Reaction Chemistry of Metal- η^1 -Vinylpropargyl Ligands with Unsaturated Iron(0), Ruthenium(0), and Osmium(0) Carbonyl Clusters

Ming-Huei Cheng,[†] Gene-Hsian Lee,[‡] Shie-Ming Peng,^{*,‡} and Rai-Shung Liu^{*,†}

Departments of Chemistry, National Tsinghua University, Hsinchu, 30043 Taiwan, Republic of China, and National Taiwan University, Taipei, 10764 Taiwan, Republic of China

Received March 29, 1991

The reaction between M—CH₂C=CCH=CH₂ (M = CpW(CO)₃ (1), Mn(CO)₅ (2)) and Fe₂(CO)₉ in hexane at 23 °C afforded M—CH₂C(CO—Fe(CO)₄—CO)C—CH=CH₂ (M = CpW(CO)₃ (3), Mn(CO)₅ (4)), MFe₂(CO)₆(μ_3 - η^1 , η^3 , η^3 -CH₂CCCH=CH₂) (M = CpW(CO)₃ (5), Mn(CO)₅ (7)), and CpWFe₂(CO)₈(μ_3 - η^1 , η^2 , η^2 -CH₂CCCH=CH₂) (6). Under flowing CO, a similar reaction gave only 3 and 4 in high yields (>90%). Heating 1 with Fe₃(CO)₁₂ in refluxing hexane produced 5 and 6. Treatment of 1 with Ru₃(CO)₁₀(CH₃CN)₂ in CH₃CN afforded CpWRu₂(CO)₈(μ_3 - η^1 , η^2 , η^2 -CH₂CCCH=CH₂) (8). Stirring of 1 with Os₃(CO)₁₀(CH₃CN)₂ formed CpWOs₃(CO)₁₃(μ_4 - η^1 , η^1 , η^1 , η^2 -CH₂CCCH=CH₂) (9) and an unusual tetranuclear cluster of which one W—CO has formally migrated to the ligand β -carbon. The molecular structures of 3, 5, 8, and 10 have been determined by X-ray diffraction study to have the following parameters: for 3 space group P2₁/n, a = 9.9947 (21) Å, b = 9.4773 (19) Å, c = 21.845 (3) Å, $\beta = 93.635$ (15)°, Z = 4, R = 0.030, and $R_w = 0.023$; for 5 space group triclinic, PI, a = 9.6100 (24) Å, b = 13.654 (4) Å, c = 8.4220 (23) Å, $\alpha = 100.215$ (21)°, $\beta = 104.394$ (21)°, $\gamma = 92.978$ (21)°, Z = 2, R = 0.024, and $R_w = 0.022$; for 8 space group monoclinic, C_2/c , a = 28.580 (5) Å, b = 9.285 (4) Å, c = 15.978 (4) Å, $\beta = 110.062$ (15)°, Z = 8, R = 0.046, and $R_w = 0.034$; for 10 space group $P2_1/n$, a = 11.825 (7) Å, b = 10.057 (7) Å, c = 22.889 (13) Å, $\beta = 92.97$ (6)°, Z = 4, R = 0.035; and $R_w = 0.047$ for 3060 reflections >2 $\sigma(I)$ out of 4763 unique reflections and 362 parameters.

Introduction

Heteronuclear metal clusters¹ represent an important and rapidly expanding class of compounds. It is believed that clusters containing different metal centers can provide various active sites to facilitate the activation of hydrocarbon substrates in stoichiometric and catalytic reactions.¹ So far, a few synthetic methodologies² for compounds of this class have been developed. One example³ is to use a metal- η^1 -propargyl compound as a template for the construction of mixed metal-metal bonds. This synthetic approach has proven effective for the preparation of heteronuclear μ - η^2 , η^3 -allenyl, μ_3 - η^1 , η^2 , η^2 -allenyl, and μ alkyne complexes. In this paper, we report the syntheses, characterizations, and molecular structures of polynuclear species derived from the related complexes $MCH_2C =$ $CCH=CH_2$ (M = CpW(CO)₃ (1), Mn(CO)₅ (2)). Notably, the complexes thus formed are quite different from those obtained from the corresponding η^1 -propargyl complexes.3a,b

Results and Discussion

Synthesis and Characterization of Iron-Maleoyl Complexes. The complexes 1 and 2 were conveniently synthesized from the reaction between 2-pentyn-4-enyl-1-tosylate⁴ and anions NaMn(CO)₅ or NaCpW(CO)₃ in THF at 0 °C. These two η^1 compounds were stable enough to be isolated in 50-60% yields and could be fully characterized. Their ¹H and ¹³C NMR chemical shifts indicated an η^1 structure.

The reaction between 1 or 2 and Fe₂(CO)₉ was conducted in hexane at 23 °C; the results are summarized in Scheme I. Under flowing CO (1 atm), 1 and 2 undergo double carbonylation at the β , γ -carbons of its ligand to afford iron-maleoyl complexes 3 and 4 in yields >90%. In the absence of CO, the yield decreased to 30-40% along with formation of trinuclear μ_3 - η^1 , η^2 , η^2 and μ_3 - η^1 , η^3 , η^3 species

(vide post). Purification of 3 and 4 was conducted by means of elution through a silica gel column. Single crystals of 3 suitable for X-ray analysis were grown from a saturated hexane solution cooled at -20 °C. An ORTEP drawing of 3 is shown in Figure 1, and selected bond distances and angles are provided in Table I. It is obvious that the η^{1-2} -pentyn-4-en-1-yl ligand has undergone double carbonylation and has become linked to the Fe(CO)₄ fragment to form a maleoyl ring. In this manner, this acyclic group can be viewed as a sickle-shaped *cis*-pentadienyl group with the C(16)-C(17) (1.350 (13) Å) and

[†]National Tsinghua University.

[†]National Taiwan University.

^{(1) (}a) Roberts, D. A.; Geoffroy, G. L. In Comprehensive Organometallic Chemistry; Wilkinson, G., Stone, F. G. A., Abels, E. W., Eds; Pergamon Press; Oxford, U.K., 1982; Chapter 40. (b) Vahrenkamp, H. Adv. Organomet. Chem. 1983, 22, 169. (c) Vargas, M. D.; Nicholls, J. N. Adv. Inorg. Chem. Radiochem. 1987, 30, 123.

^{Adv. Inorg. Chem. 1583, 22, 163. (c) Vargas, M. D., Nichols, J. N. Adv. Inorg. Chem. 1886, 2467. (b) Lukehart, C. M.; True, W. R. Organometallics 1988, 7, 2387. (c) Jensen, S. D.; Robinson, B. H.; Simpson, J. Organometallics 1986, 5, 1690. (d) Chetcuti, M. J.; Gree, K. A. Organometallics 1988, 7, 2450.}

^{(3) (}a) Young, G. H.; Wojcicki, A.; Calligavis, M.; Nardin, G.; Bresciani-Pahor, N. J. Am. Chem. Soc. 1989, 111, 6890. (b) Wido, T. M.; Young, G. H.; Wojcicki, A.; Calligaris, M.; Nardin, G. Organometallics 1988, 7, 452.

⁽⁴⁾ Sonogashira, K.; Tohda, Y.; Hagihara, N. Tetrahedron Lett. 1975, 4467.

Figure 1. ORTEP drawing of the molecular structure of 3.

Table I. Selec	ted Bond Di	stances and Bond	Angles for 3
W-C(1)	1.967 (12)	C(4)-O(4)	1.148 (13)
W-C(2)	1.952 (11)	C(5)-O(5)	1.131 (13)
W-C(3)	1.959 (11)	C(6)–O(6)	1.139 (13)
W-C(15)	2.354 (8)	C(7)-O(7)	1.140 (13)
Fe-C(4)	1.775 (11)	C(8)–C(17)	1.512 (13)
Fe-C(5)	1.832 (10)	C(8)–O(8)	1.216 (11)
Fe-C(6)	1.818 (10)	C(9)-C(16)	1.489 (13)
Fe-C(7)	1.789 (11)	C(9)-O(9)	1.195 (12)
Fe-C(8)	2.008 (9)	C(15)-C(16)	1.485 (13)
Fe-C(9)	2.023 (8)	C(16) - C(17)	1.350 (13)
C(1)-O(1)	1.148 (14)	C(17) - C(18)	1.466 (14)
C(2) - O(2)	1.158 (13)	C(18) - C(19)	1.153 (17)
C(3)-O(3)	1.169 (13)		
C(1)-W-C(2)	76.3 (5)	W-C(1)-O(1)	179.6 (11)
C(1) - W - C(3)	76.6 (4)	W-C(2)-O(2)	177.4 (9)
C(1)-W-C(15)	131.2 (4)	W-C(3)-O(3)	175.5 (8)
C(2) - W - C(3)	111.6 (4)	Fe-C(4)-O(4)	177.8 (9)
C(2)-W-C(15)	73.6 (4)	Fe-C(5)-O(5)	178.7 (11)
C(3)-W-C(15)	80.0 (4)	Fe-C(6)-O(6)	176.3 (10)
C(4)-Fe-C(5)	94.4 (5)	Fe-C(7)-O(7)	176.3 (9)
C(4)-Fe- $C(6)$	91.9 (5)	Fe-C(8)-C(17)	114.9 (6)
C(4)-Fe- $C(7)$	167.4 (4)	Fe-C(8)-O(8)	122.8 (7)
C(4)-Fe- $C(8)$	85.8 (4)	C(17)-C(8)-O(8)	122.4 (8)
C(4)-Fe- $C(9)$	85.8 (4)	Fe-C(9)-C(16)	114.1 (7)
C(5)-Fe- $C(6)$	95.8 (5)	Fe-C(9)-O(9)	124.0 (7)
C(5)-Fe- $C(7)$	95.2 (5)	C(16)-C(9)-O(9)	121.8 (8)
C(5)-Fe- $C(8)$	172.6 (4)	W-C(15)-C(16)	117.6 (6)
C(5)-Fe-C(9)	91.7 (4)	C(9)-C(16)-C(15)	118.9 (8)
C(6) - Fe - C(7)	95.2 (5)	C(9)-C(16)-C(17)	116.0 (8)
C(6)-Fe- $C(8)$	91.6 (5)	C(15)-C(16)-C(17)	125.0 (8)
C(6)-Fe-C(9)	172.4 (5)	C(8)-C(17)-C(16)	113.9 (8)
C(7)-Fe- $C(8)$	83.6 (4)	C(8)-C(17)-C(18)	121.7 (9)
C(7)-Fe- $C(9)$	85.7 (4)	C(16)-C(17)-C(18)	124.4 (9)
C(8)-Fe-C(9)	81.0 (4)	C(17)-C(18)-C(19)	136.0 (14)

C(18)-C(19) (1.153 (17) Å) lengths representing C-C double bonds. The extraordinarily short C(18)-C(19) bond is due to thermal motion of the C(19) atom. The Fe-C(9)(2.008 (9) Å) and Fe-C(8) $(2.023 (8) \text{ Å})^{5,6}$ lengths are reasonable according to the reported values for a normal Fe–C bond. The C(9)–O(9) (1.195 (12) Å) and C(8)–O(8) (1.1216 (11) Å) bonds have lengths close to that of a normal C-Odouble bond (1.21 Å).

For 4, the mass, IR, and ¹H and ¹³C NMR spectral data are consistent with the given structure. The β , γ -carbons of the η^1 -dienyl ligand resonate at 155.5 and 185.0 ppm

Figure 2. ORTEP drawing of the molecular structure of 5.

about 70-80 ppm downfield from those of 2. The maleoyl ketones are indicated by the infrared absorptions (Nujol) at 1658 (w) and 1640 (w) cm⁻¹ as well as by the ¹³C NMR resonances at δ 199.9 and 203.1 ppm. For 3, there are discrepancies in the NMR chemical chifts of the vinyl groups 3.22 (H³, dd, J = 12.6, 8.7 Hz), 3.86 (H⁴, d, J = 12.6Hz), 2.25 (H⁵, d, J = 8.7 Hz), and 34.9 (CH⁴H⁵) and 52.3 (CH^3) . These values lie far upfield with respect to those of 4 and a normal vinyl group. The remaining ¹H and ¹³C NMR resonances including the two ketone carbons and seven individual Fe-CO and W-CO carbons are normal. To assure no structural variations in solution, we have examined its solution IR spectrum (hexane) in the ν (CO) region, which was identical with that in the Nujol mull. Variable-temperature ${}^{1}H(-60 \text{ to } +100 \text{ °C}, \text{ toluene})$ NMR spectroscopy and spin-transfer techniques showed no signs of stereochemical nonrigidty. At present, we have no explanation of such abnormal NMR chemical shifts for the vinyl group of 3.

Complexes 1 and 2 are homologues of metal- η^1 -propargyl complexes. The related complexes CpW-(CO)₃(η^1 -CH₂C=CR) (R = Me, Ph)^{3a} react with Fe₂(CO)₉ to give only heteronuclear μ - η^2 , η^3 - and μ_3 - η^1 , η^2 , η^2 -allenyl complexes.³ Transition-metal maleoyls have been reported for iron⁷ and cobalt.⁸ The stable complexes CpCo(dimethylmaleoyl)(CO) and Fe(CO)₄(dicyclopropylmaleoyl) were prepared by the reaction involving alkynes and $CpCo(CO)_2$ and $Fe(CO)_5$, but the yields were low. An efficient synthesis was later developed involving the reaction between $ClCo(PPh_3)_3$ and cyclobutenedione.^{9,10}

Synthesis and Structures of Trinuclear μ_3 - η^1 , η^2 and μ_3 - η^1 , η^3 , η^3 **Complexes.** In the absence of CO, the reaction between Fe₂(CO)₉ and 1 afforded trinuclear CpWFe₂- $(CO)_{9}(\mu_{3}-\eta^{1},\eta^{3},\eta^{3}-CH_{2}CCCH=CH_{2})$ (5) (25%), CpWFe₂-(CO)₈($\mu_{3}-\eta^{1},\eta^{2},\eta^{2}-CH_{2}CCCH=CH_{2})$ (6) (3%), and 3 (30%). The mixed products were separated by column chromatography. In an alternative preparation, heating 1 with $Fe_3(CO)_{12}$ in refluxing benzene only yielded 5 and 6 in respective yields of 5 and 7%. Allowing 2 to react with $Fe_2(CO)_9$ in hexane under argon at 25 °C yielded $MnFe_2(CO)_{11}(\mu_3 - \eta^1, \eta^3, \eta^3 - CH_2CCCHCH_2)$ (7) (14%) and 4 (32%). Irradiation or thermolysis of 3 or 4 alone in hexane

⁽⁵⁾ Cardin, C. J.; Crawford, W.; Watts, W. E.; Hathaway. J. Chem. Soc., Dalton Trans. 1979, 970.
(6) Bennet, M. J.; Cotton, F. A.; Dauison, A.; Faller, J. W.; Lippard, S. J.; Morehouse, S. M. J. Am. Chem. Soc. 1966, 88, 4371.
(7) (a) Case, J. R.; Clarkson, R.; Jones, E. R. H.; Whiling, M. C. Prog. Chem. Soc. 1959, 150.
(b) Grevels, F. W.; Shultz, D.; Koerner Von Gustori, E.; Bunbary, D. S. P. J. Organomet. Chem. 1975, 91, 345.
(c) Petterson, R. C.; Cihonski, J. L.; Young, F. R.; Leuenson, R. A. J. Chem. Soc., Chem. Commun. 1975, 370.
(d) Victor, R.; Vsieli, V.; Sarel, S. J. Organomet. Chem. 1975, S. J. Organomet. Chem. 1977. Organomet. Chem. 1977, 129, 387.

^{(8) (}a) Liebeskind, L. S.; Jewell, C. F. J. Organomet. Chem. 1985, 285, 305. (b) Jewell, C. F.; Liebeskind, L. S.; Williamson, M. J. Am. Chem. Soc. 1985, 107, 6715.

 ^{(9) (}a) Liebeskind, L. S.; Baysdon, S. L.; South, M. S.; Lyer, S.; Leeds,
 J. P. Tetrahedron, 1985, 41, 5839. (b) Liebeskind, L. S.; Baysdon, S. L.;
 South, M. S.; Blount, J. F. J. Organomet. Chem. 1980, 202, C37.
 (10) (a) Liebeskind, L. S.; Baysdon, S. L.; South, M. S. J. Am. Chem.

Soc. 1980, 102, 7397. (b) South, M. S.; Liebeskind, L. S. J. Am. Chem. Soc. 1984, 106, 4181. (c) Liebeskind, L. S.; Leeds, J. P.; Baysdon, S. L.; Lyer, S. J. Am. Chem. Soc. 1984, 106, 6451.

Table II. Selected Bond Distances and Bond Angles for 5

W-C(1)	1.955 (7)	Fe(2)-C(13)	2.069 (6)
W-C(2)	1.971 (6)	Fe(2) - C(14)	2.110 (6)
W-C(3)	1.991 (6)	C(1) - O(1)	1.169 (8)
W-C(11)	2.279 (5)	C(2) - O(2)	1.159 (8)
Fe(1)- $Fe(2)$	2,7537 (13)	C(3) = O(3)	1.141 (8)
$F_{0}(1) - C(4)$	1 784 (6)	C(4) = O(4)	1.151(7)
$F_{0}(1) - C(5)$	1.754(0) 1.770(7)	C(5) = O(5)	1 1/6 (9)
Fe(1) = C(0) $F_0(1) = C(6)$	1.770 (7)	C(0) = O(0)	1,140 (0)
Fe(1) = O(0)	1.009(0)	C(0) = O(0)	1.127 (0)
Fe(1) = C(10)	2.114(0)	C(7) = O(7)	1.138 (9)
Fe(1) = U(11)	2.129 (5)	C(8) = O(8)	1.152 (8)
Fe(1) - C(12)	1.971 (5)	C(9) = O(9)	1.143 (8)
Fe(2) - C(7)	1.801 (7)	C(10) - C(11)	1.414 (8)
Fe(2) - C(8)	1.776 (7)	C(11)-C(12)	1.392 (7)
Fe(2) - C(9)	1.747 (7)	C(12) - C(13)	1.394 (8)
Fe(2)-C(12)	2.018 (5)	C(13)-C(14)	1.414 (9)
C(1) = W = C(0)	75 29 (94)	$C(7) = E_{0}(9) - C(14)$	00.0 (2)
$C(1) = W^{-}C(2)$	100.02 (24)	C(7) = Fe(2) = C(14) C(0) = Fe(0) = C(0)	90.9 (3) 99.0 (9)
O(1) = W = O(3)	109.67 (24)	C(3) = Fe(2) = C(3)	00.9 (3)
$C(1) = W \sim C(11)$	79.89 (21)	C(8) - Fe(2) - C(12)	101.20 (24)
U(2) - W - U(3)	78.81 (24)	C(8) - Fe(2) - C(13)	129.6 (3)
C(2) - W - C(11)	129.90 (21)	C(8) - Fe(2) - C(14)	168.7 (3)
C(3) - W - C(11)	69.76 (21)	C(9)-Fe(2)-C(12)	126.8 (3)
Fe(2) - Fe(1) - C(4)	172.89 (19)	C(9)-Fe(2)-C(13)	95.2 (3)
Fe(2) - Fe(1) - C(5)	87.91 (21)	C(9)-Fe(2)-C(14)	89.4 (3)
Fe(2) - Fe(1) - C(6)	90.03 (18)	C(12)-Fe(2)-C(13)	39.86 (22)
Fe(2) - Fe(1) - C(10)	90.22 (14)	C(12)-Fe(2)-C(14)	71.14 (21)
Fe(2) - Fe(1) - C(11)	81.22 (14)	C(13)-Fe(2)-C(14)	39.53 (25)
Fe(2) - Fe(1) - C(12)	47.05 (14)	W-C(1)-O(1)	178.2 (5)
C(4) - Fe(1) - C(5)	91.2 (3)	W-C(2)-O(2)	178.6 (5)
C(4) - Fe(1) - C(6)	97.1 (3)	W-C(3)-O(3)	177.0 (5)
C(4) - Fe(1) - C(10)	89.26 (23)	$F_{e}(1) - C(4) - O(4)$	178 3 (5)
C(4) - Fe(1) - C(11)	93.97 (22)	$F_{e}(1) - C(5) - O(5)$	175.5 (6)
$C(4) = F_{e}(1) = C(12)$	126 45 (22)	$F_{0}(1) - C(6) - O(6)$	179.5 (5)
C(4) Fe(1) - C(12) C(5) - Fe(1) - C(6)	00 0 (2)	$F_{0}(2) = C(0) = O(0)$	1791(6)
C(0) = Fe(1) = C(0) C(5) = Fe(1) = C(10)	169 9 (3)	Fe(2) = C(1) = O(1)	1741 (5)
C(0) = Fe(1) = C(10)	100.3 (3)	Fe(2) = C(0) = O(0)	179.0 (7)
C(5) = Fe(1) = C(11)	129.4 (3)	Fe(2) = C(9) = O(9)	1(0.0(1))
O(3) - Fe(1) - O(12)	101.5 (3)	Fe(1) = U(10) = U(11)	(1.1 (3)
D(0) - Fe(1) - C(10)	91.72 (24)	W = C(11) = Fe(1)	130.82 (23)
C(6) - Fe(1) - C(11)	129.20 (24)	W-C(11)-C(10)	128.4 (4)
C(6) - Fe(1) - C(12)	130.44 (23)	W-C(11)-C(12)	120.0 (4)
C(10) - Fe(1) - C(11)	38.93 (21)	Fe(1)-C(11)-C(10)	70.0 (3)
C(10) - Fe(1) - C(12)	69.11 (22)	Fe(1)-C(11)-C(12)	64.2 (3)
C(11)-Fe(1)-C(12)	39.47 (21)	C(10)-C(11)-C(12)	111.5 (4)
Fe(1) - Fe(2) - C(7)	90.58 (20)	Fe(1)-C(12)-Fe(2)	87.30 (21)
Fe(1) - Fe(2) - C(8)	88.33 (20)	Fe(1)-C(12)-C(11)	76.4 (3)
Fe(1) - Fe(2) - C(9)	171.0 (3)	Fe(1)-C(12)-C(13)	137.7 (4)
Fe(1) - Fe(2) - C(12)	45.65 (15)	Fe(2)-C(12)-C(11)	140.1 (4)
Fe(1) - Fe(2) - C(13)	80.06 (16)	Fe(2)-C(12)-C(13)	72.1 (3)
Fe(1) - Fe(2) - C(14)	91.67 (17)	C(11)-C(12)-C(13)	141.1 (5)
C(7) - Fe(2) - C(8)	100.3 (3)	Fe(2)-C(13)-C(12)	68.1 (3)
C(7) - Fe(2) - C(9)	98.4 (3)	Fe(2)-C(13)-C(14)	71.8 (3)
C(7) - Fe(2) - C(12)	129.8 (3)	C(12)-C(13)-C(14)	117.6 (5)
C(7) - Fe(2) - C(13)	128 3 (3)	$F_{e}(2) - C(14) - C(13)$	68 7 (3)
			00.1 (0)

produced only 1 (or 2) in 20-30%. We have also prepared the Ru analogue of 3, CpWRu₂(CO)₈(μ_3 - η^1 , η^2 , η^2 - $CH_2CCCH=CH_2$) (8) (42% yield) from the reaction between 1 and $Ru_3(CO)_{10}(CH_3CN)_2$. The structures of these two trinuclear μ_3 - η^1 , η^3 , η^3 and μ_3 - η^1 , η^2 , η^2 complexes were unambiguously confirmed by X-ray diffraction as the representative compounds 5 and 8.

The ORTEP drawing of 5 (Figure 2) confirms the above formulation. Selected bond distances and angles are given in Table II. Complex 5 consists of a core of two iron atoms with a large Fe(1)-Fe(2) (2.7537 (13) Å) distance, symmetrically bridged by the C(12) atom in a μ_2 - η^3 , η^3 fashion (Fe(1)-C(12) = 1.971 (5) Å, Fe(2)-C(12) = 2.018 (5) Å).Notably, $CpW(CO)_3$ has migrated to the β -carbon with a normal W-C(11) (2.279 (5) Å) single bond. The acyclic five-carbon chain is W-shaped; the C-C bond lengths are quite similar, 1.392-1.414 (9) Å. Each iron is bonded to the ligand in a η^3 -allylic fashion within the close distances 1.971 (5)-2.129 (5) Å. The η^3 -allyl bonding is shown by the ¹H and ¹³C NMR chemical shifts of the ligand. On the basis of the data above, complex 5 is best described as a

Table III. Selected Bond Distances and Bond Angles for 8

			-
W-Ru(1)	2.9152 (13)	Ru(2)-C(14)	2.478 (15)
W-Ru(2)	2.9179 (13)	Ru(2) - C(15)	2.160 (11)
W-C(1)	2.008 (13)	C(1) - O(1)	1.137 (15)
W-C(2)	1.964 (11)	C(2) - O(2)	1.161 (13)
W-C(15)	2.118 (11)	C(3) - O(3)	1.133 (16)
W - C(16)	2.274(13)	C(4) = O(4)	1.170 (17)
$R_{11}(1) - R_{11}(2)$	2 8148 (18)	C(5) = O(5)	1.127 (18)
Ru(1) - C(3)	1.872(13)	C(6) = O(6)	1.137(16)
Ru(1) - C(4)	1.878 (15)	C(7) = O(7)	1.157(21)
Ru(1) - C(5)	1.070(10) 1.926(15)	C(8) = O(8)	1.107(21) 1.112(16)
Ru(1) - C(16)	2 039 (11)	C(14) = C(15)	1 395 (18)
$R_{11}(2) = C(6)$	1.875(14)	C(15) = C(16)	1.315(15)
$R_{u}(2) - C(0)$	1 999 (19)	C(16) - C(17)	1 459 (91)
Ru(2) = C(7) Ru(2) = C(8)	1.000(10) 1.006(14)	C(10) = C(11) C(17) = C(18)	1.402 (21)
Ru(2) = C(0)	1.920 (14)	C(17) - C(10)	1.200 (21)
Ru(1)-W-Ru(2)	57.70 (4)	Ru(1)-Ru(2)-C(7)) 87.3 (4)
$\operatorname{Ru}(1)$ -W-C(1)	73.3 (3)	Ru(1)-Ru(2)-C(8)) 159.4 (4)
Ru(1)-W-C(2)	69.6 (4)	Ru(1)-Ru(2)-C(1)	4) 94.9 (3)
Ru(1)-W-C(15)	63.8 (3)	Ru(1)-Ru(2)-C(1)	5) 65.4 (3)
Ru(1)-W-C(16)	44.2 (3)	C(6)-Ru(2)-C(7)	91.2 (6)
$\operatorname{Ru}(2)$ -W-C(1)	72.7 (3)	C(6)-Ru(2)-C(8)	102.1 (6)
Ru(2)-W-C(2)	127.2 (4)	C(6)-Ru(2)-C(14)) 88.5 (5)
Ru(2)-W-C(15)	47.6 (3)	C(6)-Ru(2)-C(15)) 108.8 (5)
Ru(2)-W-C(16)	67.8 (3)	C(7)-Ru(2)-C(8)	92.1 (6)
C(1)-W-C(2)	90.3 (5)	C(7)-Ru(2)-C(14)) 177.7 (6)
C(1)-W-C(15)	118.4 (4)	C(7)-Ru(2)-C(15) 147.8 (5)
C(1)-W-C(16)	116.9 (4)	C(8)-Ru(2)-C(14)) 85.7 (5)
C(2)-W-C(15)	111.9 (4)	C(8)-Ru(2)-C(15)) 107.3 (5)
C(2)-W-C(16)	77.4 (4)	C(14)-Ru(2)-C(1	5) 34.1 (4)
C(15)-W-C(16)	34.6 (4)	W-C(1)-O(1)	169.3 (10)
W-Ru(1)-Ru(2)	61.20 (4)	W-C(2)-O(2)	171.6 (11)
W-Ru(1)-C(3)	138.9 (4)	Ru(1)-C(3)-O(3)	178.8 (11)
W-Ru(1)-C(4)	112.9 (4)	Ru(1)-C(4)-O(4)	174.6 (13)
W-Ru(1)-C(5)	111.7 (5)	Ru(1)-C(5)-O(5)	177.8 (16)
W-Ru(1)-C(16)	51.0 (4)	Ru(2)-C(6)-O(6)	178.5 (12)
Ru(2)-Ru(1)-C(3)	88.8 (4)	Ru(2)-C(7)-O(7)	175.4 (12)
Ru(2)-Ru(1)-C(4)	173.8 (4)	Ru(2)-C(8)-O(8)	178.7 (13)
Ru(2)-Ru(1)-C(5)	95.8 (5)	Ru(2)-C(14)-C(1	5) 60.3 (7)
Ru(2)-Ru(1)-C(16)	72.8 (3)	W-C(15)-Ru(2)	86.0 (4)
C(3)-Ru(1)-C(4)	95.3 (6)	W-C(15)-C(14)	139.1 (9)
C(3)-Ru(1)-C(5)	97.8 (7)	W-C(15)-C(16)	79.2 (7)
C(3)-Ru(1)-C(16)	95.6 (5)	Ru(2)-C(15)-C(1)	4) 85.6 (8)
C(4)-Ru(1)-C(5)	88.3 (7)	Ru(2)-C(15)-C(1)	6) 113.8 (8)
C(4)-Ru(1)-C(16)	102.1 (6)	C(14) - C(15) - C(1)	140.0(12)
C(5)-Ru(1)-C(16)	162.2(6)	W-C(16)-Ru(1)	84.9 (4)
W-Ru(2)-Ru(1)	61.10(4)	W-C(16)-C(15)	66.2(7)
W-Ru(2)-C(6)	151.6 (4)	W-C(16)-C(17)	126.8 (10)
W-Ru(2)-C(7)	106.2(4)	Ru(1)-C(16)-C(1)	5) 107.8 (8)
···			-,

W-Ru(2)-C(8)

W-Ru(2)-C(14)

W-Ru(2)-C(15)

Ru(1)-Ru(2)-C(6)

divinylcarbene complex.¹¹ The C(10)-C(11)-C(12) angle $(111.5 (4)^{\circ})$ is highly strained, probably due to the steric effect of the bulky $CpW(CO)_3$ unit, and is even smaller than the C(12)-C(13)-C(14) angle 117.6 (5)°. The angle at the central carbon $(C(11)-C(12)-C(13) = 141.5 (5)^{\circ})$ is less strained. The Fe(1)-Fe(2) length herein is larger than that of a normal Fe-Fe single bond (2.50-2.65 Å) of the related μ -carbene.¹²

99.5(4)

74.9 (3)

46.4(3)

98.5 (4)

Ru(1)-C(16)-C(17)

C(15)-C(16)-C(17)

C(16)-C(17)-C(18)

121.4 (10)

129.1(12)

140.6 (19)

On the basis of its ORTEP drawing (Figure 3), complex 8 can be viewed as a μ_3 - η^1 , η^2 , η^2 -allenyl complex and its structure is essentially equivalent to that of the recently reported CpWFe₂(CO)₈(CH₂CCR).^{3a} The complex consists of a W-Ru(1)-Ru(2) triangular core with the lengths Ru-(1)-Ru(2) (2.8148 (18) Å), W-Ru(1) (2.9179 (13) Å), and W-Ru(2) (2.9152 (13) Å). From the bond lengths in Table III, the distances of metal to allenyl carbon are dissimilar. The lengths Ru(2)-C(15) (2.160 (11) Å) and W-C(15)

⁽¹¹⁾ Navarre, D.; Rudler, H.; Parlier, A.; Daran, J. C. J. Organomet. Chem. 1987, 322, 103.

^{(12) (}a) Summer, C. E.; Riley, P. E.; Davis, R. E.; Pettit, R. J. Am. Chem. Soc. 1980, 102, 1752. (b) Aumann, R.; Wormann, H.; Kruger, C. Angew. Chem., Int. Ed. Engl. 1976, 15, 609.

Reactions of Metal-n¹-Vinylpropargyl Ligands

Figure 3. ORTEP drawing of the molecular structure of 8.

(2.118 (11) Å) are smaller than those of Ru(2)–C(14) (2.478 (15) Å) and W–C(16) (2.274 (13) Å). Obviously, the C(15) atom lies closer to the triangular faces relative to the C(14) and C(16) atoms, and the allenyl ligand has similar C–C bond lengths C(14)–C(15) = 1.395 (8) Å, C(15)–C(16) = 1.315 (8) Å. In contrast to 5, the angles around the central allene atom C(14)–C(15)–C(16) are less strained, 140.0 (12)°, owing to the μ_3 coordination. A dative bond is indicated between Fe and W to meet the 18-electron requirement.

Reaction of Os₃(CO)₁₀(CH₃CN)₂ with 1. As depicted in the equation, stirring of 1 with an equimolar amount of Os₃(CO)₁₀(CH₃CN)₂(23 °C, CH₃CN, 4 h) produced air-stable complexes 9 and 10 in 25 and 23% yields, respectively. The two compounds were obviously produced

from two independent pathways, since heating each alone in refluxing hexane for 1 h does not produce mutual exchange; in each case, the compounds were recovered exclusively. Structural assignment of 9 is straightforward upon comparison of its spectroscopic data with those of the related known compounds $Os_3(CO)_{10}(alkyne)$.¹³ The μ_2 -CO is indicated by its IR $\nu(CO)$ absorption at 1846 (w) cm⁻¹. Its ¹³C NMR spectra at -60 °C exhibited ten Os-CO carbon resonances (174–185 ppm) which begin to broaden and eventually coalesce to one broad resonance (177 ppm) as the temperature is warmed to 23 °C, consistent with the carbonyl exchange between the three Os cores.^{13b} An X-ray structure of 10 has been determined. Figure 4 shows the ORTEP drawing of 10 which reveals that one tungsten

Figure 4. ORTEP drawing of the molecular structure of 10.

^{*a*} M = CpW(CO)₃, Mn(CO)₅.

carbonyl has migrated to the β -carbon of the vinylpropargyl ligand to form an η^3 -vinylacyl complex. The Os(2)-Os(3) bond (Os-Os = 3.776 (3) Å) has been cleaved, into which the doubly bridged C(14) atom has inserted to form an L-shaped triosmium core. The hydride is presumably located between Os(1) and Os(2), as indicated by the large angles C(3)-Os(1)-Os(2) = 117.8 (8)° and C-(16)-Os(2)-Os(1) = 114.4 (8)°. On the tungsten-vinyl moiety, the W-C(13) length (2.07 (3) Å) is considerably shorter than those of the W-C(17) (2.38 (3) Å) and W-C-(18) (2.33 (3) Å) bonds.

We have performed a seperate labeling experiment involving the use of $Os_3({}^{13}CO)_{10}(CH_3CN)_2$ (${}^{13}CO$ content = 50%). The ${}^{13}C$ NMR spectrum of 10 thus formed revealed that only the 10 Os-CO resonances (168-186 ppm) are ${}^{13}CO$ -enriched whereas the other resonances including the η^3 -acyl carbon (243.1 ppm) stilled remained naturally abundant. For a sample in the Nujol mull, no new infrared absorption due to the η^3 -acyl $\nu({}^{13}CO)$ mode was observed; from these results we concluded that the η^3 -acyl CO is derived from the W-CO group.

1,2-Migration Mechanism. Complex 10 represents an interesting case in which the W-CO group forms a bond to the β -carbon of the η^1 -organic moiety. In CO migratory insertion, only the " α -insertion mode" is operative and no exceptional case appears to have been reported.¹⁵ On the

^{(13) (}a) Tochikawa, M.; Shapley, J. R. J. Organomet. Chem. 1976, 124,
C19. (b) Gallop, M. A.; Johnson, B. F. G.; Khatter, R.; Lewis, J.; Raithby,
P. R. Ibid. 1990, 386, 121.

 ⁽¹⁴⁾ Constable, E. C.; Johnson, B. F. G.; Lewis, J.; Pain, G. N.; Taylor,
 M. J. J. Chem. Soc., Chem. Commun. 1982, 754.

⁽¹⁵⁾ Collman, J. P.; Hegedus, L. A.; Norton, J. R.; Finke, R. G. Principles and Application of Organometallic Metal Chemistry; University Science Books; Mill Valley, CA, 1987; pp 356-376.

Table IV. Selected Bond Distances and Bond Angles for 10

able IV. Delected	Dong Dist	ances and Donu II.	ISICS IOI IV
$O_{s}(1) - O_{s}(2)$	2 9291 (24)	W-C(13)	2.07 (3)
$O_{2}(1) O_{2}(2)$	0.0717(00)	W C(17)	2.07(0)
Os(1) - Os(3)	2.8/17 (23)	W = C(17)	2.38 (3)
Os(1) - C(1)	1.92 (3)	W-C(18)	2.33 (3)
Os(1)-C(2)	1.90 (3)	C(1) - O(1)	1.10 (3)
$O_{1}(1) = C(3)$	1.87 (3)	$\hat{C}(\hat{a}) = \hat{O}(\hat{a})$	1 16 (3)
$O_{3}(1) = O_{3}(1)$	1.07 (3)	O(2) = O(2)	1.10 (3)
Os(1) - C(16)	2.163 (23)	C(3) = O(3)	1.20 (4)
Os(1)-H	1.2041	C(4)–O(4)	1.11 (3)
$O_{\alpha}(2) = C(4)$	1 98 (3)	C(5) = O(5)	1 11 (3)
$O_{3}(2) = O_{4}(4)$	1.30 (3)	C(0) = O(0)	1.11 (3)
Os(2) - C(5)	1.95 (3)	C(6) - O(6)	1.16 (4)
Os(2) - C(6)	1.88 (3)	C(7) - O(7)	1.17 (4)
$O_{2}(2) - C(14)$	2 332 (25)	C(8) = O(8)	1 13 (3)
$O_{2}(2) O(14)$	2.002 (20)		1 14 (4)
Us(2) = U(15)	2.259 (22)	C(9) - O(9)	1.14 (4)
Os(2) - C(16)	2.302 (22)	C(10)-O(10)	1.16 (4)
$O_{s}(3) - C(7)$	1.90 (3)	C(11) = O(11)	1 17 (4)
$O_{-}(0) O(0)$	1.00 (0)	O(10) O(10)	1.00 (0)
$U_{S(3)} = U(3)$	1.93 (3)	U(12) = U(12)	1.20(3)
Os(3) - C(9)	1.94 (3)	C(13) - C(17)	1.52 (4)
$O_{S}(3) - C(10)$	1.91 (3)	C(13) = O(13)	1.25 (3)
$O_{2}(2) = O(14)$	0.07 (2)	C(14) $C(15)$	1 55 (4)
Os(3) = C(14)	2.07 (3)	U(14) - U(15)	1.00 (4)
Os(3)-H	1.9168	C(15)-C(16)	1.42 (3)
W-C(11)	1.95 (3)	C(16) - C(17)	1.52 (4)
W C(10)	1 00 (9)	C(17) $C(19)$	1 40 (4)
W = C(12)	1.90 (3)	U(17) = U(18)	1.40 (4)
Os(2) - Os(1) - Os(3)	81.22 (5)	C(8) - Os(3) - C(10)	98 .7 (12)
$O_{s}(2) = O_{s}(1) = C(1)$	92.4 (7)	$C(8) = O_8(3) = C(14)$	89.8 (11)
$O_{2}(1) = O_{2}(1) = O_{2}(1)$	149.0 (9)	$C(0) - O_{0}(2) - H$	161 9
Os(2) = Os(1) = C(2)	140.2 (0)	C(0)-Os(3)-H	101.0
Os(2) - Os(1) - C(3)	117.8 (8)	C(9) - Os(3) - C(10)	93.1 (13)
$O_{s(2)} - O_{s(1)} - C(16)$	51.1 (6)	$C(9) = O_8(3) = C(14)$	174.5 (12)
$O_{2}(2)$ $O_{2}(1)$ U	04.05	$C(0) O_2(2) - H$	007
Us(2)-Us(1)-H	04.20	C(9)-Os(3)-H	00.1
Os(3) - Os(1) - C(1)	173.5 (7)	C(10) - Os(3) - C(14)	87.5 (12)
Os(3) - Os(1) - C(2)	93.1 (9)	$C(10) - O_8(3) - H$	98.8
$O_{2}(2) = O_{2}(1) = C(2)$	84 4 (0)	$C(14) = O_{2}(2) = H$	95.9
Us(3)-Us(1)-C(3)	04.4 (3)	C(14)-Os(3)-H	00.0
Os(3) - Os(1) - C(16)	85.0 (6)	C(11) - W - C(12)	81.7 (12)
$O_8(3) - O_8(1) - H$	29.45	C(11)-W-C(13)	124.0 (12)
$C(1) = O_{2}(1) = C(2)$	02.0 (12)	C(11) - W - C(17)	80.7 (11)
C(1)=Os(1)=C(2)	55.0 (12)		09.7 (11)
C(1) - Os(1) - C(3)	97.5 (13)	C(11) - W - C(18)	83.7 (10)
C(1)-Os(1)-C(16)	92.0 (10)	C(12) - W - C(13)	79.2 (11)
$C(1) = O_{0}(1) = H$	1/0 1	C(12) - W - C(17)	01 2 (12)
C(1)-Os(1)-H	145.1	C(12) = W = C(17)	91.2(12)
C(2) - Os(1) - C(3)	92.4 (12)	C(12) - W - C(18)	123.7 (12)
C(2) - Os(1) - C(16)	97.4 (10)	C(13)-W-C(17)	39.2 (10)
$C(2) = O_2(1) = H$	105.0	C(12) = W = C(18)	65.2 (0)
C(2)-Os(1)-H	100.9	C(13) - W - C(13)	00.0 (9)
C(3) - Os(1) - C(16)	165.9 (11)	C(17) - W - C(18)	34.7 (9)
C(3) - Os(1) - H	58.2	$O_{s(1)}-C(1)-O(1)$	170 (3)
$C(16) O_{-}(1) H$	100.0	$O_{2}(1) C(2) O(2)$	1795 (94)
C(16)=Os(1)=H	109.0	$U_{S(1)} = U_{(2)} = U_{(2)}$	178.5 (24)
Os(1) - Os(2) - C(4)	94.0 (7)	Os(1) - C(3) - O(3)	174.9 (24)
$O_{s(1)} - O_{s(2)} - C(5)$	153.1(7)	$O_{s}(2) - C(4) - O(4)$	170 (3)
$O_{2}(1) = O_{2}(2) - C(6)$	114 4 (9)	$O_{2}(2) = O(5) = O(5)$	179 2 (22)
Os(1) = Os(2) = C(0)	114.4 (0)	$O_{S(2)} = C(3) = O(3)$	170.0 (22)
Os(1) - Os(2) - C(14)	73.5 (6)	Os(2) - C(6) - O(6)	176.9 (24)
$O_{s}(1) - O_{s}(2) - C(15)$	71.2 (6)	Os(3) - C(7) - O(7)	177 (3)
$O_{0}(1) = O_{0}(2) = C(16)$	47 0 (G)	$O_{\alpha}(3) = C(8) = O(8)$	175 (3)
	$\pm 7.0(0)$		170 (0)
C(4) - Os(2) - C(5)	90.1 (11)	Os(3) - C(9) - O(9)	178 (3)
C(4) - Os(2) - C(6)	99.1 (12)	$O_{s(3)}-C(10)-O(10)$	176.7 (25)
$C(4) = O_{2}(2) = C(14)$	166 1 (10)	W = C(11) = O(11)	172 (3)
O(4) O(2) O(14)	100.1 (10)		170 (0)
C(4) = Os(2) = C(15)	131.3 (10)	W = C(12) = O(12)	170 (3)
C(4) - Os(2) - C(16)	100.3 (10)	W-C(13)-C(17)	81.3 (14)
$C(5) - O_8(2) - C(6)$	91.1 (11)	W-C(13)-O(13)	143.4 (20)
$C(5) = O_{2}(0) = O(14)$	00 0 (10)	C(17)_C(19) O(10)	195 9 (05)
C(3) = Os(2) = C(14)	90.3 (10)	C(17) = C(13) = O(13)	135.2 (25)
C(5)-Os(2)-C(15)	86.2 (9)	Os(2) - C(14) - Os(3)	118.1(12)
C(5) - Os(2) - C(16)	106.1 (9)	$O_{s}(2)-C(14)-C(15)$	67.8(12)
$C(B) = O_{0}(2) = C(14)$	01 8 (10)	$O_{0}(3) = C(14) = C(15)$	115 9 (17)
O(0) = Os(2) = O(14)	91.0 (12)		
U(6) - Us(2) - U(15)	129.5 (11)	Us(2) - C(15) - C(14)	72.9 (13)
C(6)-Os(2)-C(16)	153.9 (10)	Os(2)-C(15)-C(16)	73.5 (12)
C(14)-0.(2)-C(15)	39 4 (10)	C(14) = C(15) = C(16)	118 5 (20)
O(14) = O(10)		$O_{11} O_{12} $	01.0 (20)
U(14) - Us(2) - U(16)	66.8 (10)	Us(1) - C(16) - Us(2)	81.9 (8)
C(15)-Os(2)-C(16)	36.3 (8)	Os(1)-C(16)-C(15)	116.3 (17)
$O_8(1) - O_8(3) - C(7)$	87.6 (10)	$O_8(1) = C(16) = C(17)$	121.6 (16)
$O_{0}(1) O_{0}(0) O(1)$	160 0 (10)	$O_{0}(2) O(10) O(11)$	70.0 (10)
$U_{S(1)} = U_{S(3)} = U(8)$	108.2 (9)	Us(2)-U(16)-U(15)	(0.2 (13)
Us(1) - Us(3) - C(9)	96.2 (10)	Us(2) - C(16) - C(17)	116.4 (15)
$O_{s}(1) - O_{s}(3) - C(10)$	82.1 (8)	C(15)-C(16)-C(17)	122.1 (21)
$O_{0}(1) - O_{0}(3) - O(14)$	78 4 (7)	W = C(17) = C(12)	59 5 (12)
$O_{0}(1) = O_{0}(0) = O_{1}(14)$	17.00	W 0(17) 0(10)	107 = (10)
Us(1)-Us(3)-H	17.99	w-C(17)-C(16)	127.5 (16)
C(7) - Os(3) - C(8)	90.5 (13)	W-C(17)-C(18)	70.8 (15)
$C(7) = O_8(3) = C(9)$	92.4 (14)	C(13)-C(17)-C(16)	117.1 (21)
C(7) = C(10)	169 7 (19)	C(12) = C(17) = C(10)	100 / (94)
	100.7 (13)		100.4 (24)
U(7) - Us(3) - C(14)	86.1 (13)	C(16) - C(17) - C(18)	132.8 (24)
C(7) - Os(3) - H	71.6	W-C(18)-C(17)	74.5 (14)
$C(8) = O_{1}(2) = C(0)$	05 6 (19)	$O_{2}(1) - H_{-}O_{2}(2)$	139 57
	00.0 (10)		102.01

basis of the characterization of 5 and 7 where the metal fragment has formally undergone 1,2-migration, the for-

^a M = CpW(CO)₃, Mn(CO)₅.

mation mechanism of 10 is proposed in Scheme II. The key step involves a nucleophilic attack of the C3-acetylide carbon at the unsaturated metal carbonyls to generate a zwitterionic intermediate (I),¹⁶ which then rearranges to a dinuclear divinylcarbene species. Recombination of this carbene intermediate with additional reactive $Fe(CO)_4$ leads to the formation of 5 and 7 after a loss of two CO. In the case of the osmium congener, the vinyl C-H bond of this carbene intermediate was oxidatively cleaved by the triosmium core to give II. The bulky triosmiun core possibly exerts strong steric hinderance on the $CpW(CO)_3$ fragment and weakens the W-vinyl σ bond of II to facilitate the CO insertion to produce 10.

The high yield of 3 and 4 at ambient conditions is particularly noticeable, and it is well documented that maleoyl formation from alkynes and metal carbonyls,^{7,8} including $Fe_2(CO)_9$, is severely plagued by its low selectivity. We believe their formation is closely associated with that of 5, 7, and 10 rather than an isolated case. As demonstrated in Scheme III, we believe that the zwitterionic intermediate I undergoes further carbonylation to give the intermediate II. Further intramolecular cyclization of II, followed by recarbonylation is expected to give the observed products. This proposed mechanism is supported by the feasible nature of the key step (II), which has been demonstrated by the recent work of Wojcicki.¹⁶

Experimental Section

All operations were carried out under argon or in a Schlenk apparatus. The solvents Et₂O, hexane, and THF were dried with sodium/benzophenone and distilled before use. Dichloromethane was dried over P_2O_5 and distilled. $Os_3(CO)_{12}$, $Fe_2(CO)_9$, $Ru_3(CO)_{12}$, and $W(CO)_6$ (Strem Chemicals) were used without further purification. NaMn(CO)₅,¹⁸ NaWCp(CO)₃,¹⁸ Fe₂(CO)₉,¹⁸ Fe₃(CO)₁₂,¹⁹ Ru₃(CO)₁₀(CH₃CN)₂,²⁰ Os₃(CO)₁₀(CH₃CN)₂,¹⁸ and 2-pentyn-4enyl-1-tosylate⁴ were prepared according to the procedures in the literature.

All ¹H (400 MHz, 300 MHz) and ¹³C (100 MHz, 75 MHz) NMR spectra were recorded on either a Bruker AM-400 instrument or a Varian Gemini-300 spectrometer; IR spectra were measured on a Bomem MB-100 spectrophotometer; and FAB mass spectra were recorded on a Jeol JMX-HX110 mass spectrometer. Microanalyses were performed in the Microanalytic Laboratory at the National Taiwain University

(a) Synthesis of $CpW(CO)_3(\eta^1-CH_2CCCH=CH_2)$ (1). A THF solution (50 mL) of NaWCp(CO)₃ (4.04 g, 11.4 mmol) was added with 2-pentyn-4-enyl-1-tosylate (2.70 g, 11.4 mmol) and stirred at 0 °C for 6 h. The solvent was removed under reduced pressure, leaving a yellow residue. The residue was extracted with Et_2O , filtered, and evaporated to dryness. Elution on a silica

⁽¹⁶⁾ Schuchart, C. E.; Young, G. H.; Wojcicki, A.; Calligaris, M.; Nardin, G. Organometallics 1990, 9, 2417. (17) Reger, D. L.; Mintz, E. Organometallics 1984, 3, 1758.

⁽¹⁾ Reger, D. L.; Mintz, E. Organometallics 1864, 3, 1756.
(18) Eisch, J. J., King, R. B., Eds Organometallic Synthesis; Academic Press: New York, 1965; Vol. 1.
(19) Mcfarlane, W.; Wilkinson, G. Inorg. Synth. 1967, 8, 180.
(20) Foulds, G. A.; Johnson, B. F. G.; Lewis, J. J. Organomet. Chem.

^{1985, 296, 147.}

Table V. Summary of Crystal Data and Data Collection for 3, 5, 8, and 10

	3	5	8	10
emp formula	C ₁₉ H ₁₀ O ₉ WFe	C ₁₉ H ₁₀ O ₉ WFe ₂	$C_{18}H_{11}O_8WRu_2$	C ₂₃ H ₁₀ O ₁₃ WOs ₃
cryst size, mm	$0.06 \times 0.12 \times 0.40$	$0.20 \times 0.25 \times 0.40$	$0.08 \times 0.12 \times 0.40$	$0.25 \times 0.30 \times 0.50$
space group cell dimens	monoclinic, $P2_1/n$	triclinic, PĪ	monoclinic, $C2/c$	monoclinic, $P2_1/n$
α, Å	9.995 (2)	9.610 (2)	28.580 (5)	11.825 (7)
b, Å	9.477 (2)	13.654 (4)	9.286 (4)	10.057 (7)
c, Å	21.845 (3)	8.422 (2)	15.978 (4)	22.89 (1)
α , deg		100.22 (2)		
β , deg	93.65 (2)	104.39 (2)	110.06 (2)	92.97 (6)
γ , deg		92.98 (2)		
vol. Å ³	2065.0 (7)	1048.1 (5)	3983 (2)	2718 (3)
Ż	4	2	8	4
fw	619.95	677.83	738.24	1249.77
dens (calcd), $\mu g/m^3$	1.994	2.148	2.462	3.054
abs coeff, mm ⁻¹	6.43	7.01	7.40	18.37
F(000)	1183.68	643.82	2767.38	2211.12
diffractometer	Enraf-Nonius, CAD4	same	same	same
radiation	Mo Kα (0.7093 A)	same	same	same
monochromator	highly oriented	same	same	same
	graphite crystal			
2θ range, deg	2.0-45.0	2.0-50.0	2.0-50.0	2.0-50.0
scan type	$\theta/2\theta$	$\theta/2\theta$	$\theta/2\theta$	$\theta/2\theta$
scan speed, deg/min	1.83-8.24	1.65-8.24	1.65-8.24	1.37-8.24
scan range, deg	$0.70 + 0.35 \tan \theta$	$0.65 + 0.35 \tan \theta$	$0.80 + 0.35 \tan \theta$	$0.75 + 0.35 \tan \theta$
std refins (variation)	3 measured/1 h (<4%)	3 measured/2 h (< 2%)	3 measured/2 h (<6%)	3 measured/1 h (<5%)
index ranges	$-10 \le h \le 10$	$-11 \leq h \leq 11$	$-33 \le h \le 31$	$-14 \leq h \leq 14$
	$0 \le k \le 10$	$0 \le k \le 16$	$0 \le k \le 11$	$0 \le k \le 11$
	$0 \le l \le 23$	$-10 \leq l \leq 9$	$0 \leq l \leq 18$	$0 \leq l \leq 27$
no. of ind refins $(I > 2\sigma(I))$	2693, 1917	3682, 3272	3502, 2566	4763, 3060
T_{\min}/T_{\max} (ϕ scan abs)	0.766/1.000	0.608/1.000	0.623/1.000	0.346/1.000
soln	Patterson methods	same	same	same
extinction corrn (g)	Constant II	0.75 (3)*	0.14 (1)	0.79 (2)
nyarogen atom	fixed, isotropic U	same	same	
weignung scheme	$W^{-} = \sigma^{-}(F)$	$w^{-} = \sigma^{-}(\mathbf{r})$	$W^{-} = \sigma^{-}(F)$	$w^{-} = \sigma^{-}(r)$
final A indices (include unobs fei)	$R = 3.0\%, R_w = 2.3\%$ ($R = 5.9\%, R_2 = 2.5\%$)	$R = 2.4\%, R_w = 2.2\%$ ($R = 3.1\%, R_w = 2.3\%$)	$R = 4.6\%, R_w = 3.4\%$ ($R = 7.0\%, R_w = 3.5\%$)	$R = 5.4\%, R_w = 4.6\%$ ($R = 10.1\%, R_w = 4.8\%$)
goodness-of-fit	1.36	2.22	2.44	2.44
no. of variables	271	281	263	362
data-to-param ratio	7.07:1	11.64:1	9.76:1	8.45:1
largest diff peak, e/Å ³	0.72	0.66	3.52	3.87
largest diff hole, e/ų	-0.60	0.95	-2.00	-2.96

 ${}^{o}F_{c'} = kF_{c}/(1 + g\beta F_{c}^{2})^{1/4}.$

column with Et₂O/hexane (1:1) gave an orange-yellow fraction, which was collected and brought to dryness to give a yellow solid (2.49 g, 6.26 mmol). The yield was 55%. IR (Nujol): ν (CO) 2021 (s), 1930 (vs) cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ 2.08 (d, 2 H, H¹), 5.23 (dd, 1 H, H⁴), 5.36 (dd, 1 H, H³), 5.47 (s, 5 H), 5.80 (ddt, 1 H, H²), $J_{12} = 2.7$ Hz, $J_{24} = 10.8$ Hz, $J_{23} = 11.4$ Hz, $J_{34} = 2.32$ Hz. ¹³C NMR (100 MHz, CDCl₃): δ -3.4 (CH¹), 80.1, 100.8 (C=C), 92.5 (Cp), 118.4 (CH²), 123.2 (CH³H⁴), 216.4, 228.8 (W—CO), MS (12 eV) (¹⁸⁴W): m/z 398 (M)⁺. Anal. Calcd for C₁₃H₁₀WO₃: C, 39.20; H, 2.51. Found: C, 39.30; H, 2.70.

(b) Synthesis of $Mn(CO)_5(\eta^{1-}CH_2CCCH_CH_2)$ (2). This complex was prepared similarly by the reaction between Na-Mn(CO)₅ (2.80 g, 12.8 mmol) and 2-pentyn-4-enyl-1-tosylate (3.02 g, 12.8 mmol) in THF at 0 °C; the yield of 2 was 83% (2.79 g, 10.61 mmol). IR (Nujol): $\nu(CO)$ 2110 (w), 2035 (vs), 1990 (vs) cm⁻¹. ¹H NMR (300 MHz, CDCl₃): δ 1.48 (s, 2 H, H¹), 5.23 (d, 1 H, H⁴), 5.40 (d, 1 H, H³), 5.79 (dd, 1 H, H²), $J_{23} = 17.4$ Hz, $J_{24} = 10.7$ Hz. ¹³C NMR (100 MHz, CDCl₃): δ -14.8 (CH¹), 80.3, 99.8 (C=C), 118.2 (CH²), 123.3 (CH³H⁴), 209.3, 211.1 (Mn–CO). MS (12 eV): m/z 260 (M)⁺. Anal. Calcd for $C_{10}H_5MnO_5$: C, 46.15; H, 1.92. Found: C, 46.28; H, 1.95.

(c) Synthesis of $CpW(CO)_3$ — CH_2 —C[CO—Fe-(CO)₄—CO]CCH=CH₂ (3). A hexane solution (50 mL) of 1

(0.22 g, 0.55 mmol) was added to $\text{Fe}_2(\text{CO})_9$ (0.40 g, 1.1 mmol). CO was bubbled through this solution at 23 °C for 10 h, and the solution gradually turned orange. After removal of the solvent to dryness, the residues were chromatographed through a silica column. Elution with a mixture of Et₂O/hexane (1:1) produced an orange band, which was collected and evaporated to dryness. Further recrystallization from Et₂O gave orange crystals of 3 (0.33

g, 0.52 mmol), in 95% yield. IR (Nujol): ν (CO) 2100 (w), 2085 (w), 2045 (s), 2030 (vs), 1970 (s), 1930 (vs), 1658 (w), 1640 (w) cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ 2.25 (d, 1 H, H⁵), 2.57 (d, 1 H, H¹), 2.78 (d, 1 H, H²), 3.29 (dd, 1 H, H³), 3.86 (d, 1 H, H⁴), J_{12} = 8.5 Hz, J_{34} = 12.6 Hz, J_{35} = 8.7 Hz. ¹³C NMR (100 MHz, CDCl₃): δ -19.9 (CH¹H²), 35.0 (CH⁴H⁵), 52.3 (CH³), 165.4, 182.2 (C=C), 199.4, 199.9, 202.6, 202.8, 217.6, 218.5, 226.5, 239.3, 241.2 (M-CO). MS (FAB): m/z 622 (M)⁺. Anal. Calcd for C₁₉H₁₀FeWO₉: C, 36.66; H, 1.61. Found: C, 36.82; H, 1.72.

(d) Synthesis of $Mn(CO)_5$ — CH_2 — $C[CO-Fe(CO)_4$ — $C-CI_2$

 $O]CCH=CH_2$ (4). This complex was prepared similarly from

the reaction between $Fe_2(CO)_9$ (1.25 g, 3.13 mmol) and 2 (0.40 g, 1.54 mmol) in a mixed solvent of hexane (40 mL) and THF (10 mL). CO was bubbled through the solution for 12 h. The yield of 4 was 81% (0.64 g, 1.32 mmol). IR (Nujol): ν (CO) 2110 (w), 2080 (vw), 2030 (vs), 1995 (s), 1658 (w), 1640 (w) cm⁻¹. ¹H NMR (300 MHz, CDCl₃): δ 1.94 (s, 2 H, H¹H²), 5.58 (d, 1 H, H⁵), 6.21 (d, 1 H, H⁴), 6.45 (dd, 1 H, H³), $J_{34} = 17.3$ Hz, $J_{35} = 11.4$ Hz. ¹³C NMR (75 MHz, CDCl₃): δ -0.5 (CH¹H²), 123.9 (CH⁴H⁵), 127.3 (CH³), 155.5, 185.0 (C=C), 200.0, 203.1, 210.2, 211.0, 244.7 (W-CO, Fe-CO). MS (FAB): m/z 485 (M + 1)⁺. Anal. Calcd for C₁₈H₅MnFeO₁₁: C, 39.67; H, 1.03. Found: C, 39.81; H, 1.05.

(e) Synthesis of CpWFe₂(CO)₉(μ_3 - η^1 , η^3 , η^3 -CH₂CCCHCH₂) (5) and CpWFe₂(CO)₈(μ_3 - η^1 , η^2 , η^2 -CH₂CCCHCH₂) (6). (i) Method A. Complex 1 (0.10 g, 0.25 mmol) and Fe₃(CO)₁₂ (0.13 g, 0.25 mmol) were heated under reflux for 1.5-2 h. The solution was evaporated to dryness, and the residues were eluted through a long Florisil column with Et₂O/hexane as the eluant. The first purple band off the column was identified as 5, which produced purple block crystals (8 mg, 0.012 mmol) after recrystallization

from Et₂O. Collection of the second purple band produced purple crystals of 6 (11 mg, 0.017 mmol) after recrystallization from Et₂O. Complex 5: IR (Nujol) v(CO) 2057 (s), 2027 (s), 2014 (vs), 1985 (s), 1939 (s), 1905 (w) cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 1.84 (dd, 1 H, H⁴), 1.93 (dd, 1 H, H¹), 2.65 (d, 1 H, H⁵), 3.16 (d, 1 H, H²), 5.28 (dd, 1 H, H³), 5.62 (s, 5 H, Cp), $J_{12} = 1.4$ Hz, $J_{34} = 8.6$ Hz, $J_{35} = 6.4$ Hz, $J_{45} = 1.3$ Hz; ¹³C NMR (75 MHz, CDCl₃) δ 42.64 (CH¹H²), 58.48 (CH⁴H⁵), 65.28 (CH³), 66.2, 90.7 (C–C), 211.3, 211.5, 211.6, 218.1, 218.6, 226.3 (W-CO, Fe-CO); MS (FAB) m/z 678 (M)⁺. Anal. Calcd for C₁₉H₁₀WFe₂O₉: C, 33.63; H, 1.47. Found: C, 33.52; H, 1.60. Complex 6: IR (Nujol) ν (CO) 2055 (s), 2021 (vs), 1995 (vs), 1965 (s), 1958 (s) cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 2.80 (s, 1 H, H¹), 3.49 (s, 1 H, H²), 5.22 (d, 1 H, H⁵), 5.26 (s, 5 H), 5.57 (d, 1 H, H⁴), 6.79 (dd, 1 H, H³), $J_{34} = 16.5$ Hz, $J_{35} = 10.0$ Hz, $J_{45} = 0.5$ Hz; MS (FAB) m/z 650 (M)⁺. Anal. Calcd for $C_{18}H_{10}WFe_2O_8$: C, 33.23; H, 1.54. Found: C, 33.42; H, 1.60. (ii) Method B. A hexane solution (50 mL) of 1 (0.20 g, 0.50 mmol) and Fe₂(CO)₉ (0.38 g, 1.0 mmol) was stirred at room temperature for 20 h, and the solution gradually turned brown. After removal of the solvent to dryness, the residues were chromatographed through a long Florisil column with $Et_2O/hexane$ (1:10) as the eluting solvent. Three bands were developed, which were identified as 3 (the first band), 5, and 6, respectively. The yields of 3, 5, and 6 were 30, 25, and 3%.

(f) Synthesis of MnFe₂(CO)₁₁(μ_3 - η^1 , η^3 , η^3 -CH₂CCCHCH₂) (7). Complex 2 (0.401 g, 1.54 mmol) and Fe₂(CO)₉ (1.25 g, 3.43 mmol) were stirred at 23 °C for 15 h; during this period the solution gradually turned brown. After removal of the solvent to dryness, the residues were chromatographed through a Florisil column with Et₂O/hexane as the elution solvent. The first orange band off the column was identified as 4, collected, and concentrated to produce orange solids (0.24 g, 0.50 mmol). The second dark band was further eluted off, to produce dark red block crystals of 7 (0.18 g, 0.33 mmol) after removal of the solvent. IR (Nujol): ν (CO) 2105 (w), 2050 (s), 2025 (vs), 1980 (s) cm⁻¹. ¹H NMR (300 MHz, CDCl₃): δ 1.87 (dd, 1 H, H⁴), 2.29 (d, 1 H, H¹), 2.70 (dd, 1 H, H⁵), 2.94 (d, 1 H, H²), 5.49 (dd, 1 H, H³), $J_{12} = 1.6$ Hz, $J_{34} = 8.7$ Hz, $J_{35} = 6.6$ Hz, $J_{45} = 1.5$ Hz. ¹³C NMR (75 MHz, CDCl₃): δ 42.8 (CH¹H²), 57.2 (CH⁴H⁵), 63.8 (CH³), 73.1, 86.1 (C-C), 208.7, 210.6 (Mn-CO, Fe-CO). MS (FAB): m/z 540 (M)⁺. Anal. Calcd for C₁₆H₅MnFe₂O₁₁: C, 35.56; H, 0.93. Found: C, 35.70; H, 1.00.

(g) Synthesis of CpWRu₂(CO)₈(μ_3 - η^1 , η^2 , η^2 -CH₂CCCH=CH₂) (8). Ru₃(CO)₁₀(CH₃CN)₂ (0.35 g, 0.53 mmol) and 1 (0.21 g, 0.53 mmol) were stirred at 23 °C in 10 mL of CH₃CN for 9 h; during this period the mixture gradually turned red. The solution was concentrated and eluted through a silica column with CH₂Cl₂/ cyclohexane (3:7) as the eluant. An orange band was collected and evaporated to dryness to afford an orange solid. The residue was purified by using a preparative TLC plate with 10% Et₂O/hexane as the eluant. The crude product was recrystallized from hexane/Et₂O to give orange-red block crystals (0.30 g, 0.35 mmol). IR (Nujol): ν (CO) 2065 (s), 2041 (vs), 2005 (vs), 1995 (vs), 1980 (s) cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ 3.17 (s, 1 H, H¹), 3.74 (s, 1 H, H²), 4.82 (d, 1 H, H⁵), 5.02 (d, 1 H, H⁴), 5.44 (s, 5 H), 6.55 (dd, 1 H, H³), $J_{34} = 16.4$ Hz, $J_{35} = 10.5$ Hz. ¹³C NMR (100 MHz, CDCl₃): δ 29.1 (CH¹H²), 90.5 (Cp), 112.5 (CH⁴H⁵), 110.8 (R—C—), 143.4 (CH³), 161.7 (=C—), 194.3, 199.7, 223.3, 225.0, 227.7 (W—CO, Ru—CO). MS (FAB): m/z 740 (M)⁺. Anal. Calcd for C₁₈H₁₀Ru₂O₈: C, 29.19; H, 1.35. Found: C, 29.20; H, 1.44.

(h) Synthesis of 9 and 10. Os₃(CO)₁₀(CH₃CN)₂ (100 mg, 0.11 mmol) and 1 was stirred in 20 mL of CH₃CN for 4 h; during this period the solution turned dark yellow. After removal of the solvent, the residues were chromatographed through a preparative TLC plate to afford two orange bands of 10 and 12, respectively. Further recrystallization from CH_2Cl_2 /hexane (volume 1:1) produced orange crystals of 9 (40 mg, 0.024 mmol) and 10 (16 mg, 0.013 mmol). Complex 9: IR (Nujol) v(CO) 2093 (m), 2058 (vs), 2043 (vs), 2014 (vs), 1997 (s), 1939 (m), 1926 (s), 1846 (w) cm⁻¹; ¹H NMR (400 MHz, acetone- d_6 , 233 K) δ 2.71 (d, 1 H, H¹), 4.70 (d, 1 H, H⁵), 4.85 (d, 1 H, H⁴), 5.81 (s, Cp), 5.88 (d, 1 H, H²), 6.60 $(dd, 1 H, H^3), J_{12} = 9.1 Hz, J_{34} = 16.4 Hz, J_{35} = 10.2 Hz; {}^{13}C NMR$ (100 MHz, acetone-d₆) δ 11.1 (CH¹CH²), 113.8 (CH³H⁵), 121.7, 171.4 (C-C), 145.3 (CH4), 222.6, 225.5 (W-CO), 212.3 (C=O), 174.0, 175.1, 176.5, 178.0, 178.1, 178.2, 180.8, 181.6, 184.6 (Os-CO); MS (FAB) m/z 1251 (M + 1)⁺. Anal. Calcd for C₂₃H₁₀WOs₃O₁₃: C, 22.08; H, 0.80. Found: C, 22.19; H, 0.86. Complex 10: IR (Nujol) v(CO) 2111 (w), 2083 (vs), 2055 (vs), 2028 (vs), 2008 (vs), 2001 (vs), 1986 (s), 1924 (s), 1716 (w) cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 2.62 (d, 1 H, H⁴), 2.91 (s, 1 H, H¹), 2.99 (s, 1 H, H²), 5.37 (s, 5 H), 8.02 (d, 1 H, H³), -18.25 (sattelite, H⁵), J_{34} = 6.6 Hz, J_{0-H^5} = 37 Hz; ¹³C NMR (100 MHz, CDCl₃) δ -9.1 (CH⁴), 26.0 (CH¹H²), 57.8, 109.8 (C-C), 122.2 (CH³), 216.2, 217.8 (W-CO), 166.7, 167.7, 169.8, 170.3, 173.1, 178.3, 178.9, 185.6, 187.7 (Os–CO), 243.1 (W–(C=O)–); MS (FAB) m/z 1251 (M + 1)⁺. Anal. Calcd for C₂₃H₁₀WOs₃O₁₃: C, 22.08; H, 0.80. Found: C, 22.20; H, 0.87.

(i) X-ray Diffraction. A single crystal of each 3, 5, 8, and 10 was sealed in a glass capillary under an inert atmosphere. Data were collected on a Enraf-Nonius CAD 4 diffractometer, using graphite-monochromated Mo K α radiation, and the structures were solved by the heavy-atom method; all data reduction and structure refinements were performed with the NRCCSDP package. Crystal data and details of the data collection and structure analysis are summarized in Table V. For all structures, all non-hydrogen atoms were refined with anisotropic parameters. All hydrogen atoms included in the structure factor calculations were placed in idealized positions.

Acknowledgment. We thank the National Science Council of the Republic of China and National Tsinghua University for financial support of this work.

Supplementary Material Available: Tables of atomic coordinates, thermal parameters, bond distances and angles, and crystal data and labeled diagrams for 3, 5, 8, and 10 (23 pages); listings of structure factors for 3, 5, 8, and 10 (53 pages). Ordering information is given on any current masthead page.