic study, concluded that no π -bonding occurred between the Fe and Si atoms in the dicarbonyl complexes.¹² The ²⁹Si NMR data of the same complexes supported this conclusion but suggested that substitution of CO by PPh₃ could provide a system where π -bonding becomes significant.¹⁰

In a structural study of two Ta-silyl complexes, $[(\eta^5 - C_5Me_5)Ta(SiMe_3)Cl_3]$ and $[(\eta^5 - C_5Me_5)Ta(SiMe_3)(PPh_3) - Cl_2]$, i.e., Ta(V) and Ta(IV) complexes, the two Ta-Si bond distances were reported as 2.669 (4) and 2.642 (1) Å, respectively.¹³ This significant reduction of at least 0.01 Å in changing from the d⁰ to d¹ metal configuration was cited as being possibly due to some degree of π -bonding between the Ta(IV) metal center and silicon. While there are several Fp-silyl complexes whose structures have been reported, they do not provide information concerning the involvement of π -bonding in the Fe-Si bond. However, the following conclusions may be noted.

(a) The presence of electron-withdrawing substituents on silicon sharply reduces the Fe–Si bond length. The complex Fp–SiCl₃ exhibits the shortest Fe–Si bond length (2.215 Å),^{4e} while 1-Fp and 1,5-(Fp)₂ complexes of 1,3,3,5,5-pentachloro- and 1,3,3,5-tetrachloro-1,3,5-trisilacyclohexane exhibit Fe–Si bond lengths of 2.264 and 2.363

⁽⁹⁾ Pannell, K. H.; Wang, L.-J.; Rozell, J. M. Organometallics 1989, 8, 550.

⁽¹⁰⁾ Pannell, K. H.; Bassindale, A. R. J. Organomet. Chem. 1982, 229, 1.

⁽¹¹⁾ Huheey, J. E. Modern Inorganic Chemistry: Principles of Structure and Reactivity 3rd ed.; Harper and Row: New York, 1983; p 440.

⁽¹²⁾ Pannell, K. H.; Wu, C.-C.; Long, G. E. J. Organomet. Chem. 1980, 186, 85.

⁽¹³⁾ Arnold, J.; Shina, D. N.; Tilley, T. D.; Arif, A. M. Organometallics 1986, 5, 2037.

Table III. Atomic Coordinates (×10⁴) and Equivalent Isotropic Displacement Coefficients ($Å^2 \times 10^3$)

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		x	y y	z	U(eq) ^a		x	y	2	U(eq) ^a
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		<u></u>			(a) Com	ound Ia				
$ \begin{array}{c} \mathbf{s}_{11} & -\mathbf{s}_{12} & \mathbf{s}_{12} & -\mathbf{s}_{13} & \mathbf{s}_{14} & \mathbf{s}_{14$	Fe	-83 (1)	229 (1)	2542 (1)	48 (1)	C(6)	710 (6)	1889 (6)	2118 (5)	58 (3)
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Si	-57 (2)	-1873 (1)	2572 (1)	54 (1)	C(7)	1140 (6)	811 (6)	1730 (5)	66 (3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	O(1)	-1398 (4)	-24 (4)	4081 (3)	78 (2)	C(8)	1900 (6)	113 (7)	2625 (6)	76 (3)
C(1) 1196 109 1193 1196 103 2256 (3) 50 313 C(1) 1 -422 (5) -36 (6) 3496 (1) 396 (6) 50 50 (3) C(4) -234 (7) 3815 (6) 2186 (7) 86 (4) C(13) -464 (7) -2246 (6) 1395 (6) 81 (6) 81 (6) C(14) 1270 (6) -2457 (6) 3828 (6) 77 (7) (7) C(14) 1270 (6) -2457 (6) 3828 (6) 77 (7) (7) C(14) 1270 (6) -2457 (6) 3828 (6) 77 (7) (7) C(14) 1270 (6) -2457 (6) 3828 (6) 77 (8) C(14) 1270 (6) -2457 (6) 3828 (6) 77 (8) C(14) 1270 (6) -2457 (6) 3828 (6) 77 (8) C(14) 1270 (6) -2457 (6) 3828 (6) 77 (8) C(14) 1270 (6) -2457 (6) 3828 (6) 77 (8) C(14) 1270 (6) -2476 (2) 480 (2) 81 (1) C(1) -472 (4) 3760 (2) 766 (2) 766 (2) C(13) -1756 (3) 22476 (2) 480 (2) 81 (1) C(1) -472 (4) 3760 (2) 766 (2) 766 (2) C(13) -1756 (3) 2327 (2) 4380 (3) 740 (2) 81 (2) (2) 1271 (2) 70 (1) O(2) -2376 (2) 481 (3) 7740 (2) 84 (2) 81 (1) C(2) -1165 (6) 3733 (3) 54 (2) 76 (2) 76 (2) C(13) -1750 (4) 3844 (3) 7340 (2) 84 (2) 81 (1) C(2) -1165 (6) 3356 (3) -2443 (3) 91 (2) C(13) -3736 (4) 3844 (3) 7340 (2) 84 (2) 84 (2) C(16) -3976 (2) 486 (2) 1306 (3) 77 (2) C(13) -3246 (3) 3856 (3) 7788 (2) 84 (2) 84 (2) C(16) -3976 (2) 4360 (2) 85 (2) C(13) -3346 (3) 4470 (2) 6374 (2) 85 (2) C(16) -3976 (2) 4360 (2) 55 (2) C(23) -3294 (3) 4470 (2) 6374 (2) 85 (2) C(16) -3976 (2) 4360 (2) 56 (2) C(23) -3294 (3) 4470 (2) 6374 (2) 85 (2) C(14) -3237 (3) 4486 (2) 371 (2) 47 (3) 206 (3) 1377 (2) C(23) -3364 (3) 4470 (2) 6374 (2) 85 (2) C(14) -3237 (3) 4486 (2) 371 (2) 47 (3) 206 (3) 1377 (2) C(23) -3636 (3) 4376 (2) 76 (2) 76 (2) C(23) -3636 (3) 4470 (2) 6374 (2) 86 (2) (2) (2) (2) (2) -3646 (2) 206 (3) 120 (2) 77 (2) C(14) -3236 (3) 4466 (3) 4357 (2) 676 (2) 76 (2) 76 (2) C(23) -3636 (3) 4456 (3) 4466 (3) 426 (2) 650 (2)	O(2)	-2503(5)	-5 (5)	676 (4)	94 (2)	C(9)	1841 (6)	668 (6)	3558 (5)	67 (3)
$ \begin{array}{c} C(3) & 2.01 \ (b) & 1731 \ (b) & 3318 \ (b) & 93 \ (b) & C(12) & -1.654 \ (b) & -2.573 \ (b) & 2.583 \ (c) & 96 \ (c) \\ C(4) & -2.97 \ (c) & 22.99 \ (c) & 1.595 \ (c) & 71 \ (c) & C(14) & 1.270 \ (c) & -2.487 \ (c) & 3228 \ (c) & 77 \ (c) \\ P(1) & 1441 \ (1) & 22.985 \ (1) & -1046 \ (1) & 42 \ (1) & 1270 \ (c) & -2.487 \ (c) & 3228 \ (1) & 566 \ (1) & 41 \ (1) \\ S(1) & 2.555 \ (1) & 2.285 \ (1) & 2.285 \ (1) & 1.016 \ (1) & 42 \ (1) & 1.018 \ (1) & 1.02 \ (2) & -2.555 \ (1) & 3266 \ (1) & 440 \ (2) & 561 \ (1) \\ C(1) & -3.72 \ (2) & 3700 \ (2) & 1.580 \ (1) & 511 \ (1) & S(1) & -2.555 \ (1) & 3266 \ (1) & 4460 \ (2) & 561 \ (1) \\ C(1) & -3.72 \ (2) & 3700 \ (2) & 1.571 \ (2) & 761 \ (1) & 2.028 \ (1) & 3832 \ (2) & 8441 \ (2) & 511 \ (1) \ (2) & -5714 \ (5) & 32736 \ (2) & 4464 \ (2) & 511 \ (1) \ (2) & -5328 \ (4) & 2356 \ (3) & 7728 \ (2) & 4461 \ (2) & 510 \ (2) \ (2) & -3238 \ (4) & 2356 \ (3) & 7728 \ (2) & 4441 \ (2) & 511 \ (2) \ (2) & -3238 \ (4) & 2356 \ (3) & 7728 \ (2) & 4441 \ (2) & 512 \ (2) \ (3) & -7284 \ (3) & 4470 \ (2) & 8421 \ (2) & 812 \ (2) \ (2) \ (3) & -3238 \ (4) & 4561 \ (3) & 3060 \ (3) & 7798 \ (2) & 812 \ (2) \ (2) \ (3) & -3238 \ (4) & 4561 \ (3) & 3060 \ (3) & 7798 \ (2) & 812 \ (2) \ (3) \ (3) \ (3) \ (2) \ (3) \ (3) \ (3) \ (3) \ (2) \ (3) \ $	C(1)	1166 (6)	1793 (6)	3257(5)	61 (3) 70 (4)	C(10)	-872(5)	79 (5)	3468 (4)	50 (2) 58 (2)
$ \begin{array}{cccccc} C(4) & -234 (7) & 3815 (6) & 2198 (7) & 86 (4) & C(13) & 246 (7) & -2485 (6) & 3896 (5) & 81 (6) \\ \hline C(15) & -27 (7) & 2296 (6) & 1595 (6) & 71 (3) & C(14) & 1270 (6) & -2457 (6) & 3826 (5) & 71 (3) \\ \hline C(11) & 1431 (1) & 2387 (1) & -269 (1) & 384 (1) & F4(2) & -7756 (1) & 2039 (1) & 5698 (1) & 41 (1) \\ \hline C(11) & 455 (5) & 2297 (1) & 1690 (1) & 51 (1) & S(22) & -5256 (1) & 3086 (1) & 4456 (1) \\ O(11) & 465 (3) & 1070 (2) & 1251 (2) & 70 (1) & O(2) & -5178 (3) & 2476 (2) & 4644 (2) & 51 (1) \\ C(2) & -1163 (6) & 3733 (3) & 51 (2) & 75 (2) & C(33) & -7996 (3) & 3826 (3) & 7796 (2) & 56 (2) \\ C(4) & -2397 (4) & 3796 (2) & 346 (3) & 214 (3) & 51 (2) & C(35) & -3284 (3) & 3746 (2) & 644 (2) & 51 (1) \\ C(2) & -1163 (6) & 3733 (3) & 51 (2) & 75 (2) & C(35) & -4283 (4) & 3566 (3) & 7796 (2) & 68 (2) \\ C(4) & -2397 (4) & 3286 (3) & 214 (6) & 917 (2) & C(35) & -3284 (3) & 4470 (2) & 651 (2) \\ C(6) & -507 (4) & 3286 (3) & 214 (3) (2) & 55 (1) & C(37) & -3313 (3) & 3886 (3) & 7796 (2) & 66 (2) \\ C(6) & -507 (3) & 3564 (3) & 247 (2) & 66 (2) & C(39) & -32254 (4) & 4454 (2) & 6371 (2) & 57 (1) \\ C(7) & 87 (4) & 3542 (3) & 1976 (2) & 86 (2) & C(39) & -32254 (4) & 4464 (2) & 6371 (2) & 57 (1) \\ C(10) & 604 & 4105 (3) & 1807 (2) & 68 (2) & C(43) & -332 (6) & 4669 (3) & 4357 (2) & 57 (1) \\ C(11) & 096 (3) & 3277 (2) & -731 (2) & 11 (1) & C(45) & -2152 (4) & -240 (2) & 5831 (3) & 08 (2) \\ C(11) & 2731 (4) & 2856 (3) & 2770 (2) & 76 (2) & C(44) & -332 (3) & 1686 (3) & 4345 (3) & 77 (2) \\ C(11) & 196 (3) & 3277 (2) & -731 (2) & 11 (1) & C(46) & -2718 (4) & -462 (2) & 6561 (3) & 47 (1) \\ C(14) & 1996 (3) & 3277 (2) & -731 (2) & 14 (1) & C(46) & -2718 (4) & -486 (3) & 4387 (2) & 57 (2) \\ C(11) & 214 (3) & 3256 (3) & -460 (2) & 51 (1) & C(60) & -88 (3) & 220 (2) & 551 (2) & 47 (1) \\ C(11) & 196 (3) & 3277 (2) & -731 (2) & 51 (1) & C(60) & -88 (3) & 2217 (2) & 65 (3) & 26 (2) \\ C(11) & 344 (3) & 354 (2) & -460 (2) & 51 (1) & C(60) & -88 (3) & 222 (2) & 556 (2) & 63 (1) \\ C(11) & 1333 (3) & 1346 (2) & -146 (2) & 76 (2) & 16 $	C(2)	206 (8)	2757 (8)	3318 (8)	(9 (4) 93 (5)	C(11)	-1546(7) -1654(6)	-2570 (6)	2536 (6)	28 (3) 80 (3)
$ \begin{array}{c} C(6) & -27 (7) & 2909 (6) & 1595 (6) & 71 (8) & C(14) & 1270 (6) & -2467 (6) & 3826 (6) & 77 (6) \\ \hline \\ P(1) & 492 (1) & 2828 (1) & 1016 (1) & 48 (1) & 176 (1) & 1776 (1) & 2233 (1) & 5586 (1) & 4 (1) \\ S(1) & 2955 (1) & 2907 (1) & 1280 (1) & 51 (1) & S(2) & -2595 (1) & 2696 (1) & 456 (1) & 56 (1) \\ O(1) & 465 (3) & 1070 (2) & 1251 (2) & 70 (1) & O(2) & -5518 (3) & 2476 (2) & 4460 (2) & 51 (1) \\ C(1) & -372 (4) & 3750 (2) & 746 (2) & 56 (1) & C(13) & -790 (4) & 3066 (1) & 746 (2) & 646 (2) \\ C(2) & -2326 (5) & 3223 (3) & -22 (3) & 93 (2) & 755 (1) & C(33) & -790 (4) & 3066 (3) & 7706 (2) & 82 (2) \\ C(4) & -2326 (4) & 2326 (3) & 544 (2) & 55 (1) & C(33) & -3364 (6) & 3706 (2) & 51 (2) \\ C(4) & -2326 (4) & 2326 (3) & 544 (2) & 55 (1) & C(33) & -3364 (6) & 3706 (2) & 53 (2) \\ C(5) & -3226 (4) & 2326 (3) & 544 (2) & 55 (1) & C(33) & -3364 (6) & 3706 (2) & 56 (2) \\ C(3) & -3254 (4) & 2364 (3) & 544 (2) & 55 (2) & C(38) & -3254 (3) & 4470 (2) & 6234 (2) & 64 (1) \\ C(5) & 1109 (4) & 4105 (3) & 1807 (2) & 68 (2) & C(38) & -3254 (3) & 4470 (2) & 6234 (2) & 62 (1) \\ C(1) & 690 (3) & 1766 (2) & 1148 (2) & 448 (1) & C (14) & -3276 (4) & 4283 (2) & 603 (2) & 802 (2) \\ C(11) & 4203 (4) & 3757 (3) & 1470 (2) & 672 (2) & 543 (1) & C(48) & -3524 (3) & 4460 (2) & 6371 (2) & 75 (1) \\ C(10) & 690 (3) & 1766 (2) & 1148 (2) & 44 (1) & C (44) & -3254 (4) & 4266 (3) & 3030 (2) & 80 (2) \\ C(11) & 2733 (4) & 4268 (3) & -1466 (2) & 71 (2) & C (42) & -3524 (4) & 2486 (3) & 4268 (2) & 65 (1) \\ C(14) & 3937 (3) & 3335 (2) & -600 (2) & 57 (1) & C (64) & -7354 (4) & -468 (2) & 7561 (2) & 75 (2) \\ C(16) & 3444 (4) & 4499 (2) & -877 (2) & 69 (1) & C (64) & -7354 (4) & -468 (2) & 757 (2) & 56 (1) \\ C(16) & 3444 (4) & 4499 (2) & -877 (2) & 69 (1) & C (64) & -7354 (4) & -468 (2) & 577 (2) & 56 (1) \\ C(16) & 3444 (4) & 4499 (2) & -877 (2) & 69 (1) & C (64) & -7354 (4) & -468 (2) & 577 (2) & 56 (1) \\ C(16) & 3444 (4) & 4499 (2) & -877 (2) & 69 (1) & C (64) & -7354 (4) & -468 (2) & 757 (2) & 75 (2) \\ C(16) & 3244 (4) & 4499 (2) & -577 (2) & 69$	C(3)	-234(7)	3815 (6)	2198(7)	86 (4)	C(12) C(13)	246 (7)	-2488(6)	1369 (5)	81 (3)
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	C(5)	-27 (7)	2909 (6)	1595 (6)	71 (3)	C(14)	1270 (6)	-2457 (6)	3826 (5)	77 (3)
					(b) Com	ound Ib				
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Fe(1)	992 (1)	2858 (1)	1016 (1)	42 (1)	Fe (2)	-2710 (1)	3283 (1)	5568 (1)	41 (1)
$ \begin{array}{c} 81(1) & 286(1) & 286(1) & 287(1) & 187(1) & 110 & 010 & -288(1) & 369(1) & 369(1) & 480(1) & 80(1) \\ C(1) & -128(1) & 375(2) & 75(2) & C(33) & -179(1) & 367(2) & 684(2) \\ C(3) & -239(1) & 3740(2) & 68(2) \\ C(4) & -2826(4) & 289(3) & 742(2) & 97(2) & C(64) & -3796(6) & 3769(2) & 8740(2) & 68(2) \\ C(4) & -2826(4) & 289(6) & 1206(3) & 77(2) & C(66) & -3796(6) & 3769(2) & 8740(2) & 68(2) \\ C(4) & -2826(4) & 289(6) & 1206(3) & 77(2) & C(66) & -3796(6) & 3769(2) & 684(2) \\ C(6) & -683(3) & 3367(2) & 1330(2) & 55(1) & C(37) & -3313(3) & 3882(2) & 6643(3) & 7598(2) & 81(2) \\ C(7) & 57(4) & 3342(3) & 1976(2) & 66(2) & C(38) & -2284(4) & 4470(2) & 6234(2) & 65(1) \\ C(10) & 696(3) & 1766(2) & 1444(2) & 46(1) & C(14) & -2275(4) & 2866(3) & 7196(2) & 654(2) \\ C(10) & 696(3) & 1767(2) & 66(2) & C(44) & -2228(4) & 4063(3) & 4126(2) & 65(1) \\ C(10) & 696(3) & 1776(2) & 2144(2) & 446(1) & C(44) & -2275(4) & 2866(3) & 4432(2) & 65(1) \\ C(14) & 290(3) & 3375(2) & -731(2) & 41(1) & C(46) & -2734(4) & -468(2) & 5511(2) & 46(1) \\ C(16) & 3037(3) & 3855(2) & -460(2) & 58(1) & C(46) & -2734(4) & -468(2) & 5511(2) & 47(1) \\ C(16) & 3037(3) & 3855(2) & -460(2) & 58(1) & C(46) & -2734(4) & -462(2) & 5611(3) & 77(2) \\ C(16) & 3037(3) & 3855(2) & -1466(2) & 77(2) & C(44) & -2258(4) & 390(2) & 5511(2) & 47(1) \\ C(16) & 3037(3) & 3355(2) & -130(2) & 66(1) & C(7) & -2738(4) & -460(2) & 561(3) & 77(2) \\ C(18) & 1501(4) & 4120(2) & -114(2) & 66(2) & C(40) & -2458(4) & 320(3) & 610(2) & 77(2) \\ C(18) & 1501(4) & 1402(2) & -114(2) & 66(2) & C(40) & -381(3) & 2122(2) & 561(3) & 77(2) \\ C(18) & 1501(4) & 1120(2) & -1146(2) & 77(1) & C(16) & -288(3) & 2229(2) & 561(3) & 77(2) \\ C(10) & 130(3) & 1702(2) & -666(2) & 56(1) & C(77) & -2738(4) & 4570(4) & 2686(3) & 677(3) \\ C(10) & 133(10) & 571(2) & -1763(3) & 751(2) & C(64) & -388(3) & 2276(2) & 560(3) & 771(3) & 771(2) \\ C(20) & -356(4) & 560(2) & -1160(2) & 56(1) & C(77) & -2738(4) & 3203(6) & 6394(2) & 771(3) & 771(2) \\ C(20) & -356(4) & 560(2) & -1160(2) & 56(1) & C(66) & -273(4) & 466(3) &$	P(1)	1441(1)	2387(1)	-224(1)	38(1)	P(2)	-1756(1)	2039 (1)	5266 (1)	41 (1)
$ \begin{array}{c} C(1) & -372 (4) & 3790 (5) & -746 (5) & 56 (1) & C(23) & -2965 (3) & 3262 (5) & 7540 (2) & 854 (2) & 51 (1) \\ C(2) & -1163 (5) & 3733 (3) & 51 (2) & 756 (2) & C(33) & -1750 (4) & 3056 (3) & 7760 (2) & 83 (2) \\ C(3) & -2286 (4) & 2296 (3) & -42 (3) & 91 (2) & C(35) & -3286 (5) & 7760 (2) & 83 (2) \\ C(6) & -2287 (4) & 2296 (3) & 1206 (3) & 77 (2) & C(36) & -4233 (4) & 3566 (3) & 7769 (2) & 83 (2) \\ C(6) & -833 (3) & 3367 (2) & 1330 (2) & 55 (1) & C(37) & -3313 (3) & 3368 (2) & 6759 (2) & 64 (1) \\ C(7) & 87 (4) & 3842 (3) & 1976 (2) & 88 (2) & C(38) & -3284 (3) & 4470 (2) & 2084 (2) & 64 (1) \\ C(3) & 1109 (4) & 4105 (3) & 1807 (2) & 88 (2) & C(38) & -3284 (3) & 4470 (2) & 2084 (2) & 57 (1) \\ C(6) & 870 (4) & 4219 (2) & 1035 (2) & 64 (1) & C(40) & -1273 (4) & 4084 (30 & 371 (6) & 77 (1) \\ C(10) & 870 (4) & 4219 (2) & 1035 (2) & 76 (2) & C(44) & -3582 (6) & 4668 (3) & 4126 (2) & 85 (2) \\ C(12) & 7731 (4) & 2868 (3) & 2760 (2) & 77 (2) & C(44) & -3582 (6) & 4668 (3) & 4126 (2) & 85 (2) \\ C(13) & 3812 (4) & 1777 (3) & 1390 (2) & 70 (2) & C(44) & -3582 (6) & 4668 (3) & 4126 (2) & 561 (1) \\ C(14) & 1908 (3) & 3279 (2) & -731 (2) & 41 (1) & C(45) & -2132 (4) & 230 (3) & 6371 (2) & 75 (2) \\ C(16) & 3446 (4) & 4499 (2) & -857 (2) & 69 (2) & C(47) & -3709 (4) & -318 (3) & 6154 (3) & 75 (2) \\ C(17) & 2735 (4) & 4686 (3) & -1466 (2) & 75 (2) & C(44) & -4518 (3) & 1220 (2) & 5661 (2) & 75 (2) \\ C(13) & 1308 (4) & 1773 (2) & 561 (1) & C(66) & -6186 (3) & 6154 (3) & 75 (2) \\ C(13) & 1308 (3) & 571 (2) & -1698 (2) & 571 (1) & C(66) & -4518 (3) & 1220 (2) & 5660 (2) & 651 (1) \\ C(11) & 144 (3) & 1356 (2) & -1696 (2) & 57 (1) & C(66) & -688 (3) & 2580 (2) & 5771 (3) & 75 (2) \\ C(24) & -1994 (3) & 856 (2) & -1068 (2) & 571 (1) & C(56) & -2773 (4) & 666 (3) & 6394 (2) & 75 (2) \\ C(24) & -1994 (3) & 856 (2) & -1696 (2) & 571 (1) & C(56) & -2773 (4) & 666 (3) & 6394 (2) & 771 (2) \\ C(24) & -1994 (3) & 856 (2) & -1696 (2) & 571 (1) & C(56) & -2773 (4) & 666 (3) & 6394 (2) & 771 (2) \\ C(24) & -1994 (3) & 560 (2) & -771 (2) & 610 $	O(1)	2955 (1)	2807(1) 1070(2)	1680 (1)	51(1) 70(1)	$S_1(2)$	-2595 (1)	3696 (1) 2476 (2)	4359 (1)	56 (1) 81 (1)
$ \begin{array}{ccccc} C(2) & -1163 (5) & 3753 (3) & -51 (2) & 75 (2) & C(33) & -1790 (4) & 3064 (3) & 7340 (2) & 68 (2) \\ C(4) & -2826 (4) & 2896 (3) & 544 (3) & 91 (2) & C(35) & -3850 (5) & 3050 (3) & 7698 (2) & 81 (2) \\ C(6) & -853 (3) & 3367 (2) & 1330 (2) & 55 (1) & C(37) & -3313 (3) & 3852 (2) & 6759 (2) & 48 (1) \\ C(7) & 857 (4) & 3542 (3) & 1976 (2) & 56 (2) & C(36) & -3294 (3) & 4470 (2) & 6224 (2) & 54 (1) \\ C(8) & 1109 (4) & 4105 (3) & 1807 (2) & 68 (2) & C(36) & -3294 (3) & 4470 (2) & 6224 (2) & 54 (1) \\ C(10) & 696 (3) & 1786 (2) & 1146 (2) & 448 (1) & C(41) & -3275 (4) & 4084 (2) & 6371 (2) & 57 (1) \\ C(10) & 696 (3) & 1786 (2) & 1146 (2) & 448 (1) & C(41) & -3275 (4) & 2886 (3) & 3465 (3) & 808 (2) \\ C(12) & 3731 (4) & 3854 (3) & 1796 (2) & 77 (2) & C(44) & -3252 (4) & 4683 (3) & 4455 (3) & 1808 (2) \\ C(12) & 3731 (4) & 3854 (3) & 2797 (2) & 77 (2) & C(44) & -3252 (3) & 1088 (2) & 4611 (2) & 77 (2) \\ C(14) & 1906 (3) & 2779 (2) & -731 (2) & 41 (1) & C(46) & -2734 (4) & -482 (2) & 5611 (2) & 47 (1) \\ C(16) & 3037 (3) & 3363 (2) & -460 (2) & 58 (1) & C(46) & -2734 (4) & -482 (2) & 5661 (3) & 77 (2) \\ C(16) & 3037 (3) & 3363 (2) & -460 (2) & 58 (1) & C(46) & -2734 (4) & -482 (2) & 5661 (3) & 77 (2) \\ C(16) & 3484 (2) & -4371 (2) & 66 (1) & C(16) & -381 (3) & 2776 (2) & 56 (1) \\ C(16) & 1591 (4) & 4109 (2) & -3712 (2) & 410 (1) & C(15) & -381 (3) & 2120 (2) & 6100 (2) & 55 (1) \\ C(11) & 155 (4) & 4450 (2) & -511 (2) & 56 (1) & C(15) & -88 (3) & 2122 (2) & 5663 (2) & 45 (1) \\ C(12) & -1694 (3) & 366 (2) & -1066 (2) & 57 (1) & C(16) & -381 (3) & 6707 (2) & 56 (1) \\ C(22) & -1694 (3) & 566 (2) & -1606 (2) & 57 (1) & C(16) & -381 (3) & 6109 (2) & 55 (1) \\ C(22) & -1694 (4) & 3136 (2) & -1014 (2) & 46 (2) & 57 (1) & C(65) & 1804 (3) & 1560 (2) & 56 (1) \\ C(22) & -1094 (3) & 1560 (2) & -707 (3) & 2276 (2) & 566 (2) & 56 (1) \\ C(22) & -1054 (3) & 1560 (2) & -767 (2) & 66 (3) & 677 (3) & 2776 (7) & 1560 (2) & 567 (2) & 567 (2) & 567 (2) & 567 (2) & 567 (2) & 567 (2) & 567 (2) & 567 (2) & 567 (2) & 567 (2) & 567 (2) & 5$	C(1)	-372(4)	3790(2)	746(2)	56(1)	C(32)	-2065(3)	3623(2)	6844(2)	51(1)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	C(2)	-1163 (5)	3753 (3)	51 (2)	75 (2)	C(33)	-1790 (4)	3054 (3)	7340 (2)	68 (2)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	C(3)	-2360 (5)	3329 (3)	-22 (3)	93 (2)	C(34)	-2714 (5)	2789 (3)	7760 (2)	83 (2)
$ \begin{array}{ccccc} C1(3) & -2097 (4) & 2996 (3) & 1206 (3) & 77 (2) & C1(36) & -2383 (4) & 3048 (2) & 6779 (2) & 68 (1) \\ C1(7) & 87 (4) & 3442 (3) & 1976 (2) & 65 (2) & C1(38) & -3344 (3) & 4470 (2) & 6244 (2) & 54 (1) \\ C1(8) & 870 (4) & 4218 (2) & 1008 (2) & 64 (1) & C1(4) & -2424 (3) & 4663 (2) & 6671 (2) & 57 (1) \\ C1(9) & 870 (4) & 4218 (2) & 1008 (2) & 64 (1) & C1(4) & -4424 (4) & 4653 (3) & 416 (2) & 85 (2) \\ C1(1) & 4056 (4) & 1777 (3) & 1780 (2) & 76 (2) & C1(4) & -3431 (3) & 4068 (3) & 4456 (3) & 108 (2) \\ C1(1) & 4056 (4) & 1777 (3) & 1780 (2) & 76 (2) & C1(4) & -3432 (5) & 4668 (3) & 4355 (3) & 108 (2) \\ C1(1) & 4056 (4) & 1777 (3) & 1380 (2) & 76 (2) & C1(4) & -3526 (6) & 1088 (2) & 5611 (2) & 47 (1) \\ C1(4) & 1908 (3) & 3279 (2) & -731 (2) & 41 (1) & C1(45) & -2152 (4) & 230 (3) & 6371 (2) & 75 (2) \\ C1(6) & 3446 (4) & 4499 (2) & -837 (2) & 69 (2) & C1(4) & -3796 (4) & -319 (3) & 6154 (3) & 77 (2) \\ C1(1) & 3735 (4) & 4663 (3) & -1446 (2) & 71 (2) & C1(4) & -3796 (4) & -319 (3) & 6154 (3) & 77 (2) \\ C1(18) & 1591 (4) & 4120 (2) & -1714 (2) & 69 (2) & C1(4) & -3518 (3) & 1202 (2) & 6100 (2) & 55 (1) \\ C1(20) & 103 (3) & 1702 (2) & -862 (2) & 39 (1) & C1(6) & 798 (3) & 2769 (2) & 5500 (2) & 58 (1) \\ C1(20) & 103 (3) & 1702 (2) & -862 (2) & 39 (1) & C1(6) & 798 (3) & 2769 (2) & 5500 (2) & 58 (1) \\ C1(21) & 194 (3) & 1366 (2) & -1669 (2) & 51 (1) & C1(5) & 3404 (3) & 1583 (6) & 6294 (2) & 75 (2) \\ C1(24) & -1944 (3) & 366 (2) & -1005 (2) & 57 (1) & C1(5) & 3404 (3) & 1583 (6) & 6294 (2) & 75 (2) \\ C1(23) & -804 (4) & 509 (2) & -2124 (2) & 61 (1) & C1(5) & -2734 (4) & 1640 (3) & 6394 (2) & 75 (2) \\ C1(23) & -1894 (3) & 806 (2) & -1005 (2) & 57 (1) & C1(5) & 3404 (3) & 1583 (6) & 6294 (2) & 77 (2) \\ C1(24) & -194 (3) & 366 (2) & -1005 (2) & 57 (1) & C1(5) & -3734 (4) & 630 (3) & 2033 (6) & 77 (2) \\ C1(24) & -194 (3) & 326 (2) & -66 (2) & C1(0) & -678 (4) & 1338 (6) & 194 (2) & 61 (1) \\ C1(2) & 2252 (4) & 486 (2) & -710 (3) & 76 (2) & C1(6) & -7734 (4) & 2266 (3) & 77 (3) \\ C1(2) & -4254 (2) & 450 (2) & 76 (2)$	C(4)	-2826 (4)	2896 (3)	544 (3)	91 (2)	C(35)	-3950 (5)	3050 (3)	7698 (2)	81 (2)
$ \begin{array}{c} C_{10} & -83 & (3) & 336 & (2) & 130 & (2) & 30 & (1) & C_{13} & -3316 & (3) & 326 & (2) & 634 & (2) & 63 & (1) \\ C_{60} & 1176 & (4) & 4155 & (3) & 1807 & (2) & 65 & (2) & C60 & -2774 & (3) & 4064 & (2) & 6071 & (2) & 65 & (1) \\ C_{110} & 4205 & (4) & 1575 & (3) & 1476 & (3) & 47 & (1) & -2744 & (3) & 4065 & (3) & 4426 & (2) & 85 & (3) \\ C_{111} & 4205 & (4) & 1575 & (3) & 1476 & (3) & 47 & (1) & -2434 & (4) & -653 & (3) & 4426 & (2) & 85 & (3) \\ C_{112} & 4205 & (4) & 1577 & (3) & 1390 & (2) & 70 & (2) & C(44) & -3525 & (3) & 4666 & (3) & 4426 & (2) & 856 & (3) \\ C_{113} & 3812 & (4) & 1777 & (3) & 1390 & (2) & 70 & (2) & C(44) & -3252 & (3) & 1098 & (2) & 561 & (2) & 47 & (1) \\ C_{114} & 1906 & (3) & 3257 & (2) & -731 & (2) & 41 & (1) & C(46) & -2174 & (4) & -462 & (2) & 566 & (3) & 77 & (2) \\ C_{116} & 3037 & (3) & 3385 & (2) & -460 & (2) & 554 & (1) & C(46) & -2374 & (4) & -462 & (2) & 566 & (3) & 77 & (2) \\ C_{116} & 3037 & (3) & 3385 & (2) & -460 & (2) & 57 & (1) & C(46) & -3518 & (3) & 1230 & (2) & 6164 & (3) & 77 & (2) \\ C_{117} & 2735 & (4) & 4656 & (3) & -1466 & (2) & 71 & (2) & C(49) & -3518 & (3) & 1230 & (2) & 6164 & (3) & 77 & (2) \\ C_{119} & 1195 & (3) & 3446 & (2) & -1349 & (2) & 56 & (1) & C(50) & -88 & (3) & 2126 & (2) & 556 & (1) \\ C_{120} & 1951 & (4) & 4120 & (2) & -1744 & (2) & 66 & (2) & -2768 & (2) & 5660 & (2) & 55 & (1) \\ C_{120} & 1951 & (4) & 4120 & (2) & -1744 & (2) & 56 & (1) & C(52) & 2400 & (4) & 2846 & (3) & 6394 & (2) & 75 & (2) \\ C_{121} & 194 & (3) & 1566 & (3) & 6194 & (3) & 156 & (3) & 6104 & (3) & 75 & (2) \\ C_{122} & -1968 & (3) & 571 & (2) & 1738 & (2) & 571 & (1) & C(55) & 3400 & (3) & 1566 & (3) & 6394 & (2) & 75 & (2) \\ C_{122} & -1944 & 806 & (2) & -542 & (2) & 571 & (1) & C(55) & 3400 & (3) & 1566 & (3) & 6204 & (3) & 80 & (2) \\ C_{122} & -1048 & (3) & 571 & (2) & -657 & (1) & C(56) & -2788 & (4) & 986 & (3) & 3262 & (2) & 561 & (1) \\ C_{122} & 2374 & (4) & 346 & (2) & -657 & (2) & 1666 & (2) & 166 & (2) \\ C_{12} & 2374 & (3) & 326 & (2) & 576 & (3) & 2277 $	C(5)	-2097(4)	2896 (3)	1206(3)	77 (2)	C(36)	-4283(4)	3566 (3)	7198 (2)	65 (2)
$ \begin{array}{c} C(6) & 1.196 (4) & 4.05 (6) & 1807 (2) & 84 (2) & C(39) & -2925 (4) & 4828 (2) & 6048 (2) & 627 (1) \\ C(10) & 696 (3) & 1786 (2) & 1148 (2) & 48 (1) & C(41) & -3275 (4) & 2488 (3) & 3408 (2) & 80 (2) \\ C(112) & 2731 (4) & 2858 (3) & 2760 (2) & 76 (2) & C(43) & -3532 (6) & 4686 (3) & 4255 (3) \\ C(112) & 2731 (4) & 2858 (3) & 2760 (2) & 76 (2) & C(44) & -2528 (4) & 1998 (2) & 5511 (2) & 47 (1) \\ C(114) & 1908 (6) & 3279 (2) & -731 (2) & 41 (1) & C(44) & -2215 (4) & 230 (2) & 5591 (2) & 47 (1) \\ C(115) & 3446 (4) & 4499 (2) & -857 (2) & 651 (1) & C(44) & -462 (2) & 5561 (3) & 77 (2) \\ C(116) & 3446 (4) & 4499 (2) & -857 (2) & 69 (2) & C(44) & -3709 (4) & -419 (3) & 6154 (3) & 77 (2) \\ C(116) & 3446 (4) & 4499 (2) & -371 (2) & 69 (2) & C(44) & -3018 (3) & 1230 (2) & 6100 (2) & 55 (1) \\ C(120) & 103 (3) & 1709 (2) & -662 (2) & 39 (1) & C(51) & -988 (3) & 2726 (2) & 5560 (2) & 56 (1) \\ C(20) & 103 (3) & 1709 (2) & -662 (2) & 39 (1) & C(51) & -988 (3) & 2726 (2) & 5663 (2) & 45 (1) \\ C(20) & 103 (3) & 1709 (2) & -662 (2) & 57 (1) & C(53) & 2069 (4) & -8398 (2) & 5560 (2) & 65 (1) \\ C(22) & -804 (4) & 809 (2) & -2124 (2) & 61 (1) & C(53) & 2470 (4) & 2286 (3) & 6299 (3) & 80 (2) \\ C(24) & -1984 (3) & 571 (2) & 1703 (2) & 57 (1) & C(55) & -2373 (4) & 967 (2) & 3516 (2) & 62 (1) \\ C(26) & 2636 (3) & 1599 (2) & -511 (2) & 44 (1) & C(57) & -2738 (4) & 967 (2) & 3616 (2) & C(6) \\ C(24) & -1984 (3) & 519 (2) & -501 (2) & 57 (1) & C(56) & -2737 (4) & 566 (3) & 6394 (2) & 75 (2) \\ C(24) & -1984 (3) & 1599 (2) & -607 (2) & 66 (1) & C(56) & -2737 (4) & 566 (3) & 2632 (2) & 71 (2) \\ C(26) & 2325 (4) & 882 (2) & -657 (2) & 60 (1) & C(56) & -2738 (4) & 967 (2) & 3356 (2) & 262 (1) \\ C(24) & 2236 (1) & 1599 (2) & -657 (2) & 60 (1) & C(56) & -2737 (4) & 566 (3) & 3202 (2) & 71 (2) \\ C(24) & 3225 (4) & 886 (2) & -657 (2) & 60 (1) & C(56) & -2737 (4) & 566 (3) & 3202 (2) & 71 (2) \\ C(26) & 3225 (4) & 882 (2) & -657 (2) & 60 (1) & C(56) & -2338 (4) & 2338 (6) & 2232 (6) (1) (2) \\ C(24) & 2236 (4) & 866 (2) & -657 (2) & 60 (1) & $	C(6)	-833 (3) 87 (4)	3307 (2)	1000 (2)	55 (1) 65 (2)	C(37)	-3294 (3)	3002(2)	6734 (2)	46 (1) 54 (1)
$ \begin{array}{c} C(p) & F70 (q) & 4219 (z) & 1038 (z) & 64 (z) & C(40) & -1274 (3) & 4086 (z) & 6771 (z) & 57 (1) \\ C(11) & 4006 (4) & 3757 (3) & 1670 (3) & 77 (z) & C(42) & -943 (4) & 4053 (3) & 4126 (z) & 85 (z) \\ C(13) & 312 (4) & 1777 (3) & 1390 (z) & 70 (z) & C(44) & -3552 (5) & 4666 (3) & 4256 (3) & 106 (z) \\ C(13) & 312 (4) & 1777 (3) & 1390 (z) & 70 (z) & C(44) & -3522 (3) & 1093 (z) & 5611 (z) & 47 (1) \\ C(14) & 1906 (3) & 3279 (z) & -731 (z) & 41 (1) & C(45) & -2152 (4) & 230 (z) & 5661 (3) & 75 (z) \\ C(15) & 3037 (3) & 3855 (z) & -460 (z) & 58 (1) & C(46) & -2134 (4) & -462 (z) & 5661 (3) & 75 (z) \\ C(16) & 3044 (4) & 4456 (3) & -1466 (z) & 71 (z) & C(44) & -3518 (3) & 1230 (z) & 6514 (3) & 77 (z) \\ C(17) & 2735 (4) & 4656 (3) & -1466 (z) & 71 (z) & C(44) & -3618 (3) & 1230 (z) & 6514 (3) & 77 (z) \\ C(19) & 1195 (3) & 3448 (2) & -1349 (z) & 56 (1) & C(50) & -88 (3) & 1220 (2) & 6654 (3) & 77 (z) \\ C(20) & 103 (3) & 1702 (2) & -862 (2) & 39 (1) & C(50) & -88 (3) & 2220 (3) & 6571 (2) & 75 (z) \\ C(22) & -1694 (3) & 306 (2) & -1669 (2) & 51 (1) & C(52) & 2406 (4) & 2824 (3) & 3771 (3) & 75 (z) \\ C(22) & -1694 (3) & 369 (2) & -124 (2) & 61 (1) & C(53) & 2470 (4) & 2266 (3) & 6294 (3) & 80 (z) \\ C(22) & -1084 (3) & 571 (z) & 1798 (z) & 57 (1) & C(54) & 1220 (4) & 1464 (3) & 6394 (z) & 75 (z) \\ C(23) & -1894 (3) & 3896 (2) & -1065 (2) & 571 (1) & C(56) & 340 (1) & 1264 (3) & 1648 (3) & 6294 (3) & 80 (2) \\ C(24) & -1894 (3) & 3896 (2) & -1062 (2) & 571 (1) & C(56) & -2733 (4) & 866 (3) & 3022 (2) & 71 (2) \\ C(24) & -1894 (3) & 3896 (2) & -1063 (2) & 571 (1) & C(56) & -1661 (3) & 1474 (2) & 4224 (2) & 45 (1) \\ C(26) & -1071 (3) & 1248 (2) & -647 (2) & 167 (3) & -1648 (3) & 3024 (2) & 574 (2) \\ C(24) & -1894 (3) & 396 (2) & -571 (2) & C(56) & -4782 (4) & 1846 (3) & 528 (2) & 11 (2) \\ C(24) & -1894 (3) & 396 (2) & -571 (2) & C(66) & -1661 (3) & 1474 (2) & 4224 (2) & 51 (1) \\ C(26) & -3232 (4) & 485 (2) & -687 (2) & 50 (1) & C(76) & -2783 (4) & -886 (3) & 3234 (2) & 71 (2) \\ C(24) & -1894 (3) & 396 (2) & -571 (2) & 561 $	C(8)	1109(4)	4105(3)	1370(2) 1807(2)	68(2)	C(39)	-2025(4)	4623 (2)	6043 (2)	62(1)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(9)	870 (4)	4219 (2)	1038 (2)	64 (2)	C(40)	-1274 (3)	4084 (2)	6371 (2)	57 (1)
C(11) 4208 (4) 3757 (3) 1670 (3) 77 (2) C(42) -943 (4) 4053 (3) 4126 (2) 85 (2) C(13) 3812 (4) 1777 (3) 1390 (2) 70 (2) C(44) -8522 (3) 4698 (3) 4355 (3) 4355 (3) 108 (2) C(14) 3812 (4) 1777 (3) 1390 (2) 70 (2) C(44) -8522 (3) 1098 (2) 5391 (2) 571 (2) 471 (1) C(15) 3037 (3) 3825 (2) -460 (2) 58 (1) C(46) -2734 (4) -390 (3) 6154 (3) 77 (2) C(16) 3446 (4) 4499 (2) -837 (2) 69 (2) C(47) -3709 (4) -319 (3) 6154 (3) 77 (2) C(17) 2735 (4) 4636 (3) -1466 (2) 71 (2) C(48) -4099 (4) -318 (3) 1230 (2) 6100 (2) 55 (1) C(19) 1195 (3) 3448 (2) -1348 (2) 560 (1) C(50) -88 (3) 1220 (2) 6100 (2) 551 (1) C(20) 103 (3) 1702 (2) -862 (2) 391 (1) C(51) 738 (3) 2769 (2) 5500 (2) 581 (1) C(21) 194 (3) 1356 (2) -1666 (2) 51 (1) C(53) 2470 (4) 2266 (3) 62299 (3) 800 (2) C(23) -1898 (3) 571 (2) 1793 (2) 57 (1) C(54) 403 (3) 1533 (3) 6119 (2) 75 (2) C(24) -1994 (3) 896 (2) -1005 (2) 57 (1) C(55) -340 (3) 1533 (3) 6119 (2) 75 (2) C(24) -1994 (3) 896 (2) 511 (2) 411 (1) C(57) -2737 (4) 9266 (3) 30219 (3) 800 (2) C(23) -11994 (3) 886 (2) 511 (2) 411 (1) C(57) -2737 (4) 927 (2) 815 (2) 2424 (2) 4511 (1) C(25) 2325 (4) 885 (2) -637 (2) 6611 (1) C(59) -1666 (5) 6544 (3) 2631 (2) 714 (2) C(24) 4324 (4) 312 (3) -967 (2) 6611 (1) C(59) -1666 (5) 6544 (3) 2631 (2) 714 (2) C(24) 4324 (4) 312 (3) -967 (2) 6611 (C(60) -5924 (6) 1587 (6) 32631 (2) 714 (2) C(24) 4324 (4) 312 (3) -967 (2) 6611 (C(60) -5924 (6) 2037 (6) 838 (2) 68 (3) 714 (2) C(29) 4324 (4) 312 (3) -967 (2) 6611 (C(60) -5924 (6) 2037 (6) 838 (2) 68 (3) 714 (2) C(29) 4324 (4) 312 (3) -967 (2) 6011 (1) C(69) -1284 (9) 2037 (6) 8384 (2) 673 (3) 714 (2) 22379 (3) 1789 (2) -3800 (2) 2737 (6) 8384 (2) 673 (3) 714 (2) 22379 (3) 1789 (2) -3800 (3) -667 (3) 277	C(10)	696 (3)	1786 (2)	1148 (2)	48 (1)	C(41)	-3275 (4)	2896 (3)	3403 (2)	80 (2)
$ \begin{array}{c} C(12) & 2731 (4) & 2898 (3) & 2760 (2) & 76 (2) & C(43) & -3532 (5) & 4698 (3) & 4350 (3) & 108 (2) \\ C(14) & 1908 (3) & 3279 (2) & -731 (2) & 41 (1) & C(44) & -2529 (3) & 1098 (2) & 5681 (3) (75 (2) \\ C(16) & 3446 (4) & 4499 (2) & -837 (2) & 69 (2) & C(47) & -3709 (4) & -462 (2) & 5681 (3) (77 (2) \\ C(16) & 3446 (4) & 4499 (2) & -837 (2) & 69 (2) & C(47) & -3709 (4) & -492 (2) & 5661 (3) (77 (2) \\ C(16) & 3446 (4) & 4499 (2) & -837 (2) & 69 (2) & C(44) & -4699 (4) & 520 (3) 6377 (2) \\ C(17) & 2735 (4) & 4636 (3) & -1146 (2) & 71 (2) & C(44) & -4099 (4) & 520 (3) 6377 (2) \\ C(18) & 1591 (4) & 4120 (2) & -1714 (2) & 69 (2) & C(49) & -3518 (3) & 2129 (2) & 5663 (2) \\ C(20) & 103 (3) & 1702 (2) & -362 (2) & 39 (1) & C(51) & 798 (3) & 22769 (2) & 5500 (2) & 58 (1) \\ C(21) & 194 (3) & 1356 (2) & -1669 (2) & 57 (1) & C(53) & 2470 (4) & 2882 (3) & 6539 (4) \\ C(22) & -804 (4) & 809 (2) & -2124 (2) & 61 (1) & C(53) & 2470 (4) & 2846 (3) & 6539 (4) \\ C(22) & -804 (4) & 809 (2) & -2124 (2) & 61 (1) & C(55) & 340 (3) & 1563 (3) & 6119 (2) & 61 (1) \\ C(22) & -1984 (3) & 571 (2) & 1793 (2) & 57 (1) & C(56) & -3774 (4) & 566 (3) & 0323 (2) & 75 (2) \\ C(24) & -1994 (3) & 886 (2) & -1005 (2) & 57 (1) & C(56) & -7378 (4) & 967 (2) & 8815 (2) & 62 (1) \\ C(22) & 2360 (3) & 1593 (2) & -541 (2) & 40 (1) & C(56) & -7573 (4) & 566 (5) & 3023 (2) & 71 (2) \\ C(22) & 3225 (4) & 88 (2) & -857 (2) & 60 (1) & C(59) & -1576 (3) & 2785 (2) & 5181 (2) & 74 (2) \\ C(23) & 3225 (4) & 881 (2) & -637 (2) & 60 (1) & C(6) & -572 (3) & 1547 (2) & 3826 (2) & 59 (1) \\ C(3) & 3732 (3) & 1789 (2) & -680 (2) & 6 (2) (1) & -1639 (6) & 1657 (5) & 370 (2) & 77 (3) \\ C(1) & 3732 (3) & 1789 (2) & -680 (2) & 6 (1) & C(6) & -3254 (1) & 1383 (6) & 1944 (3) & 93 (4) \\ C(2) & 732 (9) & 1618 (6) & -90 (2) & 76 (3) & C(16) & -3254 (1) & 3337 (6) & 1648 (3) & 364 (4) \\ C(1) & 2736 (7) & 1520 (4) & 176 (2) & 77 (3) & C(16) & -3254 (10) & 3327 (6) & 1689 (4) & 122 (5) \\ C(1) & 2496 (1) & 374 (1) & -366 (2) & 67 (1) & C(10) & 3466 (3) & 3574 (4) & -366 (2) & 67 (1$	C(11)	4208 (4)	3757 (3)	1670 (3)	77(2)	C(42)	-943 (4)	4053 (3)	4126 (2)	85 (2)
$ \begin{array}{c} C(14) & 3612 & (4) & 1/7 & (5) & 1390 & (2) & -731 & (2) & 10 & (2) & C(44) & -2152 & (4) & -230 & (2) & 591 & (2) & 631 & (1) \\ C(16) & 3037 & (3) & 3835 & (2) & -460 & (2) & 38 & (1) & C(46) & -2734 & (4) & -462 & (2) & 5661 & (3) & 75 & (2) \\ C(17) & 2735 & (4) & 4638 & (3) & -1466 & (2) & 71 & (2) & C(44) & -3709 & (4) & -3113 & (6) & 1644 & (3) & 77 & (2) \\ C(17) & 2735 & (4) & 4638 & (3) & -1714 & (2) & 69 & (2) & C(44) & -3618 & (3) & 1230 & (2) & 6100 & (2) & 55 & (1) \\ C(19) & 1185 & (3) & 3446 & (2) & -1349 & (2) & 56 & (1) & C(50) & -88 & (3) & 2766 & (2) & 5663 & (2) & 45 & (1) \\ C(20) & 103 & (3) & 17702 & (2) & -862 & (2) & 39 & (1) & C(51) & -798 & (3) & 2766 & (2) & 566 & (1) \\ C(21) & 194 & (3) & 1356 & (2) & -1666 & (2) & 571 & (1) & C(55) & 2062 & (4) & 2236 & (3) & 602 & (2) & 58 & (1) \\ C(22) & -804 & (4) & 809 & (2) & -714 & (2) & 66 & (1) & C(56) & -283 & (3) & 1663 & 6119 & (2) & 61 & (1) \\ C(22) & -804 & (3) & 896 & (2) & -1005 & (2) & 571 & (1) & C(55) & 340 & (3) & 1663 & (6) & (2) & 38 & (2) & (2) & 75 & (2) & (2) & 194 & (3) & 896 & (2) & -1005 & (2) & 571 & (1) & C(56) & -2737 & (4) & 966 & (3) & 2031 & (2) & 771 & (2) \\ C(22) & -1011 & (3) & 1463 & (2) & -542 & (2) & 46 & (1) & C(56) & -2737 & (4) & 966 & (3) & 2031 & (2) & 771 & (2) \\ C(22) & 2379 & (3) & 728 & (2) & -687 & (2) & 660 & (1) & C(56) & -7273 & (4) & 966 & (3) & 2037 & (2) & 73 & (2) & C(2) \\ C(22) & 3225 & (4) & 88 & (2) & -637 & (2) & 66 & (2) & C(60) & -522 & (3) & 1547 & (2) & 3266 & (2) & 591 & (1) \\ C(23) & 4571 & (4) & 1126 & (3) & -1079 & (3) & -757 & (2) & 1547 & (2) & 3268 & (2) & 591 & (1) \\ C(23) & 4571 & (4) & 1126 & (3) & -1079 & (3) & -757 & (3) & 2785 & (2) & 5129 & (2) & 511 & (1) \\ C(23) & 3723 & (3) & 758 & (2) & 2785 & (2) & 5129 & (2) & 511 & (1) \\ C(23) & 3723 & (3) & 758 & (2) & 3360 & (3) & 2367 & (6) & 386 & (2) & 67 & (3) \\ C(1) & -3669 & (7) & 1625 & (4) & 822 & (2) & 61 & (2) & 2265 & (1) & 2265 & (1) & 2265 & (1) & 2265 & (1) & 2265 & (1) & 2265 & (1) & 2265 & (1) & 2265 & (1) & 2$	C(12)	2731(4)	2858(3) 1777(2)	2760 (2)	76 (2)	C(43)	-3532(5)	4669 (3)	4355 (3)	108(2)
$ \begin{array}{c} C(13) & 3037 (3) & 3335 (2) & -460 (2) & 58 (1) & C(46) & -2734 (4) & -462 (2) & 5661 (3) & 75 (2) \\ C(16) & 3446 (4) & 4499 (2) & -837 (2) & 69 (2) & C(47) & -3796 (4) & -319 (3) & 6371 (2) & 75 (2) \\ C(113) & 1591 (4) & 4120 (2) & -1714 (2) & 69 (2) & C(48) & -4099 (4) & 320 (3) & 6371 (2) & 75 (2) \\ C(14) & 1591 (4) & 4120 (2) & -1714 (2) & 69 (2) & C(48) & -4099 (4) & 320 (3) & 6371 (2) & 75 (2) \\ C(19) & 1135 (3) & 1702 (2) & -862 (2) & 39 (1) & C(51) & 798 (3) & 2128 (2) & 5660 (2) & 58 (1) \\ C(20) & 103 (3) & 1702 (2) & -862 (2) & 39 (1) & C(51) & 798 (3) & 2768 (2) & 5500 (2) & 58 (1) \\ C(21) & 194 (3) & 1356 (2) & -1669 (2) & 57 (1) & C(53) & 2470 (4) & 1640 (3) & 6394 (2) & 75 (2) \\ C(22) & -804 (4) & 809 (2) & -2124 (2) & 61 (1) & C(55) & 340 (3) & 1363 (3) & 6119 (2) & 61 (1) \\ C(26) & 1986 (3) & 1593 (2) & -511 (2) & 41 (1) & C(56) & -1661 (3) & 1474 (2) & 4224 (2) & 45 (1) \\ C(26) & 2636 (3) & 1593 (2) & -511 (2) & 41 (1) & C(57) & -2738 (4) & 566 (3) & 3023 (2) & 71 (2) \\ C(22) & 2325 (4) & 88 (2) & -637 (2) & 60 (1) & C(59) & -1666 (5) & 654 (3) & 22631 (2) & 74 (2) \\ C(26) & 3225 (4) & 88 (2) & -637 (2) & 60 (1) & C(59) & -1666 (5) & 654 (3) & 2631 (2) & 74 (2) \\ C(28) & 3225 (4) & 88 (2) & -637 (2) & 60 (1) & C(59) & -1666 (5) & 654 (3) & 2631 (2) & 74 (2) \\ C(28) & 3225 (4) & 88 (2) & -637 (2) & 60 (2) & C(10) & -185 (6) & 534 (3) & 2631 (2) & 74 (2) \\ C(29) & 3225 (4) & 88 (2) & -637 (2) & 60 (2) & C(60) & -572 (3) & 1547 (2) & 3826 (2) & 59 (1) \\ C(20) & 3225 (4) & 88 (2) & -637 (2) & 60 (2) & C(60) & -572 (3) & 1547 (2) & 3826 (2) & 59 (1) \\ C(20) & 3225 (4) & 88 (2) & -637 (2) & 60 (2) & C(60) & -175 (3) & 1548 (6) & 1265 (3) & 166 (3) \\ C(3) & 137 (4) & 1152 (3) & -1079 (3) C 5 (2) & C(60) & -475 (5) & 870 (2) & 60 (3) \\ O(1) & -2669 (7) & 1705 (1) & 930 (1) & -661 (1) & C(7) & 2235 (8) & 838 (2) & 68 (3) \\ Si(1) & 373 (2) & -1096 (2) & 526 (2) & C(10) & -1285 (9) & 1867 (6) & 804 (2) & 76 (3) \\ Si(2) & -1096 (2) & 32628 (1) & -676 (3) & 76 (3) & C(10) & -375 (4) & 13337 (6) & 66$	C(13) C(14)	1908(3)	3279 (2)	-731(2)	$\frac{70(2)}{41(1)}$	C(44) C(45)	-2329(3) -2152(4)	230(2)	5391(2)	$\frac{47}{63}$ (1)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(14) C(15)	3037(3)	3835(2)	-460(2)	58(1)	C(46)	-2734(4)	-462(2)	5661 (3)	75(2)
$\begin{array}{c} C(17) & 2735 (4) & 4636 (3) & -1466 (2) & 71 (2) & C(48) & -4096 (4) & 520 (3) & 6371 (2) & 75 (2) \\ C(18) & 1155 (3) & 3448 (2) & -1734 (2) & 56 (1) & C(50) & -88 (3) & 2122 (2) & 5663 (2) & 45 (1) \\ C(12) & 103 (3) & 1702 (2) & -862 (2) & 39 (1) & C(51) & 798 (3) & 2129 (2) & 5663 (2) & 45 (1) \\ C(21) & 194 (3) & 1356 (2) & -1659 (2) & 51 (1) & C(52) & 2062 (4) & 2832 (3) & 5771 (3) & 75 (2) \\ C(22) & -894 (4) & 809 (2) & -2124 (2) & 61 (1) & C(53) & 2470 (4) & 2266 (3) & 6094 (3) & 80 (2) \\ C(23) & -1898 (3) & 571 (2) & 1793 (2) & 57 (1) & C(54) & 1520 (4) & 1640 (3) & 6394 (2) & 75 (2) \\ C(24) & -1994 (3) & 996 (2) & -1005 (2) & 57 (1) & C(56) & -1461 (3) & 1474 (2) & 4224 (2) & 45 (1) \\ C(26) & 2636 (3) & 1593 (2) & -511 (2) & 410 (1) & C(56) & -1266 (3) & 1474 (2) & 4224 (2) & 45 (1) \\ C(26) & 22379 (3) & 1288 (2) & -637 (2) & 60 (1) & C(56) & -1266 (6) & 6484 (3) & 2631 (2) & 74 (2) \\ C(28) & 3225 (4) & 88 (2) & -637 (2) & 60 (1) & C(56) & -1666 (6) & 6484 (3) & 2631 (2) & 74 (2) \\ C(28) & 3225 (4) & 88 (2) & -637 (2) & 60 (1) & C(69) & -1666 (6) & 6484 (3) & 2631 (2) & 74 (2) \\ C(28) & 3225 (4) & 1152 (3) & -1079 (3) & 75 (2) & C(61) & -572 (3) & 1547 (2) & 3226 (2) & 59 (1) \\ C(31) & 4571 (4) & 1152 (3) & -1079 (3) & 75 (2) & C(61) & -572 (3) & 1547 (2) & 3226 (2) & 59 (1) \\ C(31) & 4571 (4) & 1152 (3) & -1079 (3) & 75 (2) & C(61) & -572 (3) & 1547 (2) & 3226 (2) & 59 (1) \\ C(13) & 4571 (4) & 1152 (3) & -1079 (3) & 75 (2) & C(61) & -572 (3) & 1547 (2) & 3226 (2) & 59 (1) \\ C(13) & 1789 (2) & 2030 (1) & 46 (1) & C(1) & C(19) & 1146 (8) & 2833 (5) & 522 (2) & 51 (1) \\ \hline \mathbf{F} & 7 & 7 & (1) & 1030 (1) & 46 (1) & C(19) & 1146 (8) & 2833 (5) & 522 (2) & 61 (3) \\ O(12) & -1086 (2) & 3262 (1) & 1687 (1) & 60 (1) & C(19) & 1146 (8) & 2833 (6) & 576 (2) & 3090 (5) \\ C(1) & 231 (3) & -101 (4) & 1314 (2) & 104 (3) & C(11) & 1039 (9) & 599 (5) & 1169 (2) & 67 (3) \\ C(1) & 1334 (10) & -96 (1) & 276 (2) & 77 (3) & C(14) & -775 (3) & 1267 (7) & 1226 (3) \\ O(12) & -266 (7) & 1560 (3) & 786 (3) & 786 (3) & $	C(16)	3446 (4)	4499 (2)	-837 (2)	69 (2)	C(47)	-3709 (4)	-319 (3)	6154 (3)	77 (2)
$\begin{array}{c} C(18) & 1591 (4) & 4120 (2) & -1714 (2) & 69 (2) & C(49) & -3518 (3) & 1230 (2) & 6100 (2) & 55 (1) \\ C(20) & 103 (3) & 1702 (2) & -862 (2) & 39 (1) & C(51) & 798 (3) & 2769 (2) & 5500 (2) & 58 (1) \\ C(21) & 194 (3) & 1356 (2) & -1669 (2) & 51 (1) & C(53) & 2062 (4) & 2286 (3) & 6209 (3) & 80 (2) \\ C(22) & -804 (4) & 809 (2) & -1294 (2) & 61 (1) & C(53) & 2470 (4) & 2266 (3) & 6209 (3) & 80 (2) \\ C(23) & -1898 (3) & 571 (2) & 1738 (2) & 57 (1) & C(55) & 340 (3) & 1563 (3) & 6119 (2) & 61 (1) \\ C(25) & -1011 (3) & 1463 (2) & -542 (2) & 46 (1) & C(55) & 340 (3) & 1563 (3) & 6119 (2) & 61 (1) \\ C(25) & -1011 (3) & 1463 (2) & -542 (2) & 46 (1) & C(56) & -1661 (3) & 1474 (2) & 4224 (2) & 45 (1) \\ C(24) & 2259 (3) & 1258 (2) & -511 (2) & 411 (1) & C(57) & -2738 (4) & 967 (2) & 3816 (2) & 62 (1) \\ C(22) & 2379 (3) & 728 (2) & -408 (2) & 50 (1) & C(56) & -2737 (4) & 566 (3) & 3023 (2) & 71 (2) \\ C(28) & 3225 (4) & 88 (2) & -637 (2) & 66 (2) & C(60) & -592 (4) & 1138 (3) & 3027 (2) & 73 (2) \\ C(28) & 4324 (4) & 312 (3) & -967 (2) & 66 (2) & C(60) & -592 (3) & 11547 (2) & 3826 (2) & 591 (1) \\ C(31) & 3732 (3) & 1789 (2) & -860 (2) & 62 (1) & C(62) & -4175 (3) & 2785 (2) & 5129 (2) & 51 (1) \\ \end{array}$ $\begin{array}{c} (c) Compound IIa \\ Fe & 787 (1) & 1705 (1) & 930 (1) & 46 (1) & C(7) & 3215 (8) & 2037 (6) & 838 (2) & 68 (3) \\ Si(1) & 340 (2) & 2203 (1) & 1627 (1) & 52 (1) & C(8) & 2256 (10) & 2862 (6) & 846 (3) & 76 (3) \\ Si(1) & 340 (2) & 2203 (1) & 1627 (1) & 52 (2) & C(10) & -1289 (9) & 1657 (5) & 870 (2) & 60 (3) \\ O(1) & -2669 (7) & 1625 (4) & 832 (2) & 89 (2) & C(10) & -128 (9) (1657 (5) & 870 (2) & 60 (3) \\ O(1) & -2669 (7) & 1625 (4) & 832 (2) & 89 (2) & C(10) & -128 (9) (1657 (5) & 870 (2) & 60 (3) \\ C(1) & 1441 (8) & 2000 (5) & 276 (2) & 55 (2) & C(12) & 2269 (11) & 2316 (7) & 1922 (3) & 971 (4) \\ C(2) & 732 (9) & 1618 (6) & -90 (2) & 76 (3) & C(14) & -705 (13) & 4496 (6) & 1265 (3) & 116 (6) \\ C(4) & 2562 (9) & 320 (6) & -563 (2) & 77 (3) & C(14) & -705 (13) & 4496 (6) & 1265 (3) & 116 (4) \\ C(1) & 2347 (7) & 570 (1) &$	C(17)	2735 (4)	4636 (3)	-1466 (2)	71 (2)	C(48)	-4099 (4)	520 (3)	6371 (2)	75 (2)
C (19) 1195 (3) 3448 (2) -1349 (2) 56 (1) C (50) -863 (2) 122 (2) 5663 (2) 45 (1) C (21) 194 (3) 1356 (2) -1669 (2) 51 (1) C (51) 2062 (4) 2852 (3) 5771 (3) 75 (2) C (22) -8594 (4) 809 (2) -2124 (2) 61 (1) C (53) 2470 (4) 2266 (3) 6209 (3) 80 (2) C (23) -1898 (3) 571 (2) 1793 (2) 57 (1) C (54) 1620 (4) 1640 (3) 6394 (2) 75 (2) C (24) -1994 (3) 896 (2) -005 (2) 57 (1) C (55) 340 (3) 1563 (3) 6119 (2) 61 (1) C (25) -1011 (3) 1463 (2) -542 (2) 46 (1) C (56) -1661 (3) 1474 (2) 4224 (2) 45 (1) C (25) -1011 (3) 1463 (2) -542 (2) 46 (1) C (56) -1661 (3) 1474 (2) 4224 (2) 45 (1) C (26) 2636 (3) 1593 (2) -408 (2) 00 (1) C (59) -2733 (4) 967 (2) 3815 (2) 62 (1) C (22) 2379 (3) 728 (2) -408 (2) 00 (1) C (59) -1666 (5) 664 (3) 2631 (2) 74 (2) C (28) 3225 (4) 88 (2) -637 (2) 60 (1) C (59) -1666 (5) 664 (3) 2631 (2) 74 (2) C (28) 3225 (4) 1152 (3) -1079 (3) 75 (2) C (61) -572 (3) 1547 (2) 3826 (2) 59 (1) C (31) 3732 (3) 1789 (2) -967 (2) C (20) -4175 (3) 2785 (2) 5129 (2) 51 (1) C (3) 3732 (3) 1789 (2) -968 (2) 62 (1) C (62) -4175 (3) 2785 (2) 5129 (2) 51 (1) C (3) 332 (3) 1789 (2) -968 (2) 62 (1) C (62) -4175 (3) 2785 (2) 5129 (2) 51 (1) C (3) 330 (1) 46 (1) C (7) 3215 (8) 2037 (6) 838 (2) 68 (3) Si (2) -1095 (2) 3628 (1) 1687 (1) 690 (1) C (9) 1145 (8) 2933 (5) 522 (2) 60 (3) Si (2) -1095 (2) 3628 (1) 1687 (1) 690 (1) C (9) 1145 (8) 22833 (5) 522 (2) 61 (2) 60 (3) Si (2) -1095 (2) 3628 (1) 1687 (1) 690 (1) C (9) 1145 (8) 2833 (5) 522 (2) 61 (2) 60 (3) Si (2) -1095 (2) 3628 (1) 1687 (1) 255 (2) C (10) -1289 (9) 1657 (5) 870 (2) 60 (3) O(1) -2669 (7) 1625 (4) 822 (2) 77 (3) C (14) -706 (11) 3133 (6) 1944 (3) 93 (4) C (2) 7236 (9) 1648 (6) -90 (2) 76 (3) C (10) -1289 (9) 1657 (6) 2377 (2) 60 (1) C (4) 2337 (9) 1648 (6) -90 (2) 77 (3) C (14) -706 (1) 3327 (8) 1699 (4) 122 (6) (1) C (2) 2367 (9) 645 (5) 306 (2) 67 (3) C (11) 3769 (3) -641 (4) 2337 (2) 60 (3) 1169	C(18)	1591 (4)	4120 (2)	-1714 (2)	69 (2)	C(49)	-3518 (3)	1230 (2)	6100 (2)	55 (1)
$ \begin{array}{c} (20) & 103 & 103 & 102 & (2) & -366 & (2) & 51 & (1) & (13) & 103 & (2) & 206 & (2) & 300 & (2$	C(19)	1195(3)	3448 (2)	-1349(2)	56 (1) 20 (1)	C(50)	-88 (3)	2122 (2)	5663 (2)	45 (1)
$\begin{array}{c} C(22) & -204 & (4) & 809 & (2) & -2124 & (2) & 61 & (1) & C(53) & 22470 & (4) & 2268 & (3) & 6209 & (3) & 60 & (2) \\ C(23) & -1898 & (3) & 577 & (1) & C(54) & 1620 & (4) & 1640 & (3) & 6394 & (2) & 75 & (2) \\ C(24) & -1994 & (3) & 896 & (2) & -7005 & (2) & 57 & (1) & C(56) & -1661 & (3) & 1474 & (2) & 4224 & (2) & 46 & (1) \\ C(26) & -2379 & (3) & 728 & (2) & -541 & (2) & 41 & (1) & C(56) & -72738 & (4) & 967 & (2) & 8815 & (2) & 62 & (1) \\ C(27) & 2379 & (3) & 728 & (2) & -408 & (2) & 50 & (1) & C(58) & -2737 & (4) & 566 & (3) & 3023 & (2) & 71 & (2) \\ C(28) & 3225 & (4) & 88 & (2) & -697 & (2) & 66 & (2) & C(60) & -592 & (4) & 1138 & (3) & 3027 & (2) & 73 & (2) \\ C(29) & 4324 & (4) & 312 & (3) & -967 & (2) & 66 & (2) & C(60) & -592 & (4) & 1138 & (3) & 3027 & (2) & 73 & (2) \\ C(30) & 4571 & (4) & 1152 & (3) & -1079 & (3) & 75 & (2) & C(61) & -572 & (3) & 1547 & (2) & 38286 & (2) & 59 & (1) \\ C(31) & 3732 & (3) & -789 & (2) & -860 & (2) & C & (1) & C(7) & 3215 & (8) & 2037 & (6) & 838 & (2) & 68 & (3) \\ Si(1) & -4095 & (2) & 3628 & (1) & 1687 & (1) & 60 & (1) & C(7) & 3215 & (8) & 2833 & (5) & 522 & (2) & 61 & (2) \\ O(1) & -2669 & (7) & 1625 & (4) & 832 & (2) & 89 & (2) & C(10) & -1289 & (9) & 589 & (5) & 1169 & (2) & 67 & (3) \\ C(1) & 1441 & (8) & -001 & 1887 & (1) & 60 & (1) & C(19) & 11438 & (8) & 2833 & (6) & 584 & (2) & 67 & (3) \\ C(1) & -2669 & (7) & 1625 & (4) & 832 & (2) & 89 & (2) & C(10) & -1289 & (9) & 589 & (5) & 1169 & (2) & 67 & (3) \\ C(1) & -2669 & (7) & 1625 & (4) & 253 & (2) & 77 & (3) & C(14) & -705 & (13) & 4496 & (6) & 1265 & (3) & 116 & (6) & -266 & (7) & 306 & (2) & 67 & (3) & C(11) & 1039 & (9) & 599 & (5) & 1169 & (2) & 67 & (3) & C(13) & -872 & (11) & 1333 & (6) & 1944 & (3) & 98 & (4) \\ C(3) & 1339 & (10) & 799 & (6) & -253 & (2) & 77 & (3) & C(14) & -705 & (1) & 3247 & (6) & 1144 & (16) & (16) & 124 & (2) & 57 & (11) & C(5) & 3267 & (9) & 644 & (5) & 306 & (2) & 67 & (3) & C(14) & -376 & (1) & 3327 & (8) & 1689 & (4) & 122 & (5) & 77 & (1) & C(13) & 373 & (4) & -887 & (6) & 189$	C(20)	103 (3)	1702 (2)	-1669(2)	59(1)	C(51)	2062 (4)	2709 (2)	5771 (3)	$\frac{56(1)}{75(2)}$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(22)	-804 (4)	809 (2)	-2124(2)	61(1)	C(53)	2470 (4)	2266 (3)	6209 (3)	80 (2)
$\begin{array}{cccccc} C(24) & -1994 (3) & 896 (2) & -1005 (2) & 57 (1) & C(55) & 340 (3) & 1563 (3) & 6119 (2) & 61 (1) \\ C(26) & 2636 (3) & 1593 (2) & -511 (2) & 41 (1) & C(57) & -72737 (4) & 566 (3) & 3023 (2) & 71 (2) \\ C(27) & 2379 (3) & 728 (2) & -408 (2) & 50 (1) & C(58) & -2737 (4) & 566 (3) & 3023 (2) & 71 (2) \\ C(28) & 3225 (4) & 88 (2) & -637 (2) & 60 (1) & C(58) & -2737 (4) & 566 (3) & 3023 (2) & 71 (2) \\ C(29) & 4324 (4) & 312 (3) & -967 (2) & 66 (2) & C(60) & -592 (4) & 1138 (3) & 3027 (2) & 73 (2) \\ C(31) & 3732 (3) & 1789 (2) & -860 (2) & 62 (1) & C(62) & -4175 (3) & 2785 (2) & 5129 (2) & 51 (1) \\ \hline \\ $	C(23)	-1898 (3)	571 (2)	1793 (2)	57 (1)	C(54)	1620 (4)	1640 (3)	6394 (2)	75 (2)
$\begin{array}{cccccc} C(25) & -1011 \ (3) & 1463 \ (2) & -542 \ (2) & 46 \ (1) & C(56) & -1661 \ (3) & 1474 \ (2) & 4224 \ (2) & 45 \ (1) \\ C(26) & 2636 \ (3) & 1593 \ (2) & -511 \ (2) & 411 \ (1) \ C(57) & -2738 \ (4) & 967 \ (2) & 3815 \ (2) & 62 \ (1) \\ C(28) & 3225 \ (4) & 88 \ (2) & -637 \ (2) & 60 \ (1) & C(59) & -1666 \ (5) & 654 \ (3) & 2031 \ (2) & 74 \ (2) \\ C(29) & 4324 \ (4) & 312 \ (3) & -967 \ (2) & 66 \ (2) & C(60) & -592 \ (4) & 1138 \ (3) & 3027 \ (2) & 73 \ (2) \\ C(30) & 4571 \ (4) & 1152 \ (3) & -1079 \ (3) & 75 \ (2) & C(61) & -572 \ (3) & 1547 \ (2) & 3826 \ (2) & 59 \ (1) \\ C(31) & 3732 \ (3) & 1789 \ (2) & -860 \ (2) \ 62 \ (1) & C(62) & -4175 \ (3) & 2785 \ (2) \ 5129 \ (2) & 51 \ (1) \\ \end{array}$	C(24)	-1994 (3)	896 (2)	-1005 (2)	57 (1)	C(55)	340 (3)	1563 (3)	6119 (2)	61 (1)
$\begin{array}{c} C(26) & 2636 (3) & 1393 (2) & -311 (2) & 41 (1) & C(37) & -2736 (9) & 366 (2) & 3610 (2) & 62 (1) \\ C(28) & 3225 (4) & 88 (2) & -637 (2) & 60 (1) & C(59) & -2737 (4) & 566 (3) & 3023 (2) & 71 (2) \\ C(29) & 4324 (4) & 312 (3) & -967 (2) & 66 (2) & C(60) & -592 (4) & 1138 (3) & 3027 (2) & 73 (2) \\ C(30) & 4571 (4) & 1152 (3) & -1079 (3) & 75 (2) & C(61) & -572 (3) & 1547 (2) & 3826 (2) & 59 (1) \\ C(31) & 3732 (3) & 1788 (2) & -860 (2) & 62 (1) & C(62) & -4175 (3) & 2785 (2) & 5129 (2) & 51 (1) \\ \end{array}$	C(25)	-1011(3)	1463 (2)	-542(2)	46 (1)	C(56)	-1661(3)	1474(2)	4224 (2)	45 (1)
$\begin{array}{c} C(27) & 2.513 & (6) & 125 & (2) & -405 & (2) & 50 & (1) & C(269) & -166 & (5) & 564 & (3) & 2631 & (2) & 71 & (2) \\ C(29) & 4324 & (4) & 312 & (3) & -967 & (2) & 66 & (2) & C(60) & -592 & (4) & 1138 & (3) & 3027 & (2) & 73 & (2) \\ C(30) & 4571 & (4) & 1152 & (3) & -1079 & (3) & 75 & (2) & C(61) & -572 & (3) & 1547 & (2) & 3826 & (2) & 59 & (1) \\ C(31) & 3732 & (3) & 1789 & (2) & -860 & (2) & 62 & (1) & C(62) & -4175 & (3) & 2785 & (2) & 5129 & (2) & 51 & (1) \\ \hline \\ C(31) & 3732 & (3) & 1789 & (2) & -860 & (2) & 62 & (1) & C(62) & -4175 & (3) & 2785 & (2) & 5129 & (2) & 51 & (1) \\ \hline \\ C(31) & 340 & (2) & 2203 & (1) & 1627 & (1) & 52 & (1) & C(68) & 2255 & (10) & 2862 & (6) & 846 & (3) & 76 & (3) \\ Si(1) & 340 & (2) & 2203 & (1) & 1627 & (1) & 52 & (1) & C(8) & 2255 & (10) & 2862 & (6) & 846 & (3) & 76 & (3) \\ Si(2) & -1095 & (2) & 3628 & (1) & 1687 & (1) & 60 & (1) & C(9) & 1145 & (8) & 2833 & (5) & 522 & (2) & 61 & (2) \\ O(1) & -2669 & (7) & 1625 & (4) & 832 & (2) & 89 & (2) & C(10) & -1289 & (9) & 1667 & (5) & 870 & (2) & 60 & (3) \\ O(2) & 1231 & (8) & -111 & (4) & 1314 & (2) & 104 & (3) & C(11) & 1039 & (9) & 599 & (5) & 1169 & (2) & 67 & (3) \\ C(1) & 1441 & (8) & 2000 & (5) & 276 & (2) & 55 & (2) & C(12) & 2269 & (11) & 2316 & (7) & 1922 & (3) & 97 & (4) \\ C(2) & 732 & (9) & 1618 & (6) & -90 & (2) & 77 & (3) & C(14) & -705 & (13) & 4496 & (6) & 1265 & (3) & 116 & (5) \\ C(4) & 2562 & (9) & 320 & (6) & -50 & (3) & 77 & (3) & C(16) & -3254 & (10) & 3327 & (8) & 1689 & (4) & 122 & (5) \\ C(6) & 2736 & (7) & 1510 & (4) & 479 & (2) & 49 & (2) \\ \hline \end{array} $	C(26)	2636 (3)	1593 (2)	-311(2) -408(2)	41(1) 50(1)	C(57)	-2738(4) -9737(4)	907 (2) 566 (3)	3810 (2)	52(1) 71(2)
$ \begin{array}{ccccccc} \hline C(29) & 4324 & (4) & 312 & (3) & -967 & (2) & 66 & (2) & C(60) & -592 & (4) & 1138 & (3) & 3027 & (2) & 73 & (2) \\ C(30) & 4571 & (4) & 1152 & (3) & -1079 & (3) & 75 & (2) & C(61) & -572 & (3) & 1547 & (2) & 3826 & (2) & 59 & (1) \\ C(31) & 3732 & (3) & 1789 & (2) & -860 & (2) & 62 & (1) & C(62) & -4175 & (3) & 2785 & (2) & 5129 & (2) & 511 & (1) \\ \hline C(31) & 3732 & (3) & 1789 & (2) & -860 & (2) & 62 & (1) & C(62) & -4175 & (3) & 2785 & (2) & 5129 & (2) & 51 & (1) \\ \hline C(31) & 3732 & (3) & 1705 & (1) & 930 & (1) & 46 & (1) & C(7) & 3215 & (8) & 2037 & (6) & 838 & (2) & 68 & (3) \\ \hline S(11) & 340 & (2) & 2203 & (1) & 1627 & (1) & 52 & (1) & C(8) & 2255 & (10) & 2862 & (6) & 846 & (3) & 76 & (3) \\ S(12) & -1095 & (2) & 36228 & (1) & 1687 & (1) & 60 & (1) & C(9) & 1145 & (8) & 2833 & (5) & 522 & (2) & 61 & (2) \\ O(1) & -2669 & (7) & 1625 & (4) & 832 & (2) & 89 & (2) & C(10) & -1289 & (9) & 1657 & (5) & 870 & (2) & 60 & (3) \\ O(2) & 1231 & (8) & -111 & (4) & 1314 & (2) & 104 & (3) & C(11) & 1039 & (9) & 599 & (5) & 1169 & (2) & 67 & (3) \\ C(1) & 1441 & (8) & 2000 & (5) & 276 & (2) & 55 & (2) & C(12) & 2269 & (11) & 2316 & (7) & 1922 & (3) & 97 & (4) \\ C(2) & 732 & (9) & 1618 & (6) & -90 & (2) & 76 & (3) & C(14) & -770 & (13) & 3496 & (6) & 1265 & (3) & 116 & (5) \\ C(4) & 2562 & (9) & 320 & (6) & -50 & (3) & 78 & (3) & C(15) & -687 & (14) & 4178 & (7) & 2204 & (3) & 111 & (4) \\ C(5) & 3267 & (9) & 645 & (5) & 306 & (2) & 67 & (3) & C(15) & -3254 & (10) & 3327 & (8) & 1689 & (4) & 122 & (5) \\ C(6) & 2736 & (7) & 1510 & (4) & 479 & (2) & 48 & (2) & -647 & (4) & 2337 & (2) & 60 & (1) \\ P & 2520 & (1) & 2946 & (1) & 759 & (1) & 2012 & (1) & 444 & (1) & C(13) & 573 & (4) & -587 & (6) & 1804 & (3) & 95 & (2) \\ S(11) & 2959 & (1) & 759 & (1) & 2012 & (1) & 444 & (1) & C(13) & 573 & (4) & -587 & (6) & 1804 & (3) & 95 & (2) \\ S(11) & 2959 & (1) & 759 & (1) & 2012 & (1) & 444 & (1) & C(13) & 373 & (4) & -587 & (6) & 1804 & (3) & 95 & (2) \\ S(11) & 2959 & (1) & 759 & (1) & 2012 & (1) & 444 & (1) & C(13) & 373 & (4) $	C(27) C(28)	3225(4)	88 (2)	-637(2)	60(1)	C(59)	-1666(5)	654 (3)	2631(2)	74(2)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	C(29)	4324 (4)	312(3)	-967 (2)	66 (2)	C(60)	-592 (4)	1138 (3)	3027 (2)	73 (2)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	C(30)	4571 (4)	1152 (3)	-1079 (3)	75 (2)	C(61)	-572 (3)	1547 (2)	3826 (2)	59 (1)
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	C(31)	3732 (3)	1789 (2)	-860 (2)	62 (1)	C(62)	-4175 (3)	2785 (2)	5129 (2)	51 (1)
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	n	505 (1)		000 (1)	(c) Comp	ound IIa	0015 (0)	0007 (0)	(0)	<u>(0)</u>
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	re S(1)	787 (1)	1705 (1)	930 (1) 1627 (1)	46 (1) 52 (1)	C(7)	3215 (8) 2255 (10)	2037 (6)	838 (2) 846 (3)	68 (3) 76 (3)
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Si(2)	-1095(2)	3628(1)	1627(1) 1687(1)	60(1)	C(9)	1145 (8)	2802(0) 2833(5)	522 (2)	61(2)
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	O(1)	-2669 (7)	1625(4)	832 (2)	89 (2)	C(10)	-1289 (9)	1657 (5)	870 (2)	60 (3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	O(2)	1231 (8)	-111 (4)	1314 (2)	104 (3)	C(11)	1039 (9)	599 (5)	1169 (2)	67 (3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(1)	1441 (8)	2000 (5)	276 (2)	55 (2)	C(12)	2269 (11)	2316(7)	1922 (3)	97 (4)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(2)	732 (9)	1618 (6)	-90(2)	76 (3)	C(13)	-872(11)	1333 (6)	1944 (3)	93 (4) 116 (5)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(3)	2562 (9)	320 (6)	-255(2)	78 (3)	C(14) C(15)	-705(13) -667(14)	4496 (6)	2203 (3) 2204 (3)	110(5) 111(4)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(5)	3267 (9)	645 (5)	306 (2)	67 (3)	C(10)	-3254 (10)	3327 (8)	1689 (4)	122(5)
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	C(6)	2736 (7)	1510 (4)	479 (2)	49 (2)	- ()		\~/	/	\•/
Fe 3017 (1) 910 (1) 905 (1) 39 (1) $C(11)$ 3769 (3) -641 (4) 2337 (2) 60 (1)P 2520 (1) 2946 (1) 704 (1) 38 (1) $C(12)$ 3432 (3) 2157 (4) 2571 (2) 57 (1)Si(1) 2959 (1) 759 (1) 2012 (1) 44 (1) $C(13)$ 573 (4) -587 (6) 1804 (3) 95 (2)Si(2) 1498 (1) 314 (1) 2363 (1) 59 (1) $C(14)$ 1703 (5) -695 (6) 3105 (3) 105 (3)O 4877 (2) 1811 (3) 1397 (1) 63 (1) $C(15)$ 936 (4) 1854 (5) 2573 (3) 95 (2)C(1) 2317 (3) 87 (4) -36 (2) 50 (1) $C(16)$ 3145 (2) 3862 (3) 149 (2) 46 (1)C(2) 2002 (3) 680 (4) -635 (2) 56 (1) $C(17)$ 3756 (2) 3199 (4) -191 (2) 49 (1)C(3) 2587 (4) 695 (4) -1082 (2) 72 (2) $C(18)$ 4225 (3) 3900 (5) -625 (2) 63 (2)C(4) 3492 (3) 181 (5) -955 (2) 69 (2) $C(19)$ 4077 (3) 5237 (5) -702 (2) 68 (2)C(5) 3821 (3) -369 (4) -377 (2) 57 (1) $C(20)$ 3486 (3) 5874 (4) -368 (2) 67 (2)C(6) 3238 (3) -439 (3) 95 (2) 52 (1) $C(21)$ 3027 (3) 5205 (4) 49 (2) 58 (1)C(7)<					(d) Comp	ound IIb				
P2520 (1)2946 (1)704 (1)38 (1) $C(12)$ 3432 (3)2157 (4)2571 (2)57 (1)Si(1)2959 (1)759 (1)2012 (1)44 (1) $C(13)$ 573 (4)-587 (6)1804 (3)95 (2)Si(2)1498 (1)314 (1)2363 (1)59 (1) $C(14)$ 1703 (5)-695 (6)3105 (3)105 (3)O4877 (2)1811 (3)1397 (1)63 (1) $C(15)$ 936 (4)1854 (5)2573 (3)95 (2)C(1)2317 (3)87 (4)-36 (2)50 (1) $C(16)$ 3145 (2)3862 (3)149 (2)46 (1)C(2)2002 (3)680 (4)-635 (2)56 (1) $C(17)$ 3756 (2)3199 (4)-191 (2)49 (1)C(3)2587 (4)695 (4)-1082 (2)72 (2) $C(18)$ 4225 (3)3900 (5)-625 (2)63 (2)C(4)3492 (3)181 (5)-955 (2)69 (2) $C(19)$ 4077 (3)5237 (5)-702 (2)68 (2)C(5)3821 (3)-369 (4)-377 (2)57 (1) $C(20)$ 3486 (3)5874 (4)-368 (2)67 (2)C(6)3238 (3)-439 (3)95 (2)52 (1) $C(21)$ 3027 (3)5205 (4)49 (2)58 (1)C(7)3325 (3)-1049 (3)715 (2)57 (1) $C(23)$ 3480 (3)4176 (3)1347 (2)42 (1)C(8)2459 (3)-967 (3)935 (2)58 (1) $C(23)$ 3480 (3)4674 (3)1592 (2)50 (1)C(9) </td <td>Fe</td> <td>3017 (1)</td> <td>910 (1)</td> <td>905 (1)</td> <td>39 (1)</td> <td>C(11)</td> <td>3769 (3)</td> <td>-641 (4)</td> <td>2337 (2)</td> <td>60 (1)</td>	Fe	3017 (1)	910 (1)	905 (1)	39 (1)	C(11)	3769 (3)	-641 (4)	2337 (2)	60 (1)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	P	2520(1)	2946 (1)	704 (1)	38(1)	C(12)	3432 (3)	2157 (4)	2571 (2)	57 (1)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	SI(1) Si(2)	2959(1)	759(1)	2012(1) 2363(1)	44 (1) 59 (1)	C(13)	573 (4) 1703 (5)	-587 (6)	1804 (3)	95 (2) 105 (3)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0	4877 (2)	1811 (3)	1397 (1)	63 (1)	C(14) C(15)	936 (4)	1854 (5)	2573 (3)	95 (2)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Č(1)	2317 (3)	87 (4)	-36 (2)	50 (1)	C(16)	3145 (2)	3862 (3)	149 (2)	46 (1)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	C(2)	2002 (3)	680 (4)	-635 (2)	56 (1)	C(17)	3756 (2)	3199 (4)	-191 (2)	49 (1)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(3)	2587(4)	695 (4)	-1082(2)	72 (2)	C(18)	4225 (3)	3900 (5)	-625 (2)	63 (2)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	C(4)	3492 (3) 3821 (3)	181 (8) -369 (4)	-900 (2) -377 (9)	69 (2) 57 (1)	C(20)	4077 (3) 3486 (3)	5237 (D) 5874 (A)	-368 (2)	67 (2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Č(6)	3238 (3)	-439 (3)	95 (2)	52(1)	C(21)	3027 (3)	5205 (4)	49 (2)	58 (1)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	C(7)	3325 (3)	-1049 (3)	715 (2)	57 (1)	C(22)	2608 (3)	4176 (3)	1347 (2)	42 (1)
C(3) 1844 (3) -205 (4) 509 (2) 53 (1) C(24) 3595 (3) 5576 (4) 2091 (2) 60 (1) $C(10)$ 4122 (3) 1452 (3) 1192 (2) 46 (1) C(25) 2842 (3) 5963 (3) 2364 (2) 61 (2)	C(8)	2459 (3)	-967 (3)	935 (2)	58 (1)	C(23)	3480 (3)	4674 (3)	1592 (2)	50 (1)
	C(9) C(10)	4122(3)	-205(4) 1452(3)	1192 (2)	46 (1)	C(24) C(25)	2842 (3)	5963 (3)	2051(2) 2364(2)	60(1) 61(2)

Table III (Continued)										
	x	У	z	$U(eq)^a$		x	У	z	U(eq) ^a	
			<u></u>	(d) Con	pound IIb					
C(26)	1977 (3)	5489 (4)	2135 (2)	60 (2)	C(30)	131 (3)	3636 (5)	-571(2)	71 (2)	
C(27)	1845 (3)	4602 (3)	1625 (2)	52(1)	C(31)	-541 (3)	3117 (5)	-260(3)	80 (2)	
C(28)	1304 (2)	3079 (3)	322(2)	48 (1)	C(32)	-321(3)	2573 (5)	339 (3)	80 (2)	
C(29)	1048 (3)	3620 (4)	-284 (2)	57 (1)	C(33)	617 (3)	2530 (4)	631 (2)	62 (1)	
				(a) Com	nound IIIa					
Fe	2000 (1)	783 (1)	1627 (1)	54(1)	C(7)	9377 (4)	3071 (6)	1502 (3)	76 (2)	
Si(1)	2657(1)	31(2)	2852(1)	55 (1)	C(8)	2120 (2)	2128 (7)	1502(3) 1515(3)	82 (2)	
Si(2)	4008 (1)	-1412(2)	2883 (1)	72(1)	C(0)	2075 (3)	1082(7)	020 (3)	85 (2)	
Si(2)	2002 (1)	2058 (2)	2000(1) 3795(1)	76 (1)	C(0)	1890 (3)	-1179(7)	1465 (0)	71(2)	
O(1)	1675 (3)	-2470(5)	1226 (2)	102 (2)	C(10)	1020(3) 1021(2)	-1172(7)	1400 (0)	(1) (2) = 67 (2)	
O(2)	362 (2)	-2470 (3)	1330 (2)	103(2) 101(2)	C(11)	1021 (3)	-1257(7)	2028 (3)	07 (2) 95 (9)	
C(1)	302(2)	1303 (3) 1450 (6)	2207 (2)	(2)	C(12)	1010 (3)	-1307 (7)	3273 (3)	00 (2) 100 (2)	
C(1)	2109 (3) 1596 (4)	1400 (0) 919 (7)	407 (2)	09 (2)	C(13)	4003 (4)	-1706 (9)	30/1(3)	132(3)	
C(2)	1000 (4)	013 (7) 1407 (0)	-170(3)	90 (2) 100 (2)	O(14)	4000 (3)		2351(4)	110 (3)	
C(3)	(03 (4)	1437(9)	-434(3)	102 (3)	C(15)	3719 (4)	-3346 (7)	2463 (4)	108 (3)	
C(4)	409 (4)	2643 (9)	-10(3)	102(3)	C(16)	4041 (4)	3010 (8)	3759 (3)	114 (3)	
C(5)	800 (4) 1505 (0)	3287 (7)	550 (3) 050 (3)	85 (2)	C(17)	2861 (5)	1250 (8)	4675 (3)	128 (3)	
C(6)	1735 (3)	2685 (6)	850 (2)	65 (2)	C(18)	1994 (4)	3559 (8)	3559 (3)	111 (3)	
				(f) Com	pound IIIb					
Fe	946 (1)	2023 (1)	1010 (1)	45 (1)	C(16)	-630 (4)	3628 (3)e	-1272(2)	79 (2)	
Р	2253(1)	1996 (1)	151(1)	48 (1)	C(17)	-2382(3)	2542 (3)	-743(3)	86 (2)	
Si(1)	19(1)	3172(1)	728 (1)	48 (1)	C(18)	1684 (3)	1494 (2)	-747(2)	48 (1)	
Si(2)	-1400 (1)	3336 (1)	-424(1)	58 (1)	C(19)	649 (3)	1757 (2)	-1201(2)	61 (2)	
Si(3)	-1024 (1)	3532(1)	1779 (1)	66 (1)	C(20)	116 (4)	1394 (3)	-1857 (3)	70 (2)	
0	2509 (3)	2872(2)	2138(2)	87 (1)	C(21)	585 (4)	754 (3)	-2072(3)	71(2)	
C(1)	660 (3)	825 (2)	967 (2)	52 (1)	C(22)	1583 (4)	474 (2)	-1629(3)	72(2)	
C(2)	1424(4)	249 (2)	805 (3)	66 (2)	C(23)	2154 (3)	842 (2)	-970(2)	58 (2)	
C(3)	2155(4)	-60 (3)	1410 (3)	85 (2)	C(24)	2890 (3)	2830 (2)	-216(3)	56 (2)	
C(4)	2191(4)	187 (3)	2179 (3)	88 (2)	C(25)	2674(4)	3061(2)	-993 (3)	73 (2)	
C(5)	1492(4)	748 (3)	2366 (3)	74 (2)	C(26)	3213 (5)	3689 (3)	-1216(4)	100 (3)	
C(6)	681 (3)	1067(2)	1753 (2)	55 (2)	C(27)	3951(5)	4085 (3)	-678(5)	113 (3)	
C(7)	-220(3)	1615 (2)	1755 (2)	61(2)	C(28)	4176 (4)	3861 (3)	82 (4)	100 (3)	
C(8)	-838 (3)	1675(2)	978 (2)	58(2)	C(29)	3655 (4)	3241(2)	318 (3)	75(2)	
C(9)	-262(3)	1224(2)	487 (2)	55 (1)	C(30)	3697 (3)	1560(2)	514(2)	55(2)	
C(10)	1884 (3)	2532 (2)	1675 (2)	56 (2)	C(31)	4593 (3)	1490(2)	31(3)	71(2)	
C(11)	1029(3)	3993(2)	660 (3)	67(2)	C(32)	5698 (4)	1198 (3)	305(4)	94(2)	
C(12)	-1341(4)	4533 (2)	1733 (3)	92(2)	C(32)	5940(5)	991 (3)	1071(4)	108 (3)	
C(13)	-2497(4)	3057(3)	1795 (3)	95 (2)	C(34)	5093 (4)	1064 (3)	1565 (3)	96 (2)	
C(14)	-121(5)	3413(3)	2762 (3)	107(3)	C(35)	3970 (3)	1341(9)	1285 (3)	66 (2)	
C(15)	-2460(4)	4097 (3)	-274(3)	87 (2)	0(00)	0010 (0)	1011 (2)	1200 (0)	00 (2)	
\sim (\pm \circ)		1001 (0)								

^a Equivalent isotropic U defined as one-third of the trace of the orthogonalized U_{ii} tensor.

Å, respectively, illustrating the capacity of an extra Cl atom to decrease the Fe–Si bond.^{4a}

(b) For the complexes that contain a Si–Si bond in the α -position, i.e. Fp–Si–Si, the bond is elongated compared to that in the corresponding Me–Si–Si compound.^{4b,h}

Close examination of the various Fe-Si bond lengths in complexes Ia,b–IIIa,b provides no evidence for Fe–Si π bonding in the phosphine-substituted complexes. In each of the pairs of complexes characterized by X-ray analysis the Fe-Si bond is significantly *longer* in the phosphinesubstituted complex: 2.325 (3) Å (Ia) vs 2.339 (1) Å (Ib); 2.341 (2) Å (IIa) vs 2.354 (2) Å (IIb); 2.365 (2) Å (IIIa) vs 2.378 (1) Å (IIIb). This clear trend is exactly opposite to that expected if any appreciable π -bonding were present and is evidence for the lack of significance of such retrodative bonding in these Fe-Si bonds. The data are, however, very clear in suggesting that simple steric factors are primarily the cause of the varying Fe-Si bonds. For the dicarbonyl complexes, the Fe-Si bond length increases regularly in the order of increasing silyl group bulk, Ia \rightarrow IIa \rightarrow IIIa, with an increasing incremental change, 0.015 Å between Ia and IIa and 0.024 Å between IIa and IIIa. A similar Fe–Si bond length increase is observed for the phosphine-substituted complexes, Ib \rightarrow IIb \rightarrow IIIb, with the same incremental changes of 0.015 and 0.024 Å as the overall bulk of the complexes increases. The values for the Fe-Si bond length in Ia, IIa, and IIIa are in the "normal" range thus far noted for such complexes and compare to values of 2.349 Å for c-Si₅Me₉SiMe₂[(η^{5} -C₅H₅)Fe(CO)₂] (IV) and 2.363 Å for c-Si₅Me₈[(η^{5} -C₅H₅)-Fe(CO)₂]SiMe₂[(η^{5} -C₅H₅)Fe(CO)₂] (V) (ring-bonded Fp group)^{4b} and the longest bond of this type reported to date of 2.378 Å for [(η^{5} -C₅H₅)Fe(CO)₂]₂Si₂Me₄ (VI).¹⁴ The essential equivalence of the Fe–Si bond lengths in IIIa and V reflects the similarity in the immediate environment of the Fe–Si linkage in both complexes, i.e. Fe–Si(Si)₂.

Other aspects of the structural parameters of the various silyl groups reflect the trend of increasing size on changing from $I \rightarrow II \rightarrow III$ and from the dicarbonyl complexes to the carbonyl phosphine complexes. Thus, the bond angle Fe-Si-Si changes from 114.6 (1) and 113.3 (1)° (114.6 (1)°) for IIa and IIIa, respectively, to 119.0 (1) and 120.3 (3)° (109.9 (1)°) for the phosphine-substituted counterparts IIb and IIIb. The silyl groups β with respect to the Fe atom thus are observed to be pushed away from the metal center upon phosphine coordination. The angle Fe-Si(1)-Si(2) in complex IIIb is 120.3 (1)° as compared to a value of 109.9 (1)° for the related Fe-Si(1)-Si(3) angle. The former trimethylsilyl group, Me₃Si(2), points directly toward the

^{(14) (}a) Atwood, J. L.; Hunter, W. E.; Hrncir, D. C.; Samuel, E.; Alt. H.; Rausch, M. D. Inorg. Chem. 1975, 14, 1757. (b) Faller, J. W.; Crabtree, R. H.; Habib, A. Organometallics 1985, 4, 929. (c) Baker, R. T.; Tulip, T. H. Organometallics 1986, 5, 839. (d) Honan, M. B.; Atwood, J. L.; Bernal, I.; Herrmann, W. A. J. Organomet. Chem. 1979, 179, 403. (e) Rausch, M. D.; Moriarty, K. J.; Atwood, J. L.; Hunter, W. E.; Samuel, E. J. Organomet. Chem. 1987, 327, 39.

	1 able 1	IV. Relevant bo	nd Distances (A) and Angles (de	8)		
······································	Ia	Ib ^a	IIa	IIb	IIIa	IIIb	
 		В	ond Distances				
Fe-Si	2.325(3)	2.339(1)	2.341(2)	2.354(2)	2.365(2)	2.378(1)	
		2.341(1)					
Fe-C* ^b	1.739 (7)	1.721(4)	1.742(8)	1.718 (4)	1.739 (6)	1.718 (4)	
	1.742 (6)	1.723(3)	1.758 (8)		1.743 (5)		
Fe-P		2.207 (1)		2.210(1)		2.220(1)	
		2.215(1)					
C-0	1.147 (7)	1.163 (5)	1.16(1)	1.175 (4)	1.166 (8)	1.167 (5)	
	1.155 (8)	1.161(4)	1.120 (9)		1.146 (6)		
Si-Si			2.361 (3)	2.393 (2)	2.361 (2)	2.377(1)	
					2.354 (2)	2.378(1)	
Si ^c -C			1.886 (9)	1.906 (4)	1.910 (6)	1.904 (4)	
			1.866 (9)	1.907 (4)			
Si ^d -C	1.869 (7)	1.894 (4)	1.85(1)	1.886 (6)	1.856 (6)	1.877 (5)	
	1.874 (8)	1.888 (4)	1.846 (9)	1.848 (6)	1.859 (7)	1.873 (5)	
	1.877 (6)	1.878 (4)	1.848 (9)	1.858 (6)	1.868 (6)	1.867(5)	
		1.895 (4)			1.878 (6)	1.879 (5)	
		1.877(4)			1.862 (6)	1.870 (5)	
		1.870 (5)			1.868 (7)	1.856 (4)	
Fe- η^5 centroid	1.753	1.774	1.747	1.785	1.744	1.779	
			TD 1 A 1				
0.4 10 0.4	04.0 (0)		Bond Angles		05 0 (0)		
U*-Fe-U*	94.3 (3)	00.0 (1)	97.5 (3)	01.0.(1)	95.6 (2)	00.0 (1)	
P-Fe-C*		93.3 (1)		91.6 (1)		93.2 (1)	
0* E. C.	04.0 (0)	94.7 (1)	97.0 (0)	80.0 (1)	PF 0 (0)	01 0 (1)	
C*-Fe-51	84.2 (2) 85 9 (9)	83.1 (1)	87.0 (2)	80.9 (1)	00.2(2)	01.0 (1)	
D E. 8:	65.8 (<i>2</i>)	01.0 (1)	03.4 (3)	101 1 (1)	04.4 (1)	101.9 (1)	
P-re-51		100.0(1)		101.1(1)		101.2 (1)	
P. 9; 9;		90.3 (1)	1146(1)	110.0(1)	1122(1)	190.3 (1)	
re-bi-bi			114.0 (1)	115.0 (1)	113.5(1) 114.6(1)	120.0(1)	
e: .e:_e:					100 0 (1)	103.3(1) 104.8(1)	
$C = Si = F_0$	1140(9)	115.9(1)	111 1 (3)	107.1(1)	105.5(1) 1110(1)	1183(1)	
C-SI-Te	114.0(2) 110.7(2)	10.2(1)	112.1(0) 112.8(2)	107.1(1) 190.1(1)	111.0 (1)	110.0 (1)	
	110.7(2) 111.1(2)	100.0(1)	112.0 (0)	120.1 (1)			
Si_Si_C	111.1 (2)	110.0 (1)	108.8 (3)	106.0.(2)	102.7(2)	100.4(1)	
			100.0(0)	100.0(2) 101.7(1)	102.1(2) 104.4(2)	100.4(1) 100.6(1)	
			115.2 (3)	1187(2)	109.8 (2)	110.0(1)	
			109.7(3)	1091(2)	1154(2)	110.0(1)	
			107.1(3)	111.0(2)	109.2(2)	116.2(1)	
			10111 (0)	111.0 (2)	113.3(2)	110.6(2)	
					108.0(2)	114.1(2)	
					112.6(2)	113.3(2)	
C-Si ^c -C			104.5 (4)	100.8 (2)	(-/	(-)	
C-Si ^d -C	105.8 (3)	105.8 (2)	108.8 (4)	105.6 (3)	108.5 (3)	105.2 (2)	
	106.2 (3)	103.7(2)	109.2 (4)	105.2 (3)	107.7 (3)	105.6 (2)	
	108.9 (3)	102.0 (2)	106.5 (5)	106.6 (3)	106.0 (3)	108.2 (2)	
		102.9 (2)	• •	• •	107.2 (3)	107.4 (2)	
		100.7 (2)			108.8 (3)	103.3 (2)	
		106.1 (2)			106.6 (3)	107.5 (2)	
						ç	

Table IV. Relevant Bond Distances (Å) and Angles (deg)

^a Two molecules per asymmetric unit. ^bC^{*} = carbonyl C atom. ^cSi atom in α -position to Fe. ^d Terminal Si atom.

Table V. Chemical Shift Difference, $\Delta \delta = \delta(\mathbf{LMSi}_n) - \delta(\mathbf{McSi})$

-		LMSi _n	Si _α	Sig	
	Ia	$(\eta^5 - C_9 H_7) Fe(CO)_2 SiMe_3$	47.5		
	Ib	$(\eta^5 - C_9 H_7) Fe(CO) (PPh_3) SiMe_3$	41.7		
	IIa	$(\eta^5 - C_9 H_7) Fe(CO)_2 Si Me_2 Si Me_3$	44.6	7.6	
	IIb	$(\eta^5 - C_9 H_7) Fe(CO)(PPh_3) SiMe_2 SiMe_3$	37.4	9.5	
	IIIa	$(\eta^5 \cdot C_9 H_7) Fe(CO)_2 SiMe(SiMe_3)_2$	35.9	7.4	
	IIIb	$(\eta^5 - C_9 H_7) Fe(CO) (PPh_3) SiMe(SiMe_3)_2$	28.1	8.9	

phosphine ligand, while Me₃Si(3) is directed away from the bulky ligand. The various Si–Si bond lengths also exhibit a significant increase as a function of the substitution of CO by PPh₃. In the case of IIa and IIIa the Si–Si bonds are 2.361 (3) and 2.354 (2) Å (2.361 (2) Å), respectively; i.e., the bond lengths are equivalent. Substitution of the CO by PPh₃ lengthens these bonds to 2.393 (2) (IIb) and 2.377 (2) Å (2.378 (2) Å) (IIIb). There is no simple relationship to these various bond lengths, and certainly they do not change in the same incremental fashion as the Fe–Si bonds in the series I–III. The problem of variation of Si–Si bond lengths in transition-metal complexes is currently under investigation in our laboratories.

It is instructive to study the various geometrical considerations relating to the η^5 -indenyl ligand in the complexes Ia,b-IIIa,b. The various ring bond lengths and angles of the indenyl group itself do not alter significantly; however, the distance between the Fe atom and the center of the n^5 ring does show interesting variations among the complexes. For the three dicarbonyl complexes Ia-IIIa, this distance averages 1.747 (6) Å, while in the phosphine-substituted complexes Ib-IIIb, this value increases to 1.780 (6) Å. This change reflects the steric bulk of the complexes and reinforces the idea that it is such steric features that dominate the structural aspects of the six complexes studied. The coordination of the η^5 ring to Fe is asymmetric in all cases, exhibiting the previously observed "slipfold" distortion for π -indenyl ligands, in which the Fe atom shifts away from the central C-C bond of the indenyl group; the three Fe-C bond lengths to the outside C atoms are between 0.16 and 0.10 Å shorter than those to the central C atoms.¹⁴ As the overall bulk around the Fe atom increases, this distortion increases; in Ia the avFe-Si Bonds in Oligosilane Complexes

Figure 1. Structures of the $(\eta^5-C_9H_7)Fe(CO)(L)$ -oligosilane complexes: (a) $(\eta^5-C_9H_7)Fe(CO)_2SiMe_3$ (Ia); (b) $(\eta^5-C_9H_7)Fe(CO)(PPh_9)SiMe_3$ (Ib); (c) $(\eta^5-C_9H_7)Fe(CO)_2SiMe_2SiMe_3$ (IIa); (d) $(\eta^5-C_9H_7)Fe(CO)(PPh_3)SiMe_2SiMe_3$ (IIb); (e) $(\eta^5-C_9H_7)Fe(CO)_2SiMe(SiMe_3)_2$ (IIIa); (f) $(\eta^5-C_9H_7)Fe(CO)(PPh_3)SiMe(SiMe_3)_2$ (IIIb).

erage difference between the inner and outer Fe–C bond lengths is 0.096 Å, while in the bulkiest of the new complexes, IIIb, this has increased significantly to 0.13 Å. The fold angles, i.e. the angle between the planes of the allyl group and the six-membered ring of the η^5 -indenyl group, vary from 3.9 to 11.1°. There are no clear trends except that substitution of a CO group by PPh₃ significantly increases these angles: Ia, 6.7°; Ib, 8.5°; IIa, 3.9°; IIb, 11.1°; IIIa, 3.2°; IIIb, 8.9°. In all cases the phenyl ring points away from the coordinated metal atom, which is displaced from the center of the η^5 ring by between 0.1 and 0.2 Å: Ia, 0.10 Å; Ib, 0.15 Å; IIa, 0.12 Å; IIb, 0.18 Å; IIIa, 0.07 Å;

IIIb, 0.15 Å. These distortions are in line with those noted for other η^5 -indenyl complexes and show a distinct increase upon phosphine substitution.^{14b,c} Finally, it is noteworthy that the phenyl portion of the indenyl group always points away from the silyl group, even when this means it must be close to the bulky PPh_3 ligand. It seems that the silyl or methyl groups on the Fe-bonded silicon pose a greater steric impediment than the phenyl groups of the phosphine ligand. This is perhaps not surprising due to the capacity of the phenyl groups of the phosphine to take on a propeller type conformation, permitting a type of intercalation of the planar indenyl phenyl region.

A final example of the dominant steric factors in the phosphine complexes is the slight elongation of the Fe-P bonds on changing from Ib (2.207 (1) Å) to IIb (2.210 (1))Å) to IIIb (2.220 (1) Å).

In summary, the data presented in this study suggest that the role of π -bonding between the Fe and Si atoms in complexes of the type $(\eta^5 \cdot C_9 H_7)$ Fe(CO)(L)-silyl (L = CO, PPh₃) is minimal. The "expected" shortening of the Fe-Si bond upon replacement of CO by PPh₃ is not apparent. Of the three ligands involved in the complexes upon substitution of a CO ligand by PPh₃, only the CO ligand exhibits any bond length contraction expected for increased π -bonding with the metal atom. Both the silvl and η^5 -indenyl groups exhibit bond length increases, reflecting the steric changes occurring. The changes in the Fe-Si bond lengths are similar for the dicarbonyl and carbonyl phosphine complexes upon changing from SiMe₃ to Si_2Me_5 to 2- Si_3Me_7 . It is of course possible that any π -bonding is being overwhelmed by the increasing steric demand of the silyl and phosphine ligands at the iron atom. Further, it is possible that the Fe-Si bond lengths already are short in the $(\eta^5-C_9H_7)Fe(CO)_2$ system due to π -bonding and, therefore, increases in such bonding due to the phosphine substitution are not significant. Structural analysis of complexes involving smaller phosphine ligands may provide evidence to reinforce, or counter, the first possibility, while previous spectroscopic results would seem to rule out the second.^{10,12}

Acknowledgment. This research has been supported by the Robert A. Welch Foundation, Houston, TX, and the National Science Foundation via the establishment of a Minority Research Center of Excellence in Materials Science at the University of Texas at El Paso.

Supplementary Material Available: Tables of crystal data, complete bond lengths and bond angles, anisotropic thermal parameters, and H atom parameters for Ia,b, and IIa,b, and IIIa,b (45 pages); listings of observed and calculated structure factors (85 pages). Ordering information is given on any current masthead page.

Solid-State Structure and Dynamics of a Chiral Metallacyclic (Zirconoxycarbene)tungsten Complex

Gerhard Erker,*,† Friedrich Sosna,† Jeffrey L. Petersen,*,‡ Reinhard Benn,*,§ and Hildtrud Grondey§

Institut für Organische Chemie der Universität Würzburg, Am Hubland, D-8700 Würzburg, FRG, Department of Chemistry, West Virginia University, Morgantown, West Virginia 26506, and Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, D-4330 Mülheim a.d. Ruhr, FRG

Received December 4, 1989

The reaction of the $(\pi$ -allyl)zirconoxycarbene complex $Cp_2ZrOC[=W(CO)_5]CH_2C_3H_4$ (3a) with pinacolone chiral nine-membered metallacyclic carbene complex $Cp_2Zr(OC[=W(CO)_5]-W(CO)_5]$ affords the $CH_2CH=CHCH_2CMe(CMe_3)O)$ (5), featuring a trans C=C double bond in the ring. In solution only one diastereoisomer is detected, being characterized by relative configurations of R^* and p-S* at the chiral center and at the adjacent planar chirality element within the ring system, respectively. In contrast, the diastereomer 5', having relative configurations R^* and $p-R^*$, is detected as a minor component of the 3a/pinacolone addition product in the solid state by ${}^{13}C$ CP/MAS NMR spectroscopy. Complex 5 crystallizes in space group $P\bar{1}$ with cell parameters a = 8.447 (2) Å, b = 11.257 (3) Å, c = 15.224 (3) Å, $\alpha = 102.78$ (2)°, $\beta = 103.16$ (2)°, $\gamma = 99.69$ (2)°, and Z = 2. Temperature-dependent ¹³C CP/MAS NMR spectroscopy revealed hindered rotation of the W=C(carbene) bond of 5 in the crystalline state ($\Delta G^*_{rot}(350 \text{ K}) \approx 16.5 \text{ kcal/mol}$).

The corresponding nine-membered metallacyclic (zirconoxycarbene)tungsten complex Cp2Zr(OC[=W- $(CO)_5$]CH₂CH=CHCH₂CMe₂O) (4), formed by treatment of 3a with 1 molar equiv of acetone, exhibits a W=C(carbene) rotational barrier of $\Delta G^*_{rot}(260 \text{ K}) \approx 13.5 \text{ kcal/mol}$ in the solid state.

Introduction

Metaloxycarbene complexes are obtained by reacting $(\eta^2$ -olefin) metallocene type reagents with metal carbonyls.¹ Typically, treatment of $L_n M(CO)_m$ compounds with an equilibrium mixture of (s-cis-butadiene)- and (s-transbutadiene)zirconocene at 25 °C affords the corresponding

 $(\pi$ -allyl)zirconoxycarbene complexes in good yield.² Zirconoxycarbene complexes such as $(C_5H_4R)_2Zr(OC[=W (CO)_5$]CH₂C₃H₄) (3a, R = H; 3b, R = CH₃) further react with ketones,³ aldehydes,^{4a} and nitriles^{4b} by means of CC

[†]Universität Würzburg.

[‡]West Virginia University

[§] Max-Planck-Institut Mülheim.

⁽¹⁾ Erker, G.; Dorf, U.; Benn, R.; Reinhardt, R.-D.; Petersen, J. L. J. Am. Chem. Soc. 1984, 106, 7649. Erker, G.; Dorf, U.; Mynott, R.; Tsay, Y.-H.; Krüger, C. Angew. Chem., Int. Ed. Engl. 1985, 24, 584. (2) Review: Erker, G. Angew. Chem., 1989, 101, 411; Angew. Chem., I. E. J. Pool. 100, 101, 411, 40, 2007.

Int. Ed. Engl. 1989, 101, 411; Angew. Chem., Int. Ed. Engl. 1989, 28, 397.