Formation, Reactions, and Solution Dynamics of $[M(\eta^{1}-C_{5}H_{4}R)(C_{6}H_{4}-2-X)(PEt_{3})_{2}] (M = Pd, Pt)$

Gordon K. Anderson*

Department of Chemistry, University of Missouri - St. Louis, St. Louis, Missouri 63121

Douglas M. Black, Ronald J. Cross,* Fraser J. Robertson, David S. Rycroft, and Raymond K. M. Wat

Department of Chemistry, University of Glasgow, Glasgow G12 8QQ, Scotland, U.K.

Received March 28, 1990

Reactions of $[M(\eta^5-C_5H_4R)(C_6H_4-2-X)]$ (M = Pd, R = H, Me, SiMe₃, X = N=NPh or R = H, X = CH=NMe, 2-C₅H₄N; M = Pt, R = H, SiMe₃, X = N=NPh) with PEt₃ in toluene solution produce the adducts $[Pd(\eta^5-C_5H_4R)(C_6H_4-2-X)(PEt_3)]$ and trans- $[M(\eta^1-C_5H_4R)(C_6H_4-2-X)(PEt_3)_2]$ but none of the ionic $M(\eta^1-C_5H_4R)(C_6H_4-2-X)(PEt_3)$ and trans- $[M(\eta^1-C_5H_4R)(C_6H_4-2-X)(PEt_3)_2]$ but none of the ionic $M(\eta^1-C_5H_4R)(C_6H_4-2-X)(PEt_3)$ and trans- $[M(\eta^1-C_5H_4R)(C_6H_4-2-X)(PEt_3)_2]$ but none of the ionic $M(\eta^1-C_5H_4R)(C_6H_4-2-X)(PEt_3)$ and trans- $[M(\eta^1-C_5H_4R)(C_6H_4-2-X)(PEt_3)_2]$ but none of the ionic $M(\eta^1-C_5H_4R)(C_6H_4-2-X)(PEt_3)_2$ but none of the ionic $M(\eta^1-C_5H_4R)(C_6H_4-2-X)(PEt_3)_3$ and trans- $[M(\eta^1-C_5H_4R)(C_6H_4-2-X)(PEt_3)_2]$ but none of the ionic $M(\eta^1-C_5H_4R)(C_6H_4-2-X)(PEt_3)_3$ but none of $M(\eta^1-C_5H_4R)(C_6H_4-2-X)(PEt_3)_3$ but no $M(\eta^1-C_5H_4R)(C_6H_4-2-X)(PEt_3)_3$ but no $M(\eta^1-C_5H_4R)$ $[M(C_6H_4-2-X)(PEt_3)_3]^+C_5H_4R^- found in halogenated solvents. Instead, the reactive intermediates cis [M(\eta^1-C_5H_4R)(C_6H_4-2-X)(PEt_3)_2] are detected at -80 °C, but these isomerize as the temperature is raised. The fluxional <math>\eta^1-C_5H_4R$ groups of trans-[M($\eta^1-C_5H_4R$)(C₆H₄-2-X)(PEt_3)_2] undergo rapid rotation about the M-C bonds at ambient temperature, resulting in apparent magnetic equivalence of the PEt₃ groups. At temperatures around -90 °C bond rotation is slowed sufficiently to allow detection of the nonequivalent P atoms by NMR spectroscopy. The palladium complexes decompose slowly at 25 °C, but the platinum species isomerize readily to sp²-carbon-bonded vinylic cyclopentadienyl derivatives. At low temperatures the effects of restricted rotation about the Pt-C bonds of the vinylic cyclopentadienyl compounds can be deduced from the detection of syn and anti rotational isomers in solution.

Introduction

We have shown previously that the reactions of $(\eta^5$ cyclopentadienyl)[2-(arylazo)phenyl]palladium (1) with PEt_3 in $CDCl_3$ or CD_2Cl_2 solution proceed by two competing pathways.¹ One route reversibly produces first

 $[Pd(\eta^{5}-C_{5}H_{5})(C_{6}H_{4}N=NPh)(PEt_{3})]$ (2) and then trans- $[Pd(\eta^{1}-C_{5}H_{5})(C_{6}H_{4}N=NPh)(PEt_{3})_{2}]$ (3). The other route, favored by lower temperatures and high PEt₃ concentrations, leads instead to the ionic cyclopentadienyl compound $[Pd(C_6H_4N=NPh)(PEt_3)_3]^+C_5H_5^-(4)$. Excess PEt_3 does not convert 3 to 4, leading to the conclusion that 4 is produced via different intermediates, namely $[Pd(\eta^{1} C_5H_5)(C_6H_4-N=NPh)(PEt_3)]$ ($\eta^1-C_5H_5$ trans to N) and cis-[Pd(η^1 -C₅H₅)(C₆H₄N=NPh)(PEt₃)₂], neither of which was observed.¹

At temperatures above -40 °C in CDCl₃ or CD₂Cl₂, both the η^1 -cyclopentadienyl group of 3 and the cyclopentadienyl ion of 4 undergo H-D exchange, deuteriating the C_5H_5 rings. At higher temperatures, further irreversible reactions with both of these chlorinated solvents produce trans- $[PdCl(C_6H_4N=NPh)(PEt_3)_2]$ (5). Because of the reversible nature of the reactions with PEt₃, and the ready chlorination by the solvents used, we were unable to isolate 2, 3, or 4, except when PEt_3 was replaced by the very bulky tricyclohexylphosphine. The reaction of 1 with PCy_3 does not proceed beyond $[Pd(\eta^5-C_5H_5)(C_6H_4N=$ $NPh)(PCy_3)$], which was isolated from hydrocarbon solvents and characterized crystallographically. NMR spectroscopic measurements on this and related molecules reveal a considerable barrier to rotation about the palladium-arvl bond in solution.²

The platinum analogue of 1, $[Pt(\eta^5-C_5H_5)(C_6H_4N=$ NPh)], reacts with PEt_3 in $CDCl_3$ or CD_2Cl_2 solution in a way broadly similar to that for the palladium derivative, except that no analogue of 2 could be detected in any reaction sequences.¹ The nickel analogue of 1, however, does not react at all with PEt₃. X-ray crystal structure analyses of the three molecules $[M(\eta^5-C_5H_5)(C_6H_4N=$ NPh] (M = Ni, Pd, Pt) reveal no structural differences that could account for these variations.³

In this paper we report the reactions of $[M(\eta^5 C_5H_5(C_6H_4N=NPh)$] (M = Pd, Pt) and some related molecules with PEt_3 in toluene- d_8 solution. At low temperatures we are able to confirm the presence of previously undetected intermediates en route to compounds 3 and 4. Also, the platinum complexes produced behave in a way very different from those of palladium in this solvent, the η^1 -C₅H₅ ligands converting sequentially to two sp²carbon-bonded cyclopentadienyls. The ³¹P{¹H} NMR spectra of 3 and the sp²-bonded derivatives reveal phenomena consistent with restricted rotation about the M-C bonds in each case.

Results and Discussion

Palladium Compounds. Mixtures of $[Pd(\eta^5 C_5H_5(C_6H_4N=NPh)$] (1) and 2 mol equiv of PEt₃ in toluene- d_8 solution react very slowly at -80 °C. When the reaction is followed by ³¹P¹H and ¹H NMR spectroscopy, three products can be identified: the known [Pd(η^5 -

⁽¹⁾ Anderson, G. K.; Cross, R. J.; Fallis, S.; Rocamora, M. Organometallics 1987, 6, 1440.

⁽²⁾ Anderson, G. K.; Cross, R. J.; Manojlovic-Muir, L.; Muir, K. W.; Rocamora, M. Organometallics 1988, 7, 1520.
(3) Anderson, G. K.; Cross, R. J.; Manojlovic-Muir, L.; Muir, K. W. J.

Organomet. Chem. 1989, 362, 225.

 $C_5H_5)(C_6H_4N=NPh)(PEt_3)]$ (2; $\delta(P)$ 34.2, $\delta(C_5H_5)$ 5.85) and trans- $[Pd(\eta^1-C_5H_5)(C_6H_4N=NPh)(PEt_3)_2]$ (3; $\delta(P)$ 9.2, $\delta(C_5H_5)$ 6.73) and a previously undetected cis-bis(phosphine) compound ($\delta(P)$ 11.2 d, 7.6 d, $J_{PP} = 30$ Hz). The last compound exhibits a broad singlet in its ¹H NMR spectrum at 6.38 ppm, characteristic of a fluxional η^1 cyclopentadienyl (the signal is broad due to unresolved couplings to phosphorus). At -40 °C the reaction proceeds more rapidly, and the cis compound converts to 3, establishing it as the previously undetected species cis-[Pd- $(\eta^1-C_5H_5)(C_6H_4N=NPh)(PEt_3)_2]$ (cis-3). When the reaction is complete, compounds 2, 3, and free PEt_3 equilibrate (eq 1), with lower temperatures favoring 3. The previously

$$[Pd(\eta^{5}-C_{5}H_{5})(C_{6}H_{4}N=NPh)(PEt_{3})] + PEt_{3} \Longrightarrow trans-[Pd(\eta^{1}-C_{5}H_{5})(C_{6}H_{4}N=NPh)(PEt_{3})_{2}] (1)$$

observed¹ ionic complex $[Pd(C_6H_4N=NPh)(PEt_3)_3]^+C_5H_5^-$ (4) is not formed in this instance, presumably a consequence of employing a less polar solvent. Under an inert atmosphere this equilibrium persists for several days at room temperature, although cyclopentadiene and zerovalent palladium complexes⁴ are gradually produced.

When $[Pd(\eta^5-C_5H_5)(C_6H_4N=NPh)(PEt_3)]$ (2) is preformed by allowing 1 equiv of PEt₃ to react with 1 at 25 °C, the addition of a second PEt₃ at -80 °C failed to yield any *cis*-3. This supports our previous conclusion¹ that the reaction paths diverge at the addition of the first phosphine (Scheme I). The other mono(phosphine) intermediate has not been observed and must react very rapidly with a second PEt₃.

Analogous low-temperature reactions between PEt₃ and $[Pd(\eta^5-C_5H_4Me)(C_6H_4N=NPh)]$, $[Pd(\eta^5-C_5H_4SiMe_3)-(C_6H_4N=NPh)]$, $[Pd(\eta^5-C_5H_5)(C_6H_4-2-CH=NMe)]$, and $[Pd(\eta^5-C_5H_5)(C_6H_4-2-\{2-C_5H_4N\})]$ have been examined. $[Pd(\eta^5-C_5H_4SiMe_3)(C_6H_4N=NPh)]$ most closely resembles 1 in its reactions at -80 °C in toluene- d_8 solution, in that the Me₃Si-substituted analogues of 2, 3, and *cis*-3 are all produced slowly. $[Pd(\eta^5-C_5H_4SiMe_3)(C_6H_4N=NPh)-(PEt_3)]$ is the dominant species, and *trans*- $[Pd(\eta^1-C_5H_4SiMe_3)(C_6H_4N=NPh)(PEt_3)_2]$ is present in only small relative amounts. The reactions of the methylcyclopentadienyl complex, on the other hand, are striking in that the *trans*-bis(phosphine) complex is not detected in

Table I. NMR Parameters (ppm) for Compounds of the Type trans. and $cis \cdot [Pd(\eta^1-C_5H_4R)(C_6H_4-2-X)(PEt_3)_2]$ in C_7D_6 Solution

	-1-0							
R	x	temp, °C	$\delta(P)$ (J_{PP} , Hz)	$\delta(\mathbf{H})$ (C ₅ H ₄ R)	other resonances			
Trans Complexes								
н	N=NPh	-40	9.2	6.62				
Mea	N=NPh	-40	10.1	6.03	2.61 (CH ₃)			
				6.54	-			
SiMe ₃	N=NPh	-40	9.4	6.16 br	0.57 (SiCH ₃)			
Н	CH=	-20	10.0	6.48	3.56 (NCH ₃)			
	NMe							
н	$2-C_5H_4N$	-40	6.3	6.57				
Cis Complexes								
н	N=NPh	-80	7.6 d	6.38 br				
			11.2 d (30)					
Me	N=NPh	-80	8.9 d	6.18 br	$2.18 (CH_3)$			
			10.6 d (29)	6.23 br	Ū,			
SiMe ₃	N=NPh	-80	6.2 d	not resolved				
			11.2 d (31)					
н	CH=	-80	6.3 d	ca. 6.4 br				
	NMe		10.7 d (30)					

^aAt -90 °C the C₅ H_4 R signal at 6.1 ppm becomes very broad, whereas the signal at 6.5 ppm is less broad.

the NMR spectra at -80 °C: $[Pd(\eta^5-C_5H_4Me)(C_6H_4N=NPh)(PEt_3)]$ dominates the spectra, cis- $[Pd(\eta^1-C_5H_4Me)(C_6H_4N=NPh)(PEt_3)_2]$ being present also. When these reaction systems are warmed to -40 °C, the NMR signals for the cis compounds diminish to zero intensity within about 15 min. Thereafter the dynamic equilibria involving $[Pd(\eta^5-C_5H_4R)(C_6H_4N=NPh)(PEt_3)_2]$, trans- $[Pd(\eta^1-C_5H_4R)(C_6H_4N=NPh)(PEt_3)_2]$, and free PEt₃ remain the principal features observed.

Reactions of $[Pd(\eta^5-C_5H_5)(C_6H_4-2-CH=NMe)]$ with 2 mol equiv of PEt₃ at -80 °C similarly produce $[Pd(n^5 -$ C₅H₅)(C₆H₄-2-CH=NMe)(PEt₃)] and trans- and cis-[Pd- $(\eta^1-C_5H_5)(C_6H_4-2-CH=NMe)(PEt_3)_2]$. Here trans-[Pd- $(\eta^1-C_5H_5)(C_6H_4-2-CH=NMe)(PEt_3)_2]$ is the most abundant product and remains so above -50 °C after the cis isomer has isomerized, presumably reflecting a different equilibrium constant between the mono- and bis(phosphine) complexes with the iminyl ligand. $[Pd(\eta^5-C_5H_5)(C_6H_4 2-(2-C_5H_4N)$] reacts with 2 mol equiv of PEt₃ in toluene-d₈ solution to yield a brown precipitate. Although ³¹P and ¹H NMR parameters assignable to $[Pd(\eta^5-C_5H_5)(C_6H_4 2-(2-C_5H_4N)(PEt_3)$ and trans- $[Pd(\eta^1-C_5H_5)(C_6H_4-2-(2-\eta^2))(C_6H_4-2)]$ C_5H_4N)(PEt₃)₂] are detected for the remaining solution, no signals due to the cis isomer could be detected, possibly due to its low solubility.

The η^1 -cyclopentadienyl groups of trans-[Pd(η^1 -C₅H₅)(C₆H₄N=NPh)(PEt₃)₂] (3) and related compounds exhibit deceptively simple ¹H NMR spectra characteristic of fluxional rings.⁵ Salient ¹H and ³¹P NMR parameters for these compounds are given in Table I. Parameters for 2 and related compounds have been reported previously.²

Since our previous study did not extend to temperatures as low as -80 °C and was more restricted in the range of compounds used, the reactions of the five cyclopentadienyl derivatives above with PEt₃ were also examined in CD₂Cl₂ solution to enable a more direct comparison of the solvent effects to be made. Even at -80 °C, all of the compounds react readily and completely with 2 mol equiv of PEt₃. As well as products of types 2 and 3, the ionic cyclo-

⁽⁴⁾ Anderson, G. K.; Saum, S. E.; Cross, R. J.; Morris, S. A. Organometallics 1983, 2, 780.

^{(5) (}a) Larrabee, R. B. J. Organomet. Chem. 1974, 74, 313. (b) Cotton,
F. A. In Dynamic Nuclear Magnetic Resonance Spectroscopy; Jackman,
L. M., Cotton, F. A., Eds.; Academic Press: New York, 1975; p 377. (c)
Mann, B. E. In Comprehensive Organometallic Chemistry; Wilkinson,
G., Ed.; Pergamon Press, New York, 1982; Vol. 3, p 89. (d) Mann, B. E.
Chem. Soc. Rev. 1986, 15, 167.

Table II. NMR Parameters (ppm) for New Compounds of the Types trans- $[M(\eta^1-C_5H_4R)(C_6H_4-2-X)(PEt_3)_2]$ and $[M(C_6H_4-2-X)(PEt_3)_3]^+C_5H_4R^-$ in CD₂Cl₂ Solution

 			- // 0/04	5 7 5 4		
M	R	X	temp, °C	$\delta(\mathbf{P}) \ (J_{\mathbf{PP}}, \mathbf{Hz})$	$\delta(\mathbf{H}) \ (\mathbf{C_5}H_4\mathbf{R})$	other resonances
		trans	$(M(\eta^1-C_5H_4R))$	C_6H_4 -2-X)(PEt ₃) ₂] Complexes	3	
Pd	Me	N=NPh ^a	-40	10.0	5.66 br	2.13 (CH ₃)
					5.96 br	
Pd	$SiMe_3$	$N = NPh^b$	-70	9.5		
Pd	Н	CH=NMe ^c	-40	9.9	6.07	8.93 (CH=)
						NCH_3 obscured
Pd	Н	$2-C_5H_4N$	-80	6.1	6.01 br	
Pt	$SiMe_3$	N=NPh	-30	9.4 (${}^{1}J_{\text{PtP}}$ 2804)		
		ri	$M(C_{a}H_{a}-2-X)(PF$	Stalal+C.H.R ⁻ Complexes		
Pd	Me	N=NPh	-40	9.6 d	5.39 t	$2.19 (CH_2)$
				2.8 t (36)	5.45 t	
Pd	SiMe ₃	N=NPh	-70	9.6 d		
	0			2.7 t (36)		
Pd	Н	CH=NMe	-40	4.6 d	5.64	8.29 (CH==)
				2.1 t (38)		$3.47 (NCH_3)$
Pd	Н	$2-C_5H_4N$	-40	4.5 d	5.65	
				1.6 t (38)		
Pt	$SiMe_3$	N=NPh	-30	3.9 d (¹ J _{PtP} 2550)		
				$0.0 t ({}^{1}J_{PtP} 1796) (23)$		

^{a 13}C[¹H] NMR: δ (C) 15.7 (CH₃), 97.3 br (C₅H₄Me). ^{b 13}C[¹H] NMR: δ (C) -0.7 (SiCH₃). ^{c 13}C[¹H] NMR (-50 °C): δ (C) 48.1 (NCH₃), 109.6 (C₅H₅), 168.1 (CH=).

pentadienyl derivatives {Pd(C₆H₄-2-X)(PEt₃)₃]⁺C₅H₄R⁻ (X = N=NPh, R = H, Me, SiMe₃; X = CH=NMe, 2-C₅H₄N, R = H) are produced, each of which is readily detected by its characteristic ³¹P NMR doublet and triplet. Only in the reaction of [Pd(η^5 -C₅H₄Me)(C₆H₄N=NPh)] with PEt₃ is the set of ³¹P doublets due to the *cis*-bis(phosphine) complex apparent after mixing the reactants at -80 °C, and even at this temperature total conversion of *cis*-[Pd(η^1 -C₅H₄Me)(C₆H₄N=NPh)(PEt₃)₂] to [Pd(C₆H₄N=NPh)-(PEt₃)₃]⁺C₅H₄Me⁻ takes place within 4 h.

It thus appears that the ready reaction of the *cis*-bis-(phosphine) complexes with PEt₃ in CD₂Cl₂ (or CDCl₃) solution generally prevents their detection in these solvents. The electron-donating methyl substituent of the C_5H_4Me compound is likely to render $[Pd(C_6H_4N=$ NPh)(PEt₃)₃]⁺C₅H₄Me⁻ less stable and more difficult to generate, hence accounting for the detection of the *cis*bis(phosphine) complex in that system only. Characteristic NMR parameters for previously unreported derivatives of the types 3 and 4 are given in Table II.

We reported previously the easy exchange of cyclopentadienyl hydrogen atoms of trans- $[Pd(\eta^1-C_5H_5)(C_6H_4N=NPh)(PEt_3)_2]$ and $[Pd(C_6H_4N=NPh)-(PEt_3)_3]^+C_5H_5^-$ with deuterium of the CDCl₃ solvent.^{1,4} Warming the latter to -40 °C in CDCl₃ allows observation of H-D exchange by ¹H NMR spectroscopy, while ³¹P NMR observations confirm the integrity of the cation. Above 0 °C, a further reaction takes place to produce trans- $[PdCl(C_6H_4N=NPh)(PEt_3)_2]$ (5). Similarly trans- $[Pd(\eta^1-C_5H_5)(C_6H_4N=NPh)(PEt_3)_2]$ undergoes H-D exchange at -20 °C and above 0 °C reacts irreversibly with CDCl₃ to produce 5. We have examined the reactions of the analogous methylcyclopentadienyl and (trimethyl-silyl)cyclopentadienyl complexes to explore the nature of substituent effects on these processes.

The ¹H NMR spectrum of $[Pd(C_6H_4N=NPh)-(PEt_3)_3]^+C_5H_4Me^-$ in CDCl₃ solution at -40 °C reveals a steady reduction of both the ring and methyl proton signal intensities with time, while the ³¹P{¹H} NMR spectrum shows that the cation remains intact. No increase in the intensity of the CHCl₃ signal accompanies this process, however, indicating that H-D exchange with the solvent is not responsible. Moreover, the ³¹P signals due to the cation slowly decrease, being replaced by that of *trans*-[PdCl(C₆H₄N=NPh)(PEt_3)₂] (5). We conclude that the

 $C_5H_4Me^-$ ion reacts irreversibly with CDCl₃, probably producing Cl⁻, which reacts slowly with the cation. We have shown previously that Cl⁻ rapidly converts [Pd-(C₆H₄N=NPh)(PEt₃)₃]⁺ to 5 and PEt₃ at 25 °C.¹

The η^1 -cyclopentadienyl complex trans-[Pd(η^1 -C₅H₄Me)(C₆H₄N=NPh)(PEt₃)₂] also reacts with CDCl₃ to produce 5 at temperatures above 0 °C, and also without an increase in the amount of CHCl₃ present. The several H-D exchange mechanisms that operate for the cyclopentadienyls^{1,4} are believed to involve acid-base equilibria. It would thus seem that the methyl substituent renders the C₅H₄Me group more reactive toward the halogenated solvent, but too basic to participate in exchange equilibria.

 $[Pd(C_6H_4N=NPh)(PEt_3)_3]^+C_5H_4SiMe_3^-$ also decomposes to 5 in CDCl₃ solution at -50 °C without any H-D exchange, but *trans*- $[Pd(\eta^1-C_5H_4SiMe_3)(C_6H_4N=NPh)-(PEt_3)_2]$ decomposes at 0 °C, this time accompanied by CHCl₃ production. The acidity of $C_5H_5SiMe_3$ is thus presumably intermediate between C_5H_6 and C_5H_5Me .

All of the analogues of 2, 3, and 4 examined here react finally and irreversibly with $CDCl_3$ or CD_2Cl_2 over about 24 h at 25 °C to yield *trans*-[PdCl(C_6H_4N -NPh)(PEt₃)₂] (5) or an analogue thereof.

2. Platinum Compounds. Reactions of $[Pt(\eta^5 C_5H_5$ (C_6H_4N =NPh)] with 2 mol equiv of PEt₃ in toluene- d_8 solution at low temperature reveal some intriguing differences compared to those of the palladium compounds. As would be expected, the initial reactions are slower than those involving palladium, barely proceeding at -80 °C and still very slow at -60°C. The main product at these temperatures is cis-[Pt(η^1 -C₅H₅)(C₆H₄N=NPh)- $(PEt_3)_2$, with smaller amounts of the trans isomer. The ³¹P¹H NMR spectrum of cis-[Pt(η^1 -C₅H₅)(C₆H₄N= NPh)(PEt_3)₂] reveals Pt-P coupling constants of 1837 and 2518 Hz, characteristic of tertiary phosphines trans to aryl and η^1 -cyclopentadienyl, respectively.⁶ These data are presented in Table III. As for the related reactions in chlorinated solvents,¹ no trace of any compound of the type $[Pt(\eta^5-C_5H_5)(C_6H_4N=NPh)(PEt_3)]$, nor indeed of any mono(phosphine) complex, is detected, and it can be concluded that any such species must react with a second tertiary phosphine faster than they are produced. No ionic

⁽⁶⁾ Anderson, G. K. Organometallics 1986, 5, 1903.

Table III. NMR Parameters (ppm) for the Compounds [Pi	$t(C_{5}H_{4}R)(C_{6}H_{4}N=NPh)(PEt_{3})_{2}]$ in $C_{7}D_{8}$ Solution
---	--

geom	C ₅ H ₄ R bonding	$\delta(\mathbf{P}) \ (^1J_{\mathbf{PtP}}, \mathbf{Hz})$	$\delta(H) (C_5 H_4 R) (J_{PtH}, Hz)$	$\delta(C)$ (J_{PtC} , Hz)
trans	$\eta^1 - C_5 H_5^{a}$	6.6 (2832)	6.48 (23)	91.2 (24) (C ₅ H ₅)
cis	η^1 -C ₅ H ₅ ^a	4.1 d (2518) 7.4 d (1837) (² J _{PP} 15)	6.12 ^b (32)	ca. 114 br $(\tilde{C}_5 \tilde{H}_5)$
trans	η^1 -C ₅ H ₄ SiMe ₃ ^c	6.8 br (2818)		
cis	η^1 -C ₅ H ₄ SiMe ₃ °	4.2 d (2538) 7.5 d (1848) (² J _{PP} 14)		
trans	$sp^2-C_5H_5$ (A) ^d	8.9 (2833)	3.06** 6.52 6.95	51.9 (47) 132.1 (28) 134.0 (38) 135.4 (53) 166.3 t (616) (² Jpp 12)
trans	sp^2 - $C_5H_5(B)^d$	9.3 (2820)	3.02° 6.26 6.62	43.9 (49) 129.3 ^g 133.1 br ^g 158.0 br ^g
cis	$sp^2-C_5H_5$	3.2 d (1870) 5.9 d (1884) (² J _{PP} 16)	2.98 d $(11)^h$	
trans	sp²-C₅H₄SiMe₃ ^d	8.8 (2834)	3.18° 6.57 7.21	

^a At -25 °C. ^b Apparent triplet with $J_{PH} = 3$ Hz. ^c At -40 °C. ^d At +25 °C. ^e¹H chemical shifts determined with use of ¹H-¹H homonuclear correlation experiments. [/]Values in CD₂Cl₂ solution at 25 °C are 2.83, 6.20, and 6.59 ppm. ^d J_{PtC} not observed. The other ¹³C resonance is not observed. ^h Other signals obscured by the aromatic resonances.

species are produced in toluene solution.

Although cis- and trans- $[Pt(\eta^1-C_5H_5)(C_6H_4N=NPh) (PEt_3)_2$] are formed more slowly than their palladium counterparts, they decompose more readily and by a different route. If the compounds are kept at -40 °C, the singlet ³¹P NMR signal for the trans isomer and the two doublets due to the cis isomer are replaced over 2 or 3 days by a new singlet and pair of doublets, which we assign to trans and cis complexes containing sp²-carbon-bonded vinylic cyclopentadienyls (Scheme II). The vinylic compound cis-[Pt(C₅H₅-sp²)(C₆H₄N=NPh)(PEt₃)₂] is not formed in sufficient quantity to be characterized fully by NMR spectroscopy, but its ³¹P parameters are given in Table III. The trans vinylic compound A has been characterized fully by ¹H, ¹³C $\{$ ¹H $\}$, and ³¹P $\{$ ¹H $\}$ NMR spectroscopy. The C₅H₅ ring exhibits ¹H resonances at 3.06, 6.52, and 6.95 ppm, their mutual coupling being revealed by ¹H-¹H homonuclear correlation (COSY) experiments (there are two overlapping signals at 6.95 ppm). Five resonances are detected in the ¹³C¹H NMR spectrum, all of which show coupling to platinum. The methylene carbon appears at 51.9 ppm, the three methine carbons resonate in the region 132.1-135.4 ppm, and the ipso carbon appears as a triplet (due to coupling to the two equivalent P atoms) at 166.3 ppm. The ${}^{1}J_{PtC}$ value of 616 Hz is typical of a carbon atom lying trans to a ligand of high trans influence, such as an aryl group⁷ (Table III). The vinylic compound cis-[Pt(C₅H₅-sp²)(C₆H₄N=NPh)- $(PEt_3)_2$ isomerizes to the trans form A over 1 week at -40 °C or a few hours at 0 °C.

When reactions of $[Pt(\eta^5-C_5H_5)(C_6H_4N=NPh)]$ and PEt₃ are carried out at room temperature in toluene, benzene, methylene chloride, or chloroform solution, the solution turns green and the vinylic cyclopentadienyl compound *trans*- $[Pt(C_5H_5-sp^2)(C_6H_4N=NPh)(PEt_3)_2]$ (A) is formed rapidly. Over about 2 weeks at room temperature, however, this compound isomerizes to and equilibrates with a second *trans*-bis(phosphine) complex, which we assign to the alternative sp²-carbon-bonded vinylic cyclopentadienyl compound B, in which the CH₂ group is at the 3-position on the cyclopentadienyl ring (Scheme II). Compound B has been characterized spectroscopically and

shows features similar to those of A. Three ¹H signals are again observed. The methylene carbon appears at 43.9 ppm with a well-resolved coupling to platinum, but the other ¹³C signals are broad (Table III). Isomerization to B is accompanied by deterioration of the sample. Decomposition takes place relatively slowly in hydrocarbon solvents at room temperaure to produce an intractable mixture of many products, but in halogenated solvents the vinylic cyclopentadienyls react steadily with the solvent to produce *trans*-[PtCl(C₆H₄N=NPh)(PEt₃)₂], the platinum analogue of 5.¹

Isomerizations of η^1 -cyclopentadienyl complexes to vinylic species are well-known, particularly among maingroup-element species,⁸ and this behavior of *cis*- and *trans*-[Pt(η^1 -C₅H₅)(C₆H₄N=NPh)(PEt₃)₂] closely resem-

⁽⁷⁾ Brune, H. A.; Unsin, J.; Alt, H. G.; Schmidberg, G.; Spohn, K.-H. Chem. Ber. 1984, 117, 1606.

⁽⁸⁾ Jutzi, P. Chem. Rev. 1986, 86, 983.

bles that of the boron compound $Me_2BC_5H_5$, in which the fluxional η^1 -cyclopentadienyl is converted sequentially by two 1,2-hydrogen shifts to the vinylic-bonded species.⁹ As far as we are aware, however, there is only one other report of such a process operating at platinum, and this is in 18-electron species.¹⁰ Many other investigations of 16electron η^1 -C₅H₅ platinum complexes have revealed no counterpart to this isomerization,^{6,11} making the facile process described here and its contrast to the palladium analogue all the more striking.

The (trimethylsilyl)cyclopentadienyl complex [Pt(η^{5} - $C_5H_4SiMe_3)(C_6H_4N=NPh)]$ behaves in a similar manner, reacting with PEt₃ at low temperature to produce cis- and trans-bis(phosphine) complexes with η^1 -C₅H₄SiMe₃ ligands. At higher temperatures these species, too, are replaced by cis and trans analogues of the vinylic cyclopentadienyls, which at room temperature appear to convert to a single isomer of trans-[Pt($C_5H_4SiMe_3-sp^2$)($C_6H_4N=$ $NPh)(PEt_3)_2$] (Table III). When this species stands for 1 day at ambient temperature, however, a collection of new trans isomers is produced, and this was not examined further. The initial production of a single isomer of the Me₃Si-substituted vinylic cyclopentadienyl complex would seem to indicate that it results from a single preferred orientation of the η^1 -C₅H₄SiMe₃ species, presumably with the bulky trimethylsilyl substituent as far removed as possible from platinum.

3. Fluxionality. We have shown recently that rotation about the metal-aryl bond in complexes of the type trans-[MCl(C₆H₄-2-N=NPh)(PMe₂Ph)₂] and trans-[M- $(am)(C_6H_4-2-N=NPh)L_2]^+$ (M = Pd, Pt; L = PMe_2Ph, PMe₃, PEt₃; am = 2-fluoropyridine, 2,6-dimethylpyridine) is slow at temperatures below 273 K.¹² In the amine complexes, this gives rise to syn and anti isomers in the case of 2-fluoropyridine and to nonequivalent methyls with 2,6-dimethylpyridine. Thus, we may infer that the 2-(phenylazo)phenyl group lies perpendicular to the molecular plane in molecules of the type [M- $(C_5H_4R)(C_6H_4N=NPh)(PEt_3)_2]$ and cannot readily rotate past the two cis PEt₃ ligands at temperatures below 273 K.

With this in mind, we note that all the compounds of the type *trans*- $[M(\eta^1-C_5H_4R)(C_6H_4-2-X)(PEt_3)_2]$, and the sp²-bonded, vinylic cyclopentadienyl complexes of platinum, reveal variable-temperature ³¹P NMR spectroscopic phenomena which indicate that rotations about both the metal-aryl and metal-cyclopentadienyl bonds must be hindered. The observed effects are manifested in different ways for the two compound types due to the different geometrical properties of the η^{1} - and sp²-bonded C₅H₄R groups.

In each of the compounds trans- $[M(\eta^1-C_5H_4R)(C_6H_4-2 X)(PEt_3)_2$] the singlet ³¹P NMR resonance broadens and decoalesces at low temperatures (typically ~ -90 °C in either C₇D₈ or CD₂Cl₂ solution). Below the coalescence point an AB "quartet" (accompanied by ABX satellites in the platinum case) becomes apparent. In some cases a

Table IV. Low-Temperature ³¹P NMR Parameters (ppm) and Coalescence Temperatures for Compounds of the Type trans - $[M(\eta^1 - C_5H_4R)(C_6H_4 - 2 - X)(PEt_3)_2]$

		<u></u>	solvent		
М	R	Х	(temp, °C)	$\delta(\mathbf{P}) \ (^2J_{\mathbf{PP}}, \mathbf{Hz})$	<i>T</i> _c , °C ^a
Pd	н	N=NPh ^b	C_7D_8/CF_2Cl_2 (-110)	7.6, 10.2 (398)	-80°
			CD_2Cl_2		-98
Pd	Me	N=NPh	C ₇ D ₈ (-95) CD ₂ Cl ₂	8.4, 11.7 (400)	-83 -83
Pd	$SiMe_3$	N=NPh	C_7D_8 (-95)	8.9, 10.2 (408)	-75 -82
Pd	Н	CH=NMe	$C_{7}D_{8}/CF_{2}Cl_{2}$ (-120)	8.2, 11.5 (397)	-86°
			CD_2Cl_2		-93
Pd	Н	2-C₅H₄N	$C_7 \overline{D_8}/\overline{CF_2}Cl_2$ (-120)	3.1, 8.8 (392)	-94°
Pt	н	N=NPh	$\begin{array}{c} C_7 D_8 / CF_2 Cl_2 \\ (-100) \end{array}$	$\begin{array}{c} 3.3 \ ({}^{1}J_{\rm PtP} \ 2857) \\ 10.2 \ ({}^{1}J_{\rm PtP} \\ 2741) \ (410) \end{array}$	-80 (±2)
			CD ₂ Cl ₂		-82 (±2)
Pt	$SiMe_3$	N=NPh	CD_2Cl_2 (-100)	$3.9 ({}^{1}J_{PtP} 2721)$	-60 (±2)
			. ,	10.7 (${}^{1}J_{PtP}$ 2859) (405)	

^a ± 1 °C except where stated otherwise. ^b T_c values (°C) of related compounds in CD₂Cl₂ solution: trans-[Pd(η^{1} -C₆D₆)(C₆H₄N= NPh)(PEt₃)₂, -97; trans-[Pd(η^{1} -C₅H₅)(C₆H₄N=N-2-C₆H₄Me)-(PEt₃)₂], -96; trans-[Pd(η^{1} -C₅H₅)(C₆H₄N=N-3-C₆H₄Me)(PEt₃)₂], -96; trans-[Pd(η^{1} -C₅H₅)(C₆H₄N=N-4-C₆H₄Me)(PEt₃)₂], -98; trans-[Pd(η^1 -C₅H₅)(C₆H₄N=NPh)(PBu₃)₂], -98. °T_c measured for C_7D_8 solutions.

Scheme III

 C_7D_8/CF_2Cl_2 solvent mixture is needed to reach temperatures low enough to resolve the AB pattern. The ³¹P NMR parameters and coalescence temperatures are listed in Table IV.

This temperature dependence is typical of chemically nonequivalent phosphorus atoms which achieve apparent high-temperature equivalence through rapid fluxionality. Similar observations on the compound trans-{Pt(CPh= CHPh ($CH(SO_2CF_3)_2$) ($PPh_3)_2$] have been ascribed to hindered rotation about the $Pt-CH(SO_2CF_3)_2$ bond.¹³ In our compounds we assign the phenomenon to rotations about the metal to η^1 -cyclopentadienyl bonds (Scheme III). Most structural information on η^1 -cyclopentadienyl complexes indicates the rings to be planar, but with the metal bent out of the plane at the pseudotetrahedral carbon atom.^{11e,14} The ring must thus lie perpendicular to the molecular plane and be oriented toward one of the P atoms in trans- $[M(\eta^1-C_5H_4R)(C_6H_4-2-X)(PEt_3)_2]$ to account for the observed low-temperature inequivalence. Fast rotation about the $M-C_5H_4R$ bond at higher temperatures (Scheme III) will interconvert P_A and P_B .

An additional investigation was made of the trans mixed-phosphine complex $[Pd(\eta^1-C_5H_5)(C_6H_4N=NPh) (PEt_3)(PBu_3)$], prepared in toluene- d_8 solution by the addition of PBu₃ to $[Pd(\eta^5-C_5H_5)(C_6H_4N=NPh)(PEt_3)]$ at

⁽⁹⁾ Johnson, H. D.; Hartford, T. W.; Spangler, C. W. J. Chem. Soc., Chem. Commun. 1978, 242.

⁽¹⁰⁾ Boag, N. M.; Goodfellow, R. J.; Green, M.; Hessner, B.; Howard,

⁽¹⁰⁾ Boag, N. M.; Goodrenow, R. J.; Green, M.; Hessner, B.; Howard, J. A. K.; Stone, F. G. A. J. Chem. Soc., Dalton Trans. 1983, 2585.
(11) (a) Johnson, B. F. G.; Lewis, J.; White, D. A. J. Chem. Soc. A 1970, 1730. (b) Cross, R. J.; Wardle, R. J. Chem. Soc. A 1971, 2000. (c) Clark, H. C.; Shaver, A. Can. J. Chem. 1976, 54, 2068. (d) Hill, M. N. S.; Johnson, B. F. G.; Keating, T.; Lewis, J. J. Chem. Soc., Dalton Trans. 1975, 1197. (e) Day, C. S.; Day, V. W.; Shaver, A.; Clark, H. C. Inorg. Chem. 1981, 20, 2188. (f) Cross, R. J.; McLennan, A. J. J. Chem. Soc., Dalton Trans. Dalton Trans. 1983, 359.

⁽¹²⁾ Anderson, G. K.; Cross, R. J.; Leaman, S. A.; Robertson, F. J.; Rycroft, D. S.; Rocamora, M. J. Organomet. Chem. 1990, 388, 221.

⁽¹³⁾ Siedle, A. R.; Gleason, W. B.; Newmark, R. A. N.; Pignolet, L. H.

 ^{(14) (}a) Calderon, J. L.; Cotton, F. A.; Legzdins, P. J. Am. Chem. Soc.
 (14) (a) Calderon, J. L.; Cotton, F. A.; Legzdins, P. J. Am. Chem. Soc.
 1969, 91, 2528. (b) Calderon, J. L.; Cotton, F. A.; de Boer, B. G.; Takats, J. J. Am Chem. Soc. 1971, 93, 3592. (c) Day, V. W.; Stalts, B. R.; Reimer, K. J.; Shaver, A. J. Am. Chem. Soc. 1974, 96, 4008. (d) Rogers, R. D.; Bynum, R. V.; Atwood, J. L. J. Am. Chem. Soc. 1978, 100, 5238; 1981, 103, 692

Table V. ³¹P NMR Parameters (ppm) and T_e Values for trans-[Pt(sp²-C₅H₅)(C₆H₄N=NPh)(PEt₃)₂] in C₇D₈ Solution

$\delta(\mathbf{P}) \ (^1J_{\mathbf{PtP}}, \mathbf{Hz})^a$	<i>T</i> _c , °C	
major species 9.4 (2807) minor species 9.2 (2793)	-40	
major species 10.1 (2792) minor species 9.7 (2794)	-2	
	$\delta(P) ({}^{1}J_{PtP}, Hz)^{a}$ major species 9.4 (2807) minor species 9.2 (2793) major species 10.1 (2792) minor species 9.7 (2794)	$\begin{tabular}{ c c c c c c c }\hline\hline δ(P) $(^1J_{PtP}, Hz)^a$ $T_c, °C$ \\\hline\hline $major species 9.4 (2807)$ -40 \\\hline\hline $minor species 9.2 (2793)$ \\\hline\hline $major species 10.1 (2792)$ -2 \\\hline\hline $minor species 9.7 (2794)$ \end{array}

^a At -60 °C.

-50 °C. At and below this temperature it remains the major species present, though it is accompanied by small amounts of trans- $[Pd(\eta^1-C_5H_5)(C_6H_4N=NPh)(PEt_3)_2]$ and trans- $[Pd(\eta^1-C_5H_5)(C_6H_4N=NPh)(PBu_3)_2]$ compounds present from its formation. The ³¹P NMR spectrum of the mixed-phosphine complex reveals the expected AB "quartet" above the coalescence temperature ($\delta(\text{PEt}_3)$ 6.28, $\delta(\text{PBu}_3)$ 3.97, $J_{\text{PP}} = 405$ Hz; $\delta(\text{C}_5\text{H}_5)$ 6.66; all at -50 °C). At about -100 °C the lines of the AB pattern broaden and split, and at lower temperatures new resonances consistent with the formation of two AB quartets emerge, behavior consistent with the resolution of two isomers of this compound with the η^1 -C₅H₅ ring lying closer to either PEt₃ or PBu₃.

Most η^1 -cyclopentadienyls are believed to undergo fluxional "ring whizzing" via 1,2-shifts of the metal around the ring, analogous to 1,5-sigmatropic rearrangements of organic dienes, and such motions are suprafacial.^{5a,d,15} On the other hand, 1,3-shifts would be expected to be antarafacial. In all of the cyclopentadienyl compounds studied here, the ring motion remains rapid (as determined by ¹H NMR spectroscopy) at temperatures below the decoalescence of the phosphorus signals and, therefore, must involve migration around one face of the ring. There is thus no evidence that the ring whizzing is by other than the conventional 1,2-shifts, P_A and P_B being interconverted by rotations about the M–C bonds.

In contrast to the compounds of the type trans-[M- $(\eta^1-C_5H_4R)(C_6H_4-2-X)(PEt_3)_2]$, in which the ³¹P signals decoalesce and resolve to AB systems at low temperatures, the vinylic cyclopentadienylplatinum compounds show ³¹P signals that simply broaden and then resolve into two sharp signals as the temperature is lowered. The intensities of these signals are unequal, but each has a very similar Pt-P coupling constant (Table V). This behavior is typical of compounds with two asymmetric planar groups perpendicular to the molecular plane, which resolve into syn and anti isomers¹⁶ as rotation about the Pt-C bonds slows (Scheme IV). The higher coalescence temperature of trans-[Pt(C_5H_5 -sp²)(C_6H_4N =NPh)(PEt₃)₂] (Scheme IVB), compared with that of its isomer (Scheme IVA), presumably means that ligand rotation about the $Pt-C^3$ bond is more hindered in the former. Vinyls, like aryls, have been shown to adopt ground-state conformations perpendicular to the molecular planes of squareplanar species.^{16c,17}

4. Conclusions. Most striking are the ways in which the platinum compounds differ from those of palladium, namely, the apparent inability of Pt to form analogues of $[Pd(\eta^5-C_5H_5)(C_6H_4N=NPh)(PEt_3)]$ (2) and the rapid re-

arrangement of platinum η^1 -cyclopentadienyls to produce sp²-bonded vinyl species. A possible explanation for the former is that the 16-electron η^1 -cyclopentadienyl complex $[Pt(\eta^1-C_5H_5)(C_6H_4N=NPh)(PEt_3)]$ (P trans to N) may be thermodynamically preferred to the 18-electron compound, whereas the opposite is the case for palladium.

The nature of the fluxional behavior of the compounds provides the structural information that in solution the η^1 -cyclopentadienyl ligands must adopt ground-state conformations with the rings perpendicular to the molecular planes but bent at C¹ toward one phosphine or the other. The sp²-bonded vinylic C²- and C³-bonded cyclopentadienyls, on the other hand, must adopt perpendicular conformations symmetrically placed between the two phosphines, analogous to the case for ortho-substituted aryl groups.

Experimental Section

NMR spectra were recorded on a Varian XL-300 spectrometer operating in the FT mode. Microanalyses were performed at the University of Glasgow. Preparative details for most of the compounds used have been presented previously, as has the in situ preparation of their PEt₃ derivatives in solution.^{1,2} Reactions and NMR operations were carried out under an atmosphere of pure N_2 or Ar.

Preparation of $[Pd(\eta^5 - C_5H_5)(C_6H_4 - 2 - \{2 - C_5H_4N\})]$. A suspension of cyclopentadienyllithium was prepared by adding 11.0 mL of a solution of 1.55 M n-butyllithium in hexane to cyclopentadiene (3 mL) in ether (100 mL). To this was added $[Pd_2 (\mu$ -Cl)₂(C₆H₄-2-{2-C₅H₄N})₂]¹⁸ (4.5 g, 7.6 mmol). Stirring for 18 h resulted in formation of a deep red-brown solution and a black solid. After filtration and removal of most of the solvent at reduced pressure, deep purple crystals of the product were deposited (0.54 g, 11%). Anal. Calcd for $C_{16}H_{13}NPd$: C, 59.0; H, 4.0; N, 4.3. Found: C, 59.2; H, 3.9; N, 4.3. ¹H NMR data (C_7D_8 , -40 °C): δ(H) 5.83 (s, Cp), 5.95 (ddd, 1.3, 5.6, 7.1 Hz), 6.71 (ddd, 1.5, ~7.5, ~7.5 Hz), 7.05 (dd, 1.3, 7.2 Hz), 7.24 (dd, 1.5, 7.8 Hz), 7.73 (dd, 1.3, 7.6 Hz), 7.92 (dd, <1, 5.6 Hz), other signals obscured by solvent.

[(Trimethylsilyl)cyclopentadienyl][2-(phenylazo)phenyl]platinum. To a stirred solution of Me₃SiC₅H₅ (1.5 mL) in ether (50 mL) was added 2.0 mL of a solution of n-butyllithium in hexane (1.5 M). A white precipitate formed. To this was added $[Pt_2(\mu-Cl)_2(C_6H_4N=NC_6H_5)_2]$ (0.9 g, 1.1 mmol) in ether (40 mL). The solution turned deep red. After 2 h the solution was filtered to remove 0.5 g of a purple solid that contained some starting material. Evaporation of the solution and crystallization from petroleum ether (bp 40-60 °C) yielded 180 mg of the product as deep red crystals. Anal. Calcd for $C_{20}H_{24}PtSi:$ C, 46.8; H, 4.3; N, 5.45. Found: C, 47.5; H, 4.5; N, 5.3. NMR data (CDCl₃, room temperature): ¹H, δ (H) 0.07 (SiMe₃), 5.62 (apparent t, 1.9 Hz, $J_{\text{PtH}} = 11.6 \text{ Hz}, \text{Cp}$, 6.02 (apparent t, 1.9 Hz, $J_{\text{PtH}} = 18.4 \text{ Hz}, \text{Cp}$), 6.78 (ddd, 1.4, 6.9, 8.3 Hz), 7.09 (ddd, 1.2, 7.0, 8.2 Hz), 7.30-7.45 (m), 7.70 (dt, 8.0, 1.7 Hz), 8.01 (dd, <1, 8.0 Hz, $J_{PtH} = 39.2$ Hz),

^{(15) (}a) Su, C.-C. J. Am. Chem. Soc. 1971, 93, 5653. (b) Dalton, J.; McAuliffe, C. A. J. Organomet. Chem. 1972, 39, 251.

McRumite, C. A. J. Organomet. Chem. 1912, 39, 251.
 (16) (a) Moss, J. R.; Shaw, B. L. J. Chem. Soc. A 1966, 1793. (b) Wada, M.; Kusabe, K.; Oguro, K. Inorg. Chem. 1977, 16, 446. (c) Wada, M.; Sameshima, K. J. Chem. Soc., Dalton Trans. 1981, 240. (d) Wada, M.; Kumazoe, M. J. Organomet. Chem. 1983, 259, 245. (e) Hassan, F. S. M.; McEwan, D. M.; Pringle, P. G.; Shaw, B. L. J. Chem. Soc., Dalton Trans. 1985, 1501. (f) Miki, M.; Tanaka, M.; Kasai, N.; Wada, M. J. Organomet. Chem. 1985. Organomet. Chem. 1988, 352, 385. (17) Wada, M.; Sameshima, K.; Nishiwahi, K.; Kawasaki, Y. J. Chem.

Soc., Dalton Trans. 1982, 793.

⁽¹⁸⁾ Kasahara, A. Bull. Chem. Soc. Jpn. 1968, 41, 1272.

8.30 (dd, 1.4, 8.1 Hz, $J_{PtH} = 10.0$ Hz); ${}^{13}C{}^{1}H$, $\delta(C) 0.01$ (SiMe₃), 93.59 ($J_{PtC} = 36.1$ Hz, Cp), 94.20 ($J_{PtC} = 20.2$ Hz, Cp), 106.71 (ipso, Cp), 122.74, 124.48 (int 2), 124.87 ($J_{PtC} = 58.0$ Hz), 128.42 (int 2), 128.76 (int 2), 137.55 ($J_{PtC} = 104.9$ Hz), 156.87 ($J_{PtC} = 105.8$ Hz), 161.08 ($J_{PtC} = 95.3$ Hz), 165.74 ($J_{PtC} = 1351.5$ Hz).

Acknowledgment. We thank the donors of the Pe-

troleum Research Fund, administered by the American Chemical Society, for financial support (G.K.A.), NATO for a travel grant (G.K.A. and R.J.C.), the NSF for an instrumentation grant (Grant No. CHE-8506671), and Johnson Matthey for a loan of palladium and platinum salts.

Synthesis and Structural Characterization of $(C_5Me_5)Zr(R)_2(L)_n^+$ Complexes

Donna J. Crowther, Richard F. Jordan,* Norman C. Baenziger, and Akhilkumar Verma

Department of Chemistry, University of Iowa, Iowa City, Iowa 52242

Received March 12, 1990

The reaction of $(C_5Me_5)Zr(CH_3)_3$ with $[(C_5H_4Me)_2Fe][BPh_4]$ in THF yields $[(C_5Me_5)Zr(CH_3)_2-CH_3)_2-CH_3]$ $(THF)_2$ [BPh₄] (1) via oxidative cleavage of a Zr-CH₃ bond. X-ray diffraction reveals that the cation of 1 adopts a square-pyramidal/four-legged piano-stool structure with cis CH_3 groups. The orientations of the THF ligands and the Zr–O bond distances suggest that Zr–O π -bonding is important for at least one of the THF ligands. Data for 1: a = 14.551 (2) Å, b = 15.191 (4) Å, c = 17.852 (19) Å, $\beta = 92.26$ (3)°, V = 3943 (6) Å³, Z = 4 in space group $P2_1/c$. Reaction of 1 with excess dmpe in THF solution yields [(C₅Me₅)Zr(CH₃)₂(dmpe)(THF)][BPh₄] (2), which also has been characterized by X-ray diffraction. The cation of 2 has a distorted-octahedral structure with the Cp* ligand in an axial position and equatorial/axial cation of 2 has a distorted-octanedral structure with the Cp⁺ ligand in an axial position and equatorial/axial coordination of the dmpe ligand. The two CH₃ groups are equatorial and mutually trans. The THF ligand is equatorial and trans to the dmpe ligand and lies in the square plane in an orientation that precludes $Zr-O \pi$ -bonding. Data for 2: a = 10.110 (3) Å, b = 14.701 (8) Å, c = 17.190 (4) Å, $\alpha = 70.14 (3)^\circ$, $\beta = 78.72 (2)^\circ$, $\gamma = 84.68 (4)^\circ$, V = 2355.6 (1.9) Å³, Z = 2 in space group PI. The reaction of $(C_5Me_5)Zr(CH_2Ph)_3$ with $[(C_5H_4Me)_2Fe][BPh_4]$ in THF at 0 °C yields the thermally sensitive compound $[(C_5Me_5)Zr(CH_2Ph)_2(THF)][BPh_4]$ (3). The benzyl ligands of 3 are distorted, most likely as a result of weak donor interactions between the Ph rings and the cationic Zr center.

Cationic Zr(IV) alkyl complexes of general type $Cp*_2Zr(R)^+$ ($Cp* = C_5Me_5$) and $Cp_2Zr(R)(L)_n^+$ contain highly unsaturated Lewis-acidic metal centers, vacant coordination sites and/or labile ligands L, and reactive Zr-R bonds. This combination promotes insertion and σ -bond metathesis chemistry.¹⁻³ It is currently believed that cationic species of this type play a key role in metallocene-based olefin polymerization catalyst systems.¹⁻⁴

1989, 111, 2728.

Cationic mono- C_5R_5 Zr(IV) alkyl complexes (C_5R_5)Zr- $(R)_2(L)_n^+$ are of interest because their increased unsaturation may lead to even higher reactivity, particularly with sterically crowded substrates.^{5,6} It is also possible that $(C_5R_5)M(R)_2^+$ species play a role in some $(C_5R_5)MX_3$ -based olefin polymerization catalysts.⁷ This paper describes the synthesis and characterization of several $(C_5Me_5)Zr(R)_2$ - $(L)_n^+$ complexes which are the first examples of this class.

Results and Discussion

Synthesis of $[Cp*Zr(CH_3)_2(THF)_2][BPh_4]$ (1). The reaction of $Cp*Zr(CH_3)_3$ with $[Cp'_2Fe][BPh_4]$ (Cp' =

^{(1) (}a) Jordan, R. F.; Dasher, W. E.; Echols, S. F. J. Am. Chem. Soc. 1986, 108, 1718. (b) Jordan, R. F.; Bajgur, C. S.; Willett, R.; Scott, B. J. Am. Chem. Soc. 1986, 108, 7410. (c) Jordan, R. F.; Echols, S. F. Inorg. Chem. 1987, 26, 383. (d) Jordan, R. F.; LaPointe, R. E.; Bajgur, C. S.; Echols, S. F.; Willett, R. J. Am. Chem. Soc. 1987, 109, 4111. (e) Jordan, R. F.; Bajgur, C. S.; Dasher, W. E.; Rheingold, A. L. Organometallics 1987, 6, 1041. (f) Jordan, R. F. J. Chem. Educ. 1988, 65, 285. (g) Jordan, R. F.; LaPointe, R. E.; Bradley P. K.; Baenziger, N. C. Organometallics 1989, 8, 2892. (h) Jordan, R. F.; LaPointe, R. E.; Baenziger, N. C.; Hinch, G. D. Organometallics 1990, 9, 1539. (i) Jordan, R. F.; Bradley, P. K.; Baenziger, N. C.; LaPointe, R. E. J. Am. Chem. Soc. 1990, 112, 1289. (j) Jordan, R. F.; Taylor, D. F. J. Am. Chem. Soc. 1989, 111, 778. (k) Jordan, R. F.; Guram, A. S. Organometallics 1990, 9, 1546. (l) Jordan, R. F.; Guram, A. S. Organometallics 1990, 9, 2116. (2) Hlatky, G. G.; Turner, H. W.; Eckman, R. R. J. Am. Chem. Soc. 1989, 111, 2728.

^{(3) (}a) Bochmann, M.; Wilson, L. M. J. Chem. Soc., Chem. Commun. (a) Bochmann, M., Wilson, L. M. S. Chem. Boc., Chem. Commun.
(b) Bochmann, M.; Wilson, L. M.; Hursthouse, M. B.; Short, R. L. Organometallics 1987, 6, 2556. (c) Bochmann, M.; Wilson, L. M.; Hursthouse, M. B.; Motevalli, M. Organometallics 1988, 7, 1148. (d) Bockmann, M.; Jaggar, A. J.; Wilson, L. M.; Hursthouse, M. B.; Motevalli, M. Polyhedron 1989, 8, 1838. (e) Taube, R.; Krukowka, L. J. Organomet.

^{M. Polyhedron 1989, 8, 1838. (e) Taube, R.; Krukowka, L. J. Organomet.} Chem. 1988, 347, C9.
(4) (a) Eisch, J. J.; Piotrowski, A. M.; Brownstein, S. K.; Gabe, E. J.; Lee, F. L. J. Am. Chem. Soc. 1985, 107, 7219. (b) Gassman, P. G.; Callstrom, M. R. J. Am. Chem. Soc. 1987, 109, 7875. (c) Hedden, D.; Marks, T. J. J. Am. Chem. Soc. 1988, 110, 1647. (d) Toscano, P. J.; Marks, T. J. J. Am. Chem. Soc. 1985, 107, 653. (e) Dyachkovski, F. S.; Shilova, A. K.; Shilov, A. E. J. Polym. Sci., Part C 1967, 16, 2333. (f) Ewen, J. A.; Jones, R. L.; Razavi, A.; Ferrara, J. D. J. Am. Chem. Soc. 1988, 110, 6255. (g) Pino, P.; Cioni, P.; Wei, J. J. Am. Chem. Soc. 1987, 109, 6189. 109, 6189.

⁽⁵⁾ For leading references to neutral mono-C₅R₅ group 4 metal alkyl complexes and related complexes see: (a) Wolczanski, P. T.; Bercaw, J. E. Organometallics 1982, 1, 793. (b) Wengrovius, J. R.; Schrock, R. R. J. Organomet. Chem. 1981, 205, 319. (c) Blenkers, J.; DeLiefde Meijer, H. J.; Teuben, J. H. J. Organomet. Chem. 1981, 218, 383. (d) Mintz, E. A.; Moloy, K. G.; Marks, T. J.; Day, V. W. J. Am. Chem. Soc. 1982, 104, 4692. (e) Erker, G.; Berg, K.; Angermund, K.; Kruger, C. Organometallics 1987, 6, 2620. (f) Mena, M.; Royo, P.; Serrano, R.; Pellinghelli, M. A.; Tiripicchio, A. Organometallics 1989, 8, 476. (g) Mena, M.; Pellinghelli, M. A.; Tiripicchio, A. Organometallics, 1989, 8, 476. (g) Mena, Soc., Chem. Commun. 1986, 1118. (h) Roddick, D. M.; Santarsiero, B. D.; Bercaw, J. E. J. Am. Chem. Soc. 1985, 107, 4670. (i) Wielstra, Y.; Gambarotta, S.; Roedelof, J. B.; Chiang, M. C. Organometallics 1988, 7, 2177. (6) For related lanthanide alkyls of the type (C₅R₆)M(R)₂(L)_n, see: (a) van der Heijden, H.; Pasman, P.; de Boer, E. J. M.; Schaverien, C. J. Organometallics 1989, 8, 1459. (b) van der Heijden, H.; Schaverien, C.

Organometallics 1989, 8, 1459. (b) van der Heijden, H.; Schaverien, C. J.; Orpen, A. G. Organometallics 1989, 8, 255. (c) Heeres, H. J.; Meetsma, A.; Teuben, J. H.; Rogers, R. D. Organometallics 1989, 8, 2637. (d) See also: Schumann, H.; Albrecht, I.; Pickardt, J.; Hahn, E. J. Organomet. Chem. 1984, 276, C5. (e) Albrecht, I.; Schumann, H. J. Organomet. Chem. 1986, 310, C29.

 ^{(7) (}a) Dahmen, K.-H.; Hedden, D.; Burwell, R. L.; Marks, T. J. Langmuir 1988, 4, 1212.
 (b) Ishihara, N.; Kuramoto, M.; Uoi, M. Macromolecules 1988, 21, 3356.
 (c) Zambelli, A.; Oliva, L.; Pellecchia, C. Macromolecules 1989, 22, 2129.
 (d) Chien, J. C. W.; Wang, B.-P. J. Polym. Sci., Part A 1989, 27, 1539.
 (e) Skupinski, W.; Cieslowska-Glinska, U.Y. (1998), 27, 1539. I.; Wasilewski, A. J. Mol. Catal. 1985, 33, 129.