Manganese Carbonyl Compounds as Hydrosilation Catalysts for Organoiron Acyl Complexes

Paul K. Hanna, Brian T. Gregg, and Alan R. Cutler*

Department of Chemistry, Rensselaer Polytechnic Institute, Troy, New York 12180

Received August 14, 1990

Summary: Manganese acyl complexes L(CO)₄MnCOR [L = CO, R = CH₃, Ph; L = PPh₃, PEt₃, R = CH₃] are effective catalysts (2-5%) for hydrosilating FpCOR compounds [R = CH₃, Ph; Fp = Fe(CO)₂(η^5 -C₅H₅)] with monohydro-, dihydro-, and trihydrosilanes. Fp(α -siloxyalkyl) complexes FpCH(CH₃)OSiR'₃ (SiR'₃ = SiEt₃, SiMe₂Ph, SiHPh₂, SiHEt₂), [FpCH(CH₃)O]₂SiR'₂ (R' = Et, Ph), FpCH(Ph)OSiHPh₂, and [FpCH(CH₃)O]₃SiPh are isolated [after column chromatography on silica gel or on polystyrene (size-exclusion) beads] and fully characterized. Substituted manganese acetyl compounds L(CO)₄MnCO-CH₃ are extremely active catalysts that guantitatively transform FpCOCH₃ and dihydrosilanes $R'_{2}SiH_{2}$ (R' = Et, Ph) to $Fp(\alpha$ -siloxyalkyl) complexes $FpCH(CH_3)OSiHR'_2$. The manganese acetyl catalysts endure (within NMR spectral detection limits) until all of the organoiron acyl substrate is consumed; only then do they undergo rapid hydrosilation. Other manganese complexes, including $(CO)_5$ MnSiMe₃, Mn₂(CO)₁₀, (CO)₅MnCH₃, and (CO)₅MnCHPh(OSiHR'₂), also catalyze the hydrosilation of FpCOCH₃.

The rhodium(I)-catalyzed hydrosilation of organotransition-metal acyl complexes recently has been reported,¹ with Wilkinson's compound (PPh₃)₃RhCl catalytically transforming FpCOCH₃ [Fp = Fe(CO)₂(η^5 -C₅H₆)] into either α -siloxyethyl complexes FpCH(CH₃)OSiHR'₂ (with R'₂SiH₂, R' = Ph, Et) or FpCH₂CH₃ (with PhSiH₃).² The synthetic usefulness of this procedure for α -siloxyalkyl complexes is limited, however. Trialkylsilanes do not add to FpCOCH₃ when (PPh₃)RhCl is used as the catalyst, and dehydrogenative coupling of dihydrosilanes³ efficiently competes with the hydrosilation of less reactive acyl complexes (e.g., FpCOPh). Isolating analytically pure [(α diphenylsiloxy)alkyl]Fp compounds (e.g., FpCH(CH₃)-OSiPh₂ (5a) from FpCOCH₃) also proved impractical. We now report the synthetic details on using manganese acyl complexes L(CO)₄MnCOR [R = CH₃; L = CO (1a), PPh₃ (1b), PEt₃ (1c); R = Ph, L = CO (2)]⁴ as catalysts for the

Chem. 1982, 47, 2469. (3) Ojima, I.; Inaba, S.-I.; Kogure, T.; Nagai, Y. J. Organomet. Chem. 1973, 55, C7. Chang, L. S.; Corey, J. Y. Organometallics 1989, 8, 1855 and references therein. productive hydrosilation of $FpCOCH_3$ and FpCOPh with monohydro-, dihydro-, and trihydrosilanes.⁵

Treatment of FpCOCH₃ in benzene- d_6 with 1.1 equiv of either Et₃SiH or PhMe₂SiH and (CO)₅MnCOPh (2) (3%) as the catalyst quantitatively affords the α -siloxyethyl compounds 3 and 4 (eq 1), as ascertained by ¹H and

 13 C NMR spectral monitoring. These stable products are isolated in >90% yield after chromatography on a short column of deactivated silica gel or by size-exclusion chromatography⁶ (Table I).

Both manganese acetyl (1a) and benzoyl (2) complexes catalyze the hydrosilation of $FpCOCH_3$ with dihydrosilanes R'_2SiH_2 (R' = Et, Ph) (eq 2), although mixtures of

mono-Fp and bis-Fp α -siloxyethyl products (**5a/6a**, **5b/6b**) quantitatively form. Figure 1, a ¹H NMR spectrum of a typical Ph₂SiH₂ hydrosilation experiment, exemplifies the cleanliness of this reaction. Distinguishing absorptions for **5a** include a Cp singlet (δ 4.12) and methyl doublet (δ 1.81), whereas **6a** (two diastereomers) exhibits a pair of Cp sin-

^{(1) (}a) Crawford, E. J.; Hanna, P. K.; Cutler, A. R. J. Am. Chem. Soc. 1989, 111, 6891. (b) Cutler, A. R.; Hanna, P. K.; Vites, J. C. Chem. Rev. 1988, 88, 1363. (c) Akita, M.; Mitani, O.; Moro-oka, Y. J. Chem. Soc., Chem. Commun. 1989, 527.

<sup>Chem. Commun. 1989, 527.
(2) Rh(I)-catalyzed hydrosilation of organic ketones in contrast provides only silyl ethers. ²⁴ with hydrosilane reactivity decreasing, PhSiH₃ > R'₂SiH₂ > R'₃SiH.²⁶ (a) Reviews: Ojima, I.; Hirai, K. In Asymmetric Synthesis; Morrison, J. D., Ed.; Academic Press: New York, 1985; Vol. 5, p 103. Corriu, R. J. P.; Guerin, C.; Moreau, J. J. E. Top. Stereochem. 1984, 15, 45. Brunner, H. Top. Stereochem. 1988, 18, 129; Synthesis 1988, 645. Chaloner, P. A. Handbook of Coordination Catalysis in Organic Chemistry; Butterworths: Boston, 1986; Chapter 7.2. Dickson, R. S. Homogeneous Catalysis with Compounds of Rhodium and Iridium; D. Reidel Publishing Co.: Boston, 1985; Chapter 3.11. (b) Ojima, I.; Nihonyanagi, M.; Kogure, M.; Kumagai, M.; Horiuchi, S.; Nakatsugawa, K. J. Organomet. Chem. 1975, 94, 449. Ojima, I.; Kogure, T. Organometallics 1982, 1, 1390. Hayashi, T.; Yamamoto, K.; Kumada, M. J. Organomet. Chem. 1976, 113, 127. Kolb, I.; Hetflejs, T. Coll. Czech. Chem. Commun. 1980, 45, 2224. Semmelhack, M. F.; Misra, R. N. J. Org. Chem. 1982, 47, 2469.</sup>

⁽⁴⁾ Treichel, P. M. In Comprehensive Organometallic Chemistry; Wilkinson, G., Stone, F. G. A., Eds.; Pergamon Press: New York, 1982; Vol. 4, Chapter 29.

^{(5) (}a) Manganese carbonyl complexes apparently had not been used as catalyst precursors for the hydrosilation of ketones or alkenes, although (CO)₅MnSiR₃/Mn₂(CO)₁₀ systems catalyze alkene hydrosilation and alcohol O-silation. Faltynek, R. A. J. Organomet. Chem. 1983, 258, C5. Hilal, H. S.; Abu-Eid, M.; Al-Subu, M.; Khalaf, S. J. Mol. Catal. 1987, 39, 1. Hilal, H. S.; Khalaf, S.; Al-Nouri, M.; Karmi, M. Ibid. 1986, 35, 137.
(b) In contrast, both Co₂(CO)₈ and Co(CO)₄SiR₃ complexes induce the catalytic hydrosilation of aldehydes and ketones. Kovacs, I.; Sisak, A.; Ungvary, F.; Marko, L. Organometallics 1988, 7, 1025. Murai, S.; Sonoda, N. Angew. Chem., Int. Ed. Engl. 1979, 18, 837. Murai, S.; Seki, Y. J. Mol. Catal. 1987, 41, 197.
(6) Standard conditions: Manganese catalyst is added to a henzane d.

⁽⁶⁾ Standard conditions: Manganese catalyst is added to a benzene- d_6 (600 mg) solution of FpCOCH₃ (200 mg) and silane (1.10–1.20 equiv), and within a glovebox, the solution is transferred to a NMR tube. Reaction times increase dramatically with dilution of the reaction mixtures. Chromatography either on Merck silica gel (60–200 mesh; 1 × 10 cm) or on Bio-Rad S-X 12 polystyrene beads (200–400 mesh, molecular weight exclusion 400) using benzene affords 3–8 as thermally stable, yellow-brown oils. Spectral data (IR and ¹H, ¹³C NMR) and the results of acceptable elemental analyses for 3, 4, 5a, 6a, 6b, 7, 8 are deposited as supplementary material. Only 5b previously had been characterized.^{2a,c}

			silane							
	FpCOR (mmol/g benzene)		(mmol/mmol FpCOR)		Mn precatalyst (% Mn)		reaction timeª	bis-Fp/ mono-Fp ^b	product(s)	yield, %
1	FpCOCH ₃	(1.52)	Et ₃ SiH	(1.10)	(CO) ₅ MnCOPh	(2.6)	2		FpCHCH ₃ (OSiEt ₃) (3)	90°
2		(1.49)		(1.23)	(CO) ₅ MnCOCH ₃	(4.2)	11		3	95ª
3		(1.52)	PhMe ₂ SiH	(1.10)	(CO) ₅ MnCOPh	(2.6)	1		$ \begin{array}{c} FpCHCH_3(OSiMe_2Ph) \\ (4) \end{array} $	66°
4	FpCOPh	(1.42)	Ph_2SiH_2	(1.30)	(CO) ₅ MnCOCH ₃	(20.2)	2		$FpCH(Ph)(OSiHPh_2)$ (7)	15 ^{e,f}
5		(0.665)		(1.10)	(CO) ₅ MnCOPh	(2.8)	20		7	30e
6		(0.665)		(1.10)	PPh ₃ (CO) ₄ MnCOCH ₃	(2.4)	0.5		7	92 ^d #
7	FpCOCH ₃	(1.52)	Ph_2SiH_2	(1.20)	(CO) ₅ MnCOCH ₃	(4.6)	4	0.77	[FpCH(CH ₃)O] ₂ SiPh ₂ / FpCHCH ₃ (OSiHPh ₂) (6a/5a)	quant ^e
8		(0.81)		(1.10)	(CO) _e MnCOCD ₂	(20.2)	2.5	1.01	6a/5a	quant ^h
ğ		(1.14)		(1.10)	PPh ₂ (CO) ₂ MnCOCH ₂	(0.47)	5		5a	87°
10		(1.14)		(1.17)	PEt ₂ (CO) ₄ MnCOCH ₂	(4.5)	3		5a	quant ^e
11		(1.49)		(1.20)	(CO) _s MnCOPh	(3.3)	0.33	1.36	6a/5a	85 ^{d,i}
12		(1.52)		(1.25)	(CO) ₅ MnCH(Ph)OSiHPh ₂	(3.3)	6.0	0.92	6a/5a	97 ^d
13		(1.52)		(1.19)	(CO) ₅ MnCH ₃	(4.2)	0.50	0.23	6a/5a	91 ^d
14		(1.52)		(1.20)	(CO) ₅ MnSiMe ₃	(4.1)	144	0.22	6a/5a	94 ^d
15		(1.52)		(1.25)	$(CO)_{10}Mn_2$	(3.9)	168	0.22		
16		(1.52)	Et_2SiH_2	(1.24)	(CO) ₅ MnČOCH ₃	(3.8)	18	0.82	FpCH(CH ₃)O] ₂ SiEt ₂ / FpCHCH ₃ (OSiHEt ₂) (6b/5b)	91 ^d
17		(1.52)		(1.24)	(CO) ₅ MnCOPh	(2.2)	22	0.90	6b/5b	94°
18		(1.52)	$PhSiH_3$	(1.12)	(CO) ₅ MnCOCH ₃	(4.6)	8		$[FpCH(CH_3)O]_2SiHPh$ (6c) $FpCHCH_3(OSiH_2Ph)$	92 ^e
									(5c)	
							12		[FpCH(CH ₃)O] ₃ SiPh 8 FpCH ₂ CH ₃	68°

Table I. Hydrosilation of FpCOR Using (CO)₅Mn Complexes as Precatalysts

^a Time in hours required for consumption of FpCOR (¹H NMR spectral monitoring). ^bRatio of [FpCHCH₃O]₂SiR'₂ to FpCHCH₃(OSiHR'₂) estimated by integration of ¹H NMR spectra. ^cIsolated yield after column chromatography on silica gel. ^dIsolated yield after size-exclusion chromtography on Bio-Rad S-X 12. ^eConversion of FpCOR to product estimated by ¹H NMR spectroscopy; monitoring of reaction establishes continuing product formation over this time interval. ^f<10% consumption of (CO)₅MnCOCH₃. ^gNo reaction when conducted in the presence of 1 atm of CO. ^hMonitored by ²H NMR spectroscopy (parallel runs); (CO)₅MnCOCD₃ remains intact until all of the FpCOCH₃ reacts. Similar results obtain by using 8.4% (CO)₅MnCOCD₃. ⁱIn the presence of 1 atm of CO; an otherwise identical reaction consumes only 85% FpCOCH₃ in 2.75 h; **6a/5a = 1**.36, and the half-life increases from 10 min to 1.8 h.

Figure 1. ¹H NMR spectrum (200 MHz) of the hydrosilation reaction: FpCOCH₃ (200 mg, 0.909 mmol), Ph₂SiH₂ (200 mg, 1.09 mmol), and (CO)₅MnCOPh (2) (10 mg, 3.7%) in 600 mg C₆D₆ (30 min). Residual Ph₂SiH₂, δ 5.10.

glets (δ 4.14, 4.15) and methyl doublets (δ 1.97, 1.95).⁷ The numerical yields recorded in Table I refer to material isolated after column chromatography; ratios of bis-Fp to mono-Fp adducts were obtained from integration traces of ¹H NMR spectra.⁸ Subsequent size-exclusion chro-

matography provided analytically pure samples of 5a, 6a, 5b, and 6b.⁶

The manganese acyl catalyzed hydrosilation of $FpCOCH_3$ with dihydrosilanes is characterized by (1) the absence of competing dehydrogenation coupling of dihydrosilanes,⁹ (2) the presence of 1 atm of CO inhibiting this reaction (entry 11), and (3) 1a remaining the only detectable manganese species until at least 90% of the $FpCOCH_3$ reacts. Only then does hydrosilation of 1a rapidly occur.⁹ The results of ¹H and ²H NMR spectral monitoring of parallel hydrosilation reactions using 8–20% 1a and (CO)₅MnCOCD₃ establish that other manganese intermediates do not build up in detectable concentrations during the hydrosilation of $FpCOCH_3$.¹⁰

Phosphine-substituted manganese acetyl complexes 1band $1c^{11}$ prove to be especially selective hydrosilation catalysts that transform FpCOCH₃ and Ph₂SiH₂ into just the mono-Fp adduct 5a. Triphenylphoshine-containing

⁽⁷⁾ Other diagnostic spectral data: **5a** ¹³C NMR (C_6D_6) δ 217.73, 217.30 (CO), 86.19, (Cp), 71.34 (FeCH), 35.33 (FeCHCH₃); ¹H NMR (C_6D_6) δ 5.87 (q, J = 6.0 Hz, FeCH), 5.77 (s, SiH). **6a** ¹³C NMR (C_6D_6) δ 217.89, 217.69, 217.55 (CO), 86.20 (Cp), 69.87, 69.75 (FeCH), 36.26, 36.11 (FeCHCH₃); ¹H NMR (C_6D_6) δ 6.11, 6.08 (d, J = 6.0 Hz, FeCH).

⁽⁸⁾ This ratio slowly and continually increases with time, even after the $FpCOCH_3$ is consumed. The bis-Fp/mono-Fp values recorded in Table I correspond to the time when $FpCOCH_3$ is depleted. These reactions occur at the same rates when they are run in the dark.

⁽⁹⁾ Treatment of $(CO)_5MnCOCH_3$ (1a) or $(CO)_5MnCOPh$ (2) in benzene- d_6 with between 1 and 3 equiv of R'_2SiH_2 immediately and quantitatively affords mixtures of $(CO)_5MnCH(OSiHR'_2)CH_3/[(CO)_5MnCH(CH_3)O]_2SiR'_2$ or $(CO)_5MnCH(OSiHR'_2)Ph$. Me₂PhSiH and 1a afford the fully characterized $(CO)_5MnCH(OSiHR_2Ph)CH_3$. Hanna, P. K.; Gregg, B. T.; Crawford, E. J.; Cutler, A. R. J. Am. Chem. Soc., in press. These solutions do not further transform excess Ph₂SiH₂ over 72 h.

⁽¹⁰⁾ The Fp(acyl) substrate thus blocks hydrosilation of the manganese acyl catalyst; an extreme example appears in Table I, entry 4. $(CO)_{5}MnCOCH_{3}$ (1a) does not readily promote hydrosilation of FpCOPh, which in turn prevents the otherwise rapid hydrosilation of 1a.⁹ (11) $(PEt_{3})(CO)_{4}MnCOCH_{3}$ (1c) exists as its trans isomer, whereas 1b

⁽¹¹⁾ $(\text{PEt}_3)(\text{CO})_4$ MnCOCH₃ (1c) exists as its trans isomer, whereas 1b offers an equilibrating cis-trans mixture (1:4.5). We also typically find 5-10% trans (PPh₃)(CO)₄MnCH₃ as an unavoidable impurity. Kraihanzel, C. S.; Maples, P. K. *Inorg. Chem.* 1968, 7, 1806.

1b also is the most active manganese precatalyst thus far. It expedites the hydrosilation of FpCOCH₃ at less than 1% catalyst concentration and of FpCOPh (eq 3) under conditions that other manganese catalysts either are inert (1a) or react sluggishly (2).

Phenylsilane in the presence of 1a also hydrosilates FpCOCH₃, but the final products are Fp(ethyl) and tris-Fp 8. Treatment of a 1:1 mixture of $FpCOCH_3$ and $PhSiH_3$ with 1a as the catalyst (4.6%, entry 18) in C_6D_6 quantitatively produces mixtures of mono-Fp 5c, bis-Fp 6c, and tris-Fp 8 α -siloxyethyl compounds within 8 h (eq 4); over

an additional 4-6 h, 5c and 6c transform to Fp(ethyl). We assign structures 5c and 6c based on the close resemblance of their ¹H and ¹³C NMR spectral data to that of the (diphenylsiloxy)ethyl compounds 5a and 6a. The fully characterized tris-Fp 8 and Fp(ethyl) are isolated by size exclusion chromatography, 26% and 53%, respectively.

Although manganese acyls 1a-c and 2 are excellent catalysts, the presence of an acyl ligand is not a prerequisite for hydrosilation activity. Both (CO)₅MnSiMe₃ and $Mn_2(CO)_{10}$ function as relatively sluggish catalysts toward adding Ph_2SiH_2 (Table I) or Et_2SiH_2 to $FpCOCH_3$. The methyl complex (CO)₅MnCH₃, however, qualifies as a more reactive hydrosilation catalyst than 1a, but it affords a lower 6a/5a ratio of 0.23 that is comparable with those obtained from $(CO)_5MnSiMe_3$ and $Mn_2(CO)_{10}$. The siloxybenzyl compound $(CO)_5MnCHPh(OSiHPh_2)$,⁹ which results from mixing 2 with Ph_2SiH_2 (3 min) before adding $FpCOCH_3$, is much less reactive than 2, and yet it gives

an equally high 6a/5a ratio of 0.92. Manganese alkyl and acyl complexes L(CO)₄MnCOR are far more efficient catalysts than is (PPh₃)₃RhCl for hydrosilating Fp(acetyl) and Fp(benzoyl). Studies in progress are extending their scope and investigating the mechanism¹² of these manganese-catalyzed hydrosilation reactions.

Acknowledgment. Support from the Department of Energy, Office of Basic Energy Science, is gratefully acknowledged.

Supplementary Material Available: Table 2, listing ¹H and ¹³C NMR and IR spectral assignments for 3-7 and microanalytical data (3 pages). Ordering information is given on any current masthead page.

Acid-Catalyzed Isomerization and Deuterium Exchange of Rhenium Alkene Complexes via In-Place Rotation of an Agostic Alkylrhenium Cation

Charles P. Casey* and Chae S. Yi

Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706

Received August 2, 1990

Summary: $C_5H_5(CO)_2Re(cis-CH_3CH=CHCH_3)$ (1) isomerized to a 45:55 equilibrium mixture of 1 and C₅H₅-(CO)₂Re(trans-CH₃CH=CHCH₃) (2) upon treatment with CF_3CO_2H in CH_2CI_2 . In the isomerization of 1 by CF_3C -O₂D, the initially formed 2 was monodeuterated at the vinyl position. Treatment of C₅H₅(CO)₂Re(CH₂=CHCH₂C- H_3) (3) with CF_3CO_2D led only to deuterium exchange of the vinyl hydrogens; no formation of 1 or 2 was observed. These data are consistent with a mechanism involving agostic rhenium alkyl complexes that undergo "in-place rotation" and deprotonation much more rapidly than formation of a free alkylrhenium intermediate.

We have recently devised several new syntheses of $C_5H_5(CO)_2Re(alkene)$ complexes from reactions of alkynes with the heterobimetallic dihydride $C_5H_5(CO)_2(H)RePt$ - $(H)(PPh_3)_2$,¹ from rearrangement of rhenium carbene complexes,² and from reaction of $C_5H_5(CO)_2ReH^-$ with allyl halides³ that complement previous syntheses from C₅H₅- $(CO)_2Re(THF)$ and alkenes.⁴ We have begun to explore the reactivity of these rhenium alkene complexes and have found that reaction with $(C_6H_5)_3C^+$ leads to hydride abstraction and formation of $(\pi$ -allyl)rhenium cations.⁵

⁽¹²⁾ We disfavor a pathway in which the manganese catalyst Mn-(CO)₅(COR) loses two terminal carbonyls in order to simultaneously bind silane and FpCOCH₃ as (CO)₃(RCO)Mn(H)(SiR'₃)[O=C(CH₃)Fp]. A plausible working hypothesis is a free-radical mechanism in which a 17-electron species (CO) (RCO)Mn(SiR'3), resulting from hydrogen atom abstraction from the silane oxidative-addition product $(CO)_4(RCO)Mn$ -(H)(SiR'₃), associates FpCOCH₃. The resulting 19-electron adduct, perhaps having its odd electron partially delocalized on the ligated FpCOCH₃, could rearrange to a 17-electron manganese system (CO)₄. $(RCO)MnCH(OSiR'_3)$ Fp that shares a μ -siloxyalkylidene ligand with a Fp moiety. Subsequent hydrogen atom transfer to the manganese center and reductive elimination of FpCH(OSiR'₃)R product would regenerate the active catalyst, (CO)₄MnCOR.

Casey, C. P.; Rutter, E. W., Jr. J. Am. Chem. Soc. 1989, 111, 8917.
 Casey, C. P.; Vosejpka, P. C.; Askham, F. R. J. Am. Chem. Soc. 1990, 112, 3713.

⁽³⁾ Casey, C. P.; Yi, C. S. Unpublished results.
(4) (a) Sellmann, D.; Kleinschmidt, E. Z. Naturforsch., B 1977, 32B, 795.
(b) Einstein, F. W. B.; Jones, R. H.; Klahn-Oliva, A. H.; Sutton, D. Organometallics 1986, 5, 2476.
(c) Caulton, K. G. Coord. Chem. Rev. 1981, 38, 1.