ingly, the C-Sn-C angles lie within a quite narrow range, while the carbon-tin bonds are elongated by 0.08 A when the substituent is changed from methyl to 2,4,6-tris(trifluoromethy1)phenyl. Note that in the latter ligand an sp2-hybridized carbon is attached to tin and a shorter carbon-tin bond is expected. Although X-ray and gasphase electron diffraction parameters have to be compared carefully,¹⁵ the data above indicate that possible electrostatic ligand-ligand repulsions lead to an elongation of bonds rather than a widening of angles. Additionally, reduced electron density on the tin-bonded carbon atoms by the electron-withdrawing trifluoromethyl groups will result in increasing repulsive interactions between the electropositive tin atom and the adjacent carbon atoms¹⁶ and elongated bonds.

Although steric protection of the low-valent tin center certainly plays an important role in its stability, a spacefilling model of **1** (Figure 2) shows that the trifluoromethyl groups of the ligands form intramolecular fluorine-tin contacts, leaving one side of the molecule sterically unprotected. The averaged fluorine-tin bond length F7- Sn/FlO-Sn is 2.67 **A;** the F2-Sn/F16-Sn bond distance is longer (2.82 **A)** but still considerably shorter than the sum of the van der Waals radii (F, 1.47 **A;** Sn, **2.17 A6).** The shortest intermolecular fluorine-tin distance is 3.51 **A** and will not significantly contribute to the stability of **1.** The position of the trifluoromethyl groups is not defined

by steric congestions but by maximizing fluorine-tin interactions without interligand repulsions.

The stabilizing influence of the 2,4,6-tris(trifluoromethy1)phenyl ligand is only partly due to steric shielding. Despite the electron-withdrawing character of the trifluoromethyl group through the σ -bond framework and negative hyperconjugation,¹⁷ the *electron–donating* ability via the lone pairs at the fluorine atoms is clearly established and is probably the most important factor preventing oligo- or polymerization of $1¹⁸$ Obviously, these intramolecular contacts are observed in solution as well and might be responsible for the surprising high-field shift of the 19 Sn NMR signal.

Acknowledgment. This work was supported by Prof. W. Sundermeyer, Prof. G. Huttner, Prof. H. W. Roesky, the Deutsche Forschungsgemeinschaft (GR 955/1-2), and the Fonds der Chemischen Industrie.

Supplementary Material Available: Tables of atomic coordinates, thermal parameters, and bond distances and angles (3 pages); a listing of observed and calculated structure factors (9 pages). Ordering information is given on **any** current masthead page.

Synthesis, Structure, and Reactivity of the First Stable Diaryllead(I I) Compound

Sally Brooker, Jan-Karel Buijink, and Frank T. Edelmann'

Institut fur Anorganische Chemie, Universitat Gottingen, Tammannstrasse 4, D-3400 Gijttingen, Federal Republic of Germany

Received August 30, 1990

Summary: Reaction of PbCI₂ with 2,4,6-(CF₃)₃C₆H₂Li results in the formation of the first stable diaryllead(I1) compound, $[2,4,6-(CF₃)₃C₆H₂]₂Pb$ (4). X-ray structural analysis shows that in the solid state 4 is a bent monomer. 4 reacts with $2,4,6-(CF₃)₃C₆H₂SH$ (5) in hydrocarbon solutions to produce the solvent-free thiolate [2,4,6-(C- F_3)₃C₆H₂S]₂Pb **(6)**.

Lead(II) compounds with σ -aryl substituents are unknown,¹ and the only authentic lead(II) alkyl is $\rm [(Me_3Si_2CH)_2Pb$ (1), which was obtained in minimal yield **(3%)** by Lappert et al. in 1976.2 The synthesis of diphenyllead(I1) was reported in 19223 but is not reprodu- cible.^4 A difficulty in obtaining these compounds is their

⁽³⁾ Krause, E.; Reissaus, G. G. Ber. Dtsch. *Chem.* **Ges. 1922,55,888. (4) Harrison, P. G. In Comprehensiue Organometallic Chemistry; Wilkinson, G., Stone, F. G. A., Abel, E. W., Eds.; Pergamon Press: Oxford, England, 1982; p 670.**

tendency to disproportionate. For example, the reaction of PbCl, with aryllithium or aryl Grignard reagents leads to organolead (IV) compounds and elemental lead.⁴ Further complications result from the reactivity of these complexes as indicated by the extreme sensitivity of **1**

⁽¹⁵⁾ The molecular structures of $[(Me₃Si)₂N]₂Sn$ determined by X-ray **and GED methods differ by 8.7° in the N-Sn-N angle (104.7 vs 96°, respectively).**

⁽¹⁶⁾ Oberhammer, H. *J.* **Fluorine Chem. 1983,23, 147.**

⁽¹⁷⁾ Schleyer, P. v. R.; **Kos, A.** J. **Tetrahedron 1983, 39, 1141.**

⁽¹⁸⁾ Zuckerman et al. already postulated fluorine-tin contacts in the closely related bis[2,6-bis(trifluoromethyl)phenyl]stannylene.* Escudi6 et al. found short phosphorus-fluorine contacts in a diphosphene bearing this ligand.4 A good measure of the extent of these interactions is the ratio $r(M-F_{obsd})$: r (van der Waals), which equals 0.73 in 1.

⁽¹⁹⁾ Keller, E. A Program for the Graphical Presentation of Molecular Models; Kristallographisches Institut der Universität Freiburg: Freiburg, **FRG, 198.**

⁽¹⁾ See, for example: Elschenbroich, C.; Salzer, A. Organo-
metallchemie; B. G. Teubner: Stuttgart, FRG, 1986; p 159.
(2) Davidson, P. J.; Harris, D. H.; Lappert, M. F. J. Chem. Soc.,
Dalton Trans. 1976, 2268.

Figure **1.** Molecular structure of **4 (50%** thermal ellipsoids). Selected bond lengths **(A)** and angles (deg): Pb-C1 = 2.361 **(4),** Pb-C(10) = **2.371 (4),** C1-Pb-C10 = **94.5** (1).

toward air, moisture, and light.

We, and others, have recently exploited the 2,4,6-tris- $(trifluorometry)$ phenyl substituent⁵⁻⁷ to stabilize a number of new main-group compounds, including the unusually stable diphosphene $[2,4,6-(CF_3)_3C_6H_2P]_2^6$ and $[2,4,6-(C F_3$)₃C₆H₂OTl]₂,^{7a} in which the thallium atom is two-coordinate. In this communication we report the use of this substituent to form the first fully characterized lead(I1) diarvl.

Slow addition of $2,4,6$ - $CF_3)_3C_6H_2Li(3)$ to a suspension of PbCl₂ in ether results in a clear yellow solution, with no indication of the formation of metallic lead (Scheme I).8 Evaporation of the volatile components, followed by recrystallization of the solid residue from n-hexane, produced large yellow crystals of $[2,4,6-(CF_3)_3C_6H_2]_2Pb$ (4). **4** is thermally stable to its melting point (58 **"C).** In the solid state it is not light sensitive (this is not true for solutions, which slowly decompose when exposed to light). In contrast to **1,4** is not thermochromic and its yellow color is retained between -196 °C and its melting point. The E1 mass spectrum shows a molecular peak at *m/z* 769 with 39% relative intensity.

(8) (a) Preparation of **3: 128** mL of an n-butyllithium solution **(1.54** N in hexane) was added to 54.5 g (0.2 mol) of 2 in 160 mL of ether at a
rate that maintained a gentle reflux. The metalation reaction was com-
plete after stirring at room temperature for 24 h. (b) Preparation of 4:
The s of 27.8 g (0.1 mol) of PbCl₂ in 50 mL of ether. After a further 48 h the solvent was removed, the residue extracted with 400 mL of *n*-hexane, and solvent was removed, the residue extracted with 400 mL of *n*-hexane, and
the solution filtered through a thin Celite pad. Concentration to ca. 80
mL and cooling to -20 °C yielded 25.7 g (33%) of 4 as large yellow
crystal $(^4J(Pb,H) = 13 \text{ Hz})$. ¹⁹F NMR (C₆D₆, 75.39 MHz, CFCI₃ external): δ Hz). ¹³C NMR (C₆D₆, 62.91 MHz): δ 258.5 (t, ¹J(Pb,C) = 1360 Hz, C1), 139.3 (q, ²J(C,F) = 30 Hz, C2), 130.7 (q, ²J(C,F) = 34 Hz, C4), 130.5 (q, ¹J(C,F) = 274 Hz, C-C₁), 128.4 (m, C3), 123.6 (q, ¹J(C,F) *m/z* **769** (M', **39%), 751** (M+-F, **100).** 'H NMR (C&, **80** MHz): 6 **8.14** -59.4 (12 F, o -CF₃, 'J(Pb,F) = 358 Hz), -63.1 (6 F, p-CF₃, 'J(Pb,F) = 6

The single-crystal X-ray structural analysis 9 reveals that 4 is monomeric in the solid state (Figure 1). The shortest intermolecular Pb-Pb separation is 7.316 **A;** Pb-Pb bonding can be ruled out.^{2,4} Four intramolecular Pb-F contacts may be contributing to the unusual stability of Pb-F16 = 2.966 **A).** These Pb-F interactions are relatively weak, as can be seen by comparison with $PbF_2(Pb-F$ 2.033 Å).¹¹ The only other example of a structurally characterized two-coordinate lead(I1) compound with monodentate ligands is $Pb[N(SiM_{e3})_2]_2$, which has been studied by both X-ray and electron diffraction.12 **As** expected, both structures are bent. In the solid phase, the angle at lead $(L-Pb-L)$ is smaller in 4 $(94.5 \text{ (1)}^{\circ})$ than in the silylamide (103.6 $(7)°$). In the gas phase smaller L-Pb-L angles are observed for $Pb[N(SiMe₃)₂]₂$ (91 (2)°) and $PbF_2 (97 \ (2)^o)^{11,12}$ Similar variations in the L-M-L angle are observed in two-coordinate germanium(I1) and tin (11) compounds.¹³ **4** (Pb-F1 = 2.785 A; Pb-F9 = 2.793 A; Pb-F10 = 2.839 **A;**

4 is readily soluble in nonpolar solvents, and further reactions can be carried out in hydrocarbon solutions. Thus, addition of C1, gas to a hexane solution of **4** causes quantitative production of $PbCl₂$. More interesting is the reaction of 2 equiv of 2,4,6- $(\text{CF}_3)_3\text{C}_6\text{H}_2\text{SH}$ (5)⁵ in pentane, which yields the solvent-free thiolate $[2,4,6-(CF_3)_3C_6H_2$ - S_{12} Pb (6) as a yellow analytically pure precipitate (Scheme $II)$.¹⁴

Acknowledgment. We thank Professors H. W. Roesky and G. M. Sheldrick for helpful discussions and the Fonds der Chemischen Industrie for support of this work.

Supplementary Material Available: Tables of crystal data, data collection, solution and refinement parameters, atomic coordinates, bond distances and angles, anisotropic displacement coefficients, and hydrogen atom coordinates (6 pages); a table of observed and calculated structure factors **(9** pages). Ordering information is given on any current masthead page.

(10) Sheldrick, G. M. Acta Crystallogr. **1990,46A, 467. (11)** Madelung, O., Ed. Landolt-Bornstein Numerical Data and Functional Relationships in Science and Technology: Structure Data *of* Free Polyatomic Molecules; Springer-Verlag: Berlin, Heidelberg, **1987;**

Vol. **15(II),** p **87. (12)** Fjeldberg, T.; Hope, H.; Lappert, M. F.; Power, P. P.; Thorne, **A.** J. *J. Chem.* Soc., Chem. *Commun.* **1983, 639.**

(13) (a) Cetinkaya, B.; Gumrukcu, I.; Lappert, M. F.; Atwood, J. L.; Rogers, R. D.; Zaworotko, M. J. *J.* Am. *Chem.* SOC. **1980,102,2088.** (b) Lappert, M. F.; Slade, M. J.; Atwood, J. L.; Slade, M. J. *J. Chem.* Soc., Chem. Commun. 1980, 621. (c) Hitchcock, P. B.; Lappert, M. F.; Samways, B. J.; Weinberg, E. L. J. Chem. Soc., Chem. Commun. 1983, 1492.
(d) Fjeldberg, T.; Hitchcock, P. B.; Lappert, M. F.; Smith, S. J.; Thorne,

A. J. J. Chem. Soc., Chem. Commun. 1985, 939.

(14) Preparation of 6: 5.88 g (18.8 mmol) of 5 was added to a stirred

pentane solution (100 mL) of 4 (7.20 g, 9.4 mmol). After 2 h the lemon

yellow precipitate was filtered $(C_6H_2(CF_2)_2CF_3S$, 100). ¹H NMR (C_6D_6 , 80 MHz): δ 7.97 (s, 4 H). ¹⁹F
NMR (C₆D₆, 75.39 MHz, CFCl₃ external): δ -59.9 (12 F, o-CF₃, ⁵J(Pb,F) = **353** Hz), **-62.6** (6 F, p-CF,).

⁽⁵⁾ Carr, G. E.; Chambers, R. D.; Holmes, T. F.; Parker, D. G. J.
Organomet. Chem. 1987, 325, 13.
(6) Scholz, M.; Roesky, H. W.; Stalke, D.; Keller, K.; Edelmann, F. T.
J. Organomet. Chem. 1989, 366, 73.
(7) (a) Roesky, H

⁽⁹⁾ Crystal data for 4: C18H4FL8Pb, *M,* = **769.5,** monoclinic, space group F2,/c, a = **11.837 (1)** A, *b* = **11.993 (1)** A, c = **14.611 (2) A,** @ = **97.93** (1) ^o, $V = 2054.4$ Å, $Z = 4$, $d_{\text{caled}} = 2.488$ g/cm³, $\mu(\text{Mo K}\alpha)$ (graphite monochromator) = **8.44** mm-l. The data were collected with use of **26'-w** scans on a Stoe-Siemens AED diffractometer at **-120** OC: **4055** measured reflections, 4017 unique reflections, and 3660 observed reflections with $F \geq 3\sigma(F)$; $2\theta_{\text{max}} = 52^{\circ}$. Structure solution and refinement were performed with use of SHELXS88¹⁰ and SHELXTL, semiempirical absorption a extinction corrections applied, all non-hydrogen atoms refined anisotropically, and hydrogen atoms inserted at calculated positions. Re-
finement of 335 parameters converged with $R = 0.0286$, $R_w = 0.0333$, $w^{-1} = \sigma^2(F) + 0.0002F^2$, and maximum/minimum rest electron density $+1.2/-1.1 \text{ Å}^{-$