was supported by a Grant-in-Aid for Encouragement of Young Scientists (No. **02740254)** from the Ministry of Education, Science, and Culture of Japan.

Supplementary Material Available: Detailed information

on the X-ray crystal analysis of lb and a **mass** spectral data table (observed and calculated abundances of isotopomers of M') for lb (18 pages); a table of observed and calculated structure factors for **lb** (7 pages). Ordering information is given on any current masthead page.

Reduction of Coordinated Carbon Dioxide by Transition-Metal Hydrides

Jing-Cherng Tsai, Masood A. Khan,[†] and Kenneth M. Nicholas*

Department of *Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma 730 19 Received October 3. 1990*

Summary: The reactions of $(\eta^5-C_5H_5)_2MO(\eta^2-CO_2)$ (1) with the transition-metal hydrides $HCo(CO)₄$ and $H₂Fe(CO)₄$ have been examined. **1** reacts with excess HCo(CO)₄ rapidly at -78 °C to produce $[(\eta^5-C_5H_5)_2MOH(CO)]CO(O)_4$ **(2), HCo₃(CO)₉, and H₂O.** ¹³CO₂-labeling experiments indicate that the original **GO,** in **1** is converted to coordinated CO in **2.** Complex **2** slowly converts to a novel unsymmetrically bridged hydrido complex $(\eta^5-C_5H_5)_2$ Mo(μ -H) $(\mu$ -CO)Co(CO)₃ (3) whose structure has been established by X-ray diffraction. Complex **1** also reacts with excess $H_2Fe(CO)_4$ to produce $[(\eta^5-C_5H_5)_2MOH(CO)]$ - $[HFe₃(CO)₁₁]$ (4).

The attractiveness of carbon dioxide as a potential feedstock for organic chemicals has stimulated increasing interest in the organometallic chemistry of this abundant, yet typically unreactive molecule.' Nonetheless, proven examples of reactions of coordinated $CO₂$ are surprisingly few. In this regard, we have shown recently that $(\eta^5 C_5H_5$)₂Mo(η^2 -CO₂) (1) undergoes novel photoinduced disproportionation² and reacts readily with a variety of polar reagents E-Nu, giving complexes of the type $[(n^5 \rm C_5H_5)_2Mo(CO)Nu]Nu$ and $\rm E\text{-}O\text{-}E,$ the result of $\rm O\text{-}transfer$ from coordinated $CO₂$ ³ In an effort to assess the potential benefits of cooperative bimetallic activation $4,5$ for facilitating catalytic carbon dioxide reduction, we have begun to examine the interaction of 1 with representative transition-metal hydride complexes producible from dihydrogen. We report herein our initial observations, which include (1) the discovery of facile reduction of coordinated $CO₂$ in 1 by $HCo(CO)₄$ and $H₂Fe(CO)₄$, resulting in the formation of heterobimetallic carbonyl complex salts, and **(2)** the production of a novel unsymmetrically bridged hydridocarbonyl dinuclear complex.

We first examined the reaction of **12s6** with strongly acidic HCo(CO)₄ (pK_a = <0 in H₂O, 8.4 in CH₃CN⁷).

(2) Belmore, K. A.; Vanderpool, R. A.; Tsai, J.-C.; Khan, M. A.; Nic-holas, K. M. *J. Am. Chem. SOC.* **1988,** *110,* **2004.**

(3) Tsai, J.-C.; Khan, M.; Nicholas, K. M. *Organometallics* **1989, 8, 2967.**

(5) Several examples of bimetallic and trimetallic complexes of $CO₂$

exist, but little is known of their reactivity; see: Gambarotta, S.; Arena, F.; Floriani, C.; Zanazzi, P. F. *J. Chem.* **SOC. 1982,** *104,* **5082.** Also see other examples cited in ref **4.**

Chem. SOC. **1985,** *107,* **2985.** (6) Gambarotta, S.; Floriani, C.; Chiesi-Villa, A.; Guastini, C. *J. Am.*

Figure 1. ORTEP drawing of $(\eta^5\text{-}C_5H_5)_2\text{Mo}(\mu\text{-}H)(\mu\text{-}CO)Co(CO)_3$
(3). Selected bond distances (Å): Mo-Co 2.8449 (4); Mo-C(1) 2.190 (2); Co-C(1) 1.905 (2); C(1)-O(1) 1.181 (3); Mo-H(1) 1.64 (3); Co-H(l) 1.88 (3); Mo-Cp(1) 1.969 (1); Mo-Cp(2) 1.965 **(2);** $Co-C(2)$ 1.768 (3); $Co-C(3)$ 1.772 (3); $Co-C(4)$ 1.818 (3). Selected bond angles (deg): Cp(1)-Mo-Cp(2) 141.6 (1); C(l)-Mo-H(l) 81 (1); C(1)-Co-H(1) 83 (1); C(1)-Co-C(2) 92.0 (1); C(1)-Co-C(3) 89.7 (1); C(l)-Co-C(4) 158.0 (1); C(2)-Co-C(3) 113.0 (1); C(2)- $Co-C(4)$ 103.7 (1); $C(3)-Co-C(4)$ 97.9 (1).

Treatment of a CD_2Cl_2 solution of 1 with an excess (ca. 5 equiv) of $HCo(CO)_{4}$ at -90 °C resulted in an immediate darkening of the solution; 'H NMR monitoring indicated complete consumption of 1 and the appearance of new absorptions at δ 5.60 (Cp), -8.30 (MH), and 1.62 (H₂O, confirmed by spiking). **A** preparative-scale reaction in toluene followed by addition of pentane afforded greenish yellow crystals of **2** (82% yield) whose NMR spectrum? prominent M-CO IR absorptions at 1880 and **2030** cm-l, and mass spectral data 8 suggested the presence of [Co(C- O_{4}]⁹ and $[\mathrm{Cp}_2\mathrm{Mo(CO)}X^+]^{3,10}$ units. On the basis of these ${\rm spectroscopic}$ data and comparison with literature values, 11 **2** is identified as [Cp,Mo(CO)H] [Co(CO),]. Evaporation of the above solution afforded $\text{HCo}_3(\text{CO})^{-12}_9$ as the other

(11) Mugnier, Y.; Moise, C. *J. Organomet. Chem.* **1963,** *248,* **C33.** (12) Green-black solid: IR (KBr) 2060, 2030, 1850, 1830 cm⁻¹; MS (70 eV, DIP) m/e 430 (M⁺), 429 (C₀₃(CO₁₉), 401 (C₀₃(CO₁). Literature data for HC₀₃(CO₁₉). Literature data for HC₀₃(CO₁₉). Fachinetti, G Zanuzzi, P.; Methong, U. *Ibid.* **1979,** *18,* **619.**

^{*}Address correspondence (except for X-ray results) to this author. 'Address correspondence regarding X-ray diffraction results to this author.

⁽¹⁾ Reviews: (a) Behr, A. Carbon Dioxide Activation by Metal Complexes; VCH: W. Germany, 1988. (b) Ito, T.; Yamamoto, A. In Organic and Bioorganic Chemistry of Carbon Dioxide; Inoue, S., Yamazaki, N., Eds; Halstead Press: New York, **1982;** Chapter **3,** pp **79-151.** (c) Dar-ensbourg, D.; Kudaroski, R. A. *Adu. Organomet. Chem.* **1983,** *22,* **129.**

⁽⁴⁾ The reduction **of** a bimetallic p-carboxylate complex by Cp,ZrHCI has been reported: Tso, C. **T.;** Cutler, A. R. *J. Am.* Chem. *SOC.* **1986,108, 6069.**

⁽⁷⁾ Collman, **J.** P.; Hegedus, L. S.; Norton, J. R.; Finke, R. *G. Prin*ciples and Applications of Organotransition Metal Chemistry; Univer-
sity Science Books, Mill Valley, CA, 1987; p 91.
(8) ¹H NMR (acetone-d₆) 5.85 (s, 10 H), –8.2 (s, 1 H); MS for **2** (12 eV

DIP) *mje* **256** (Cp,s8MoCO), **228** (CpZg8Mo), **172** (HCo(CO),), **144** (H-

⁽⁹⁾ Edgell, W. F.; Hedge, S.; Barbetta, A. *J. Am. Chem. SOC.* **1987,100,** Co(CO),), **116** (HCo(CO)Z), **88** (HCo(C0)). **1406.**

⁽¹⁰⁾ Bell, L. G.; Brintzinger, H. H. J. *Organomet. Chem.* **1977,** *135,* **173.**

major Co-containing product (eq 1). That **2** is derived

$$
Cp_2M \propto C_{c_{p_0}}^0 + HCO(CO)_4
$$

\n
$$
1 - \left[Cp_2M \propto C_{CO}^H \right] Cq (CO)_4 + HCO_3(CO)_9 + H_2O \qquad (1)
$$

from a reaction of coordinated $CO₂$ was demonstrated by the formation of $[Cp_2Mo⁽¹³CO)H][Co⁽¹³CO)₄]$ in the reaction of $HCo(CO)₄$ with $Cp_2Mo(\eta^2-13CO_2)^{-13}$

Interestingly, when CH_2Cl_2 pentane solutions of 2 were allowed to stand for 2-3 days at -20 \degree C, red crystals of a new complex **3** deposited. IR, 'H NMR, and MS analyses of 3^{14} indicated the presence of both Cp₂Mo, Co(CO)_{3,4}, bridging carbonyl, and metal hydride units. X-ray diffraction analysis of **315** revealed the novel structure $\rm{Cp_2Mo(\mu-H)(\mu\text{-}CO)Co(CO)_3}$ shown in Figure 1.

We presume that **3** arises via loss of CO from **2.** Although the structure and bonding of **3** will be discussed fully in a later account, the following features are especially significant: (1) *the bridging hydride atom,* which was located unambiguously and with high precision, *resides markedly closer to the larger Mo atom,16* suggesting a stronger interaction with this metal, and (2) **3** is 2 electrons short of the closed-shell electron count of 36, raising interesting questions about metal-metal and metal-hydride bonding.

Complex 1 also was found to react, albeit more slowly (ca. 10 h at -20 $^{\circ}$ C in toluene), with an excess of the less acidic $H_2Fe(CO)_4$ (p $K_a = 4.0$ in H_2O , 11.4 in CH_3CN^7), resulting in the formation of a deep-red solution. Addition of pentane caused precipitation of burgundy red crystals of **4** (ca. 100%). IR, 'H NMR, MS, and X-ray diffraction

scrambling between the cationic and anionic fragments.
(14) 3: IR (KBr) 2040, 1965, 1915, 1740 cm⁻¹; ^H NMR (C_eD_e) 4.02 (s,
10 H), -5.2 (br s, 1 H); MS (12 eV, DIP) m/e 256 (Cp2⁹⁸MoCO), 228
(Cp₂⁹⁸Mo), 180 (Cp

(15) X-ray crystal data for 3 (data collected at -110 °C)
 $\rm C_{14}H_{11}O_4CoMo$: $M_r = 398.11$, monoclinic space group $P_{21/n}$, $a = 21.958$

(5) A, $b = 7.625$ (2) A, $c = 8.204$ (2) A, $\beta = 98.16$ (3) A, $V = 1359.7$ A³, $Z = 4$, $D_c = 1.945$ g cm⁻³, $F(000) = 784$, λ (Mo Ka) = 0.71069 Å, μ (Mo Ka) = 20.3 cm⁻¹. Cell dimensions and intensities of 3040 reflections $(2\theta_{\text{max}})$ = 55") were measured. The structure was solved by the heavy-atom method. **All** non-hydrogen atoms were refined anisotropically, and the least-squares refinement coverged at the final $R = 0.029$. A difference Fourier map showed all H atoms with peak heights between 0.56 and 0.93 e **A3;** the hydride atom had a peak height of 0.67 e **A3** but was not included e A^3 ; the hydride atom had a peak height of 0.67 e A^3 but was not included in the refinement. A subsequent difference Fourier map showed one peak at 0.68 e **AJ** at the location of the hydride, while the next highest peak was at 0.34 e **AJ.** All the hydrogen atoms were refined with an isotropic temperature factor; the temperature factor of the hydride was third highest among the H atoms but not unusual in value and refined properly to its final value. All calculations were carried out by using the SHELX-76 program. For 2399 unique observed reflections $[I > 2\sigma(I)]$, the final *R* = 0.020, R_w = 0.025, and GOF = 0.98.

(16) Out of hundreds of metal-hydride X-ray structure determinaions, relatively few high precision structures exhibit significantly un-
yymmetrical H bridging. Among the heterobimetallic structures, with
very few exceptions (ref 17), the H is located closer to the smaller metal.

(17)

Commun. 1985, 1314.

analyses18 have been employed to establish the identity of 4 as $[(\eta^5$ -C₅H₅)₂Mo(CO)H][HFe₃(CO)₁₁]¹⁹ (eq 2). ¹H

Communications
analysis¹⁸ have been employed to establish the identity
of 4 as
$$
[(\eta^5-C_5H_5)_2Mo(CO)H][HFe_3(CO)_{11}]^{19}
$$
 (eq 2).¹H
 $^{Cp2}M\propto_{C}^{O}$
 $^{Cp}C_2^{M}\propto_{C}^{C} + H_2Fe(O)_4 \longrightarrow$ $\left[\text{Cp2}M\propto_{CO}^{H}\right]HFe_3(O)_{11} + H_2O$
 4

NMR monitoring of this reaction in $CD₂Cl₂$ revealed the initial formation of an unidentified intermediate that decays as 4, and $H₂O$ is generated.

Reactions of the CO_2 complex 1 with both HCo(CO)₄ and $H_2Fe(CO)_4$ have thus been found to produce salts of the type $[Cp_2MoH(CO)][M_x(CO)_y]$, which fix the original coordinated $CO₂$ as CO and produce $H₂O$ as the oxygen sink, a formal stoichiometric water gas shift reaction (eq 3). Since control experiments have demonstrated the lack

$$
CO_2 + H_2
$$
 $CO + H_2O$ (3)

of reactivity between CO_2 itself and $HCo(CO)_4$ and H_2 - $Fe(CO)_4$, the reactions indicated by eqs 1 and 2 illustrate a rare example of cooperative bimetallic activation of CO₂. The contrast between the earlier reported cleavage of coordinated CO_2 in 1 by HX and R_3SiX^3 (giving Cp_2Mo - $(CO)X^+$) (eq 4) and by $H_xM'(CO)_y$ (forming Cp_2MO -

$$
Cp_2Mo(CO_2) + 2E-X
$$

$$
Cp_2Mo(CO)X+X^{+} + E-O-E
$$
 (4)

(CO)H+, eqs 1 and *2)* should also be noted. Whether the formation of the carbonyl hydride cationic complexes in eqs 1 and 2 reflects an instability of the Mo-Co and Mo-Fe a-bonded alternatives (thermodynamic) or rather a fundamentally different mechanism of H-transfer steps remains to be seen. Nonetheless, the ability of these and other transition-metal complexes to activate and transfer dihydrogen 20 raises the attractive possibility that bimetallic *catalytic* systems can be devised for $CO₂$ reduction.

Acknowledgment. We are grateful for support provided by the Division of Chemical Sciences, Office of Basic Energy Sciences, U.S. Department of Energy (89ER 13997) and to Pressure Chemical Co. for a gift of cobalt carbonyl.

Note Added in Proof. The structure of **2** has been confirmed by X-ray diffraction.²¹

Supplementary Material Available: Tables of atomic coordinates, positional and thermal parameters, and interatomic distances and angles *(5* pages). Ordering information is given on any current masthead page.

⁽¹³⁾ A 50% enriched sample of $\text{Cp}_2\text{Mo}(\eta^2\text{-}^{13}\text{CO}_2)$ was treated with excess HCo⁽¹²CO)₄ in CH₂Cl₂ at -78 °C. The resulting [Cp₂Mo(CO)H]- $Co(CO)_4$ when analyzed by IR and MS (12 eV, DIP) was found to have 4 atom % ¹³CO in the Cp₂Mo(CO)H⁺ unit and 20 atom % in the Co(CO)₄ fragment, an approximately statistical distribution expected from rapid fragment, an approximately statistical distribution expected from rapid

^{(18) 4:} IR (KBr) 2070, 2030, 1990, 1950, 1930, 1720 cm⁻¹; ¹H NMR (acetone-d₆) 5.85 (s, 10 H), -8.2 (s, 1 H), -14.85 (s, 1 H); MS (12 eV, DIP) m/e 256 (Cp₂⁸⁸MoCO), 228 (Cp₂⁸⁸Mo); MS (neg, CI, NH₃) 448 (Fe O_{10}^-), 420 (Fe₃(CO)₉⁻), 392 (Fe₃(CO)₈⁻), 168 (Fe(CO)₄⁻). X-ray crystal data: monoclinic, space group P_{21}/c , $a = 12.183$ (4) Å, $b = 12.004$ (4) Å, $c = 17.355$ (6) Å, $\beta = 94.13$ (3)°. Spectroscopic a

⁽¹⁹⁾ Antsyskima, A. S.; Dikareva, L. M.; Porai-Koshits, M. **A.;** Ostri-kova. V. N.; Skripkin, Y. V.; Volkov, D. G.; Pasynskii, A. A.; Kalinnikov, V. T. *Koord. Khim.* 1985, *11,* 82.

⁽²⁰⁾ Review of catalytic reductions by $HCo(CO)_4(Co_2(CO)_8/H_2)$:
Piacenti, F.; Bianchi, M. In *Organic Synthesis via Metal Carbonyls*;
Wender, I., Pino, P., Eds.; Wiley: New York, 1977; Vol. II, pp 75–79.
Catalytic reductions