$tolyl_{3}_{2}$: (1) For the acidic species, HCl and CH₃C(O)Cl, direct attack on the oxygen occurs with no evidence for an intermediate. (2) For MeI and EtI, oxidative-addition leads to an observable six-coordinate intermediate, which then reductively eliminates the alcohol providing the first example of carbon-hydroxide coupling on a metal center. In terms of bond formation reactions by reductive elimination, the hydroxide is more similar to a hydride and the methoxide is more similar to the methyl than the hydroxide and methoxide are to each other. (3) Reaction of H_2 with trans-Ir(CO)(OH)(P(p-tolyl)_3)_2 results in elimination of H_2O and formation of $H_3Ir(CO)(P(p-tolyl)_3)_2$ in a reaction that is partially reversible.

Acknowledgment. We are grateful to the National Science Foundation (Grants CHE-8709563 and CHE-9015897) for support of this research. We also acknowledge the Department of Education (Grant 2-2-01011) for a grant that allowed the purchase of a Varian VXR-400 NMR spectrometer.

Lewis-Base-Free Cationic Zirconocene Complexes Containing an Alkenyl Ligand

Andrew D. Horton*

Koninklijke/Shell-Laboratorium, Amsterdam (Shell Research B.V.), Postbus 3003, 1003 AA Amsterdam, The Netherlands

A. Guy Orpen

School of Chemistry, University of Bristol, Bristol BS8 1TS, U.K.

Received April 10, 1991

Electrophilic cations $[Cp'_{2}ZrMe(NMe_{2}Ph)_{n}][B(4-C_{6}H_{4}F)_{4}]$ (1) $(n = 1, Cp'_{2} = (C_{5}H_{5})_{2}$ (a), $\{(Me_{3}Si)C_{5}H_{4}\}_{2}$ (b), $\{(Me_3C)C_5H_4\}_2$ (c), $rac-C_2H_4(indenyl)_2$ (d); n = 0, $Cp' = C_5Me_5$ (e)), generated in situ by protonolysis, react with internal alkynes to give Lewis-base-free alkenyl complexes $[Cp'_2ZrC(R^1)=C(R^2)Me][B(4-C_6H_4F)_4]$ ($R^1 = SiMe_3$, $R^2 = Me$, 2a-d; $R^1 = R^2 = Ph$, 3a-e). ¹H, ¹³C, and ²⁹Si NMR spectroscopy suggests that agostic coordination of a Si-Me group to the zirconium center occurs for complexes 2 in solution. The structure of $2d \cdot CH_2Cl_2$ has been determined by X-ray crystallography. Crystal data: $C_{52}H_{49}BCl_2F_4SiZr$, M = 950.99, monoclinic, $P2_1/n$, a = 15.402 (3) Å, b = 17.606 (3) Å, c = 16.960 (3) Å, Z = 4, and R = 0.050 for 5392 "observed" reflections. The alkenyl ligand in 2d interacts with electron-poor zirconium via agostic coordination of a Si-C and a C-H bond of the α -SiMe₃ group (Zr-Si = 2.935 (2) Å; Zr-C = 2.578 (5) Å; Zr-H = 2.26 (7) Å). ¹⁹F NMR spectroscopy shows that the anion is noncoordinating in complexes 2, 3c, and 3e; labile fluorine coordination to zirconium in complexes 1, 3a, 3b, and 3d results in upfield-shifted ¹⁹F NMR resonances for the anion.

Introduction

The high reactivity of group 4 metallocene/alkylaluminoxane catalysts for alkene polymerization¹ is attributed to the presence of an electrophilic cationic active species, [Cp'₂MR]⁺, in combination with a poorly coordinating anion.² Although insertion reactions of unsaturated molecules with model Lewis base complexes, $[Cp'_{2}MR(L)][BPh_{4}]$ (M = Ti, Zr), have been extensively investigated,³ more electrophilic base-free complexes,

closely related to the proposed catalyst active spcies, have been less well studied.^{4,5} Because of the coordinating ability and facile degradation of [BPh₄]^{-,4,6,7} alternative anions such as fluorinated [BPh4]⁻ or carboranes are required for the stabilization of reactive base-free complexes.^{6,8} Incorporation of fluorine in the 4-positions of $[BPh_4]^-$ was expected to suppress π -coordination of a benzene ring⁷ and result in reactive cationic complexes. We report here the reaction of highly electrophilic methylzirconocene cations with bulky disubstituted alkynes and the unusual structure of a highly electron-deficient alkenyl product.

^{(1) (}a) Ewen, J. A. J. Am. Chem. Soc. 1984, 106, 6355. (b) Kaminsky, W.; Kulper, K.; Brintzinger, H. H.; Wild, F. R. W. P. Angew. Chem., Int. Ed. Engl. 1985, 24, 507. (c) Pino, P.; Cioni, P.; Wei, J. J. Am. Chem. Soc. 1987. 109. 6189.

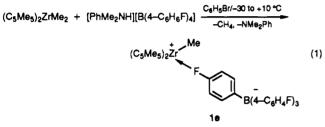
<sup>[1987, 109, 6189.
(2) (</sup>a) Dyachkovskii, F. S.; Shilova, A. K.; Shilov, A. E. J. Polym. Sci., Part C 1967, 16, 2333. (b) Eisch, J. J.; Piotrowski, A. M.; Brownstein, S. J.; Gabe, E. J.; Lee, F. L. J. Am. Chem. Soc. 1985, 107, 7219. (c) Gassman, P. G.; Callstrom, M. R. J. Am. Chem. Soc. 1987, 109, 7875. (d) Jolly, C. A.; Marynick, D. S. J. Am. Chem. Soc. 1989, 111, 7968.
(a) Jordan, R. F.; Taylor, D. F. J. Am. Chem. Soc. 1989, 111, 7768.
(b) Jordan, R. F.; Bradley, P. K.; Baenziger, N.; LaPointe, R. E. Organometallics 1989, 8, 2892. (c) Guram, A. S.; Jordan, R. F.; Organometallics 1989, 8, 2892. (c) Guram, A. S.; Jordan, R. F.; Organometallics 1990, 9, 2190. (d) Guram, A. S.; Jordan, R. F.; Taylor, D. F. J. Am. Chem. Soc. 1981, 10, 1406. (f) Jordan, R. F.; Taylor, D. F.; Baenziger, N. C. Organometallics 1991, 9, 1546. (g) Bochmann, M.; Wilson, L. M.; Hursthouse, M. B.; Motevalli, M. Organometallics 1988, 347, C9.

^{(4) (}a) Bochmann, M.; Jaggar, A. J.; Nicholls, N. J. Angew. Chem., Int. Ed. Engl. 1990, 29, 780. (b) Lin, Z.; Le Marechal, J.-F.; Sabat, M.; Marks,

<sup>T. J. J. Am. Chem. Soc. 1987, 109, 4127.
(5) (a) Christ, C. S.; Eyler, J. R.; Richardson, D. E. J. Am. Chem. Soc.
1990, 112, 596. (b) Christ, C. S.; Eyler, J. R.; Richardson, D. E. J. Am.</sup>

Chem. Soc. 1990, 112, 4778.
 (6) (a) Hlatky, G. G.; Turner, H. W.; Eckman, R. R. J. Am. Chem. Soc.
 1989, 111, 2728. (b) Turner, H. W. European Patent Application 0277004 assigned to Exxon.

^{(7) (}a) Isolated complexes $Cp'_2Zr(Me)\{B(C_6H_5)_4\}(Cp'_2 = rac-C_2H_4(in-denyl)_2, rac-C_2H_4(tetrahydroindenyl)_2, \{(Me_3Si)C_5H_4\}_2, \{(Me_3C)C_5H_4\}_2\}$ contain anions coordinated via the meta and para carbons of one phenyl group.^{7b} (b) Horton, A. D.; Frijns, J. H. G. Angew. Chem., Int. Ed. Engl., in press.


 ^{(8) (}a) Yang, X.; Stern, C. L.; Marks, T. J. Organometallics 1991, 10,
 840. (b) Ibid. J. Am. Chem. Soc. 1991, 113, 3623.

Scheme I

$$\begin{array}{c} Cp'_{2}ZrMe_{2} + [PhMe_{2}NH][B(4-C_{6}H_{4}F)_{4}] + R^{1}C\equiv CR^{2} & \frac{C_{6}H_{5}Br/-30 \text{ to } 25^{\circ}C}{-CH_{4}, -NMe_{2}Ph} \\ R^{1}-SiMe_{3}, R^{2}-Me & R^{1}-R^{2}-Ph \\ \hline \\ R^{1} & Cp'_{2}Zr & R^{1} \\ R^{1} & (Me_{3}Si)C_{5}H_{4} & 2b & 3b \\ (Me_{3}C)C_{5}H_{4} & 2c & 3c \\ rac-C_{2}H_{4}(indenyl)_{2} & 2d & 3d \\ C_{5}Me_{5} & 3e \end{array}$$

Results and Discussion

The reaction of $(C_5Me_5)_2$ ZrMe₂ with [PhMe₂NH][B(4-C₆H₄F)₄] in bromobenzene (eq 1) deposits, on hexane ad-

dition, a yellow microcrystalline solid of composition (elemental analysis, NMR) $(C_5Me_5)_2ZrMe\{B(4-C_6H_4F)_4\}$. 0.2C₆H₅Br (1e). Remarkable coordination of one phenyl group of the anion to zirconium via a fluorine atom is shown by the presence of two ¹⁹F NMR resonances $(C_2D_2Cl_4, -30 \text{ °C})$ in a 3:1 ratio (δ -121.1 and -135.5 ppm, respectively).⁸ Similar upfield fluorine shifts on coordination to a transition-metal cation have been observed for $[BF_4]^-$ or $[EF_6]^-$ (E = P, Sb).⁹ Interaction of one phenyl group with zirconium is confirmed by the observation of ¹H and ¹³C NMR resonances at -30 °C for two kinds of phenyl rings in a 1:3 ratio. The low steric demands of the Zr-F-R bridge apparently makes $[R-F]^-$ a good ligand for such a sterically crowded cation.

Protonolysis of less crowded dimethylzirconocenes in C_6D_5Br gives labile N,N-dimethylaniline adducts, $[Cp'_{2}ZrMe(NMe_{2}Ph)_{n}][B(4-C_{6}H_{4}F)_{4}] (n \le 1; Cp'_{2} = (C_{5}-C_{5}-C_{5})$ $H_5)_2$, {(Me₃Si)C₅H₄]₂, {(Me₃C)C₅H₄]₂, rac-C₂H₄(indenyl)₂; 1a-d). Resonances due to the methyl groups and phenyl ortho hydrogens of coordinated NMe₂Ph are found upfield of the corresponding resonances for the observed free aniline in the ¹H NMR spectra; ligand chirality in 1d leads to diastereotopic NMe₂Ph resonances at δ 1.83 and 1.34 ppm, compared to δ 2.62 for free aniline. Unlike 1b and 1d, solutions of 1c containing the bulky $(Me_3C)C_5H_4$ ligand also show resonances due to another species, possibly an aniline-free adduct analogous to 1e. The slight upfield shift and broadening of the single ¹⁹F NMR resonance for 1b-d compared to the free anion provides evidence for weak anion-cation interaction. Although 1a shows low solubility in C_6D_5Br , ¹H and ¹⁹F NMR studies in $C_2D_2Cl_4$ solution at -30 °C show that the anion is noncoordinating and that the aniline-coordinated adduct is the major cationic species present. Attempted precipitation of 1d with hexane affords a complex mixture containing <1.0equiv of NMe₂Ph.

The cationic complexes 1 decompose at varying rates (minutes to hours at 25 °C) in C_6D_5Br to give Cp'_2ZrMe -(4- C_6H_4F), B(4- C_6H_4F)₃, and NMe₂Ph (1a,b,d) and other unidentified products (1c,e). Although the complex stability appears to be concentration dependent, the stability increases with Cp' bulk: 1a < 1b-d < 1e. There is no evidence from ¹⁹F NMR spectroscopy for fluorine abstraction from the anion to give, for example, Cp'_2ZrMe -(F).¹⁰ Despite the only moderate stability of complexes 1 in solution, they may be trapped by reaction with disubstituted alkynes.

Reaction of the in situ generated cations with Me₃SiC=CMe or PhC=CPh gives alkenyl complexes 2a-d and 3a-e, respectively, as shown in Scheme I. Addition of hexane results in the precipitation of the products (yields 60-90%), which, except for complexes **3a**,**d**,**e**, may be obtained in analytically pure form by recrystallization from CH₂Cl₂/hexane solution. Attempted reaction of complex 1a with highly crowded Me₃SiC=CSiMe₃ leads, in contrast, only to decomposition products. Complexes 2 and 3 under nitrogen are indefinitely stable in the solid state at -40 °C, but crystalline samples kept at 25 °C decompose over a period of days. Whereas solutions of complexes 2 in CD_2Cl_2 are stable for several hours at 25 °C, the lower stability of complexes 3 necessitates use of the less reactive $C_2D_2Cl_4$ for NMR studies. Because of the complex nature of the solid-state and solution decomposition reactions, they have not been further examined.

In order to compare the reactivity of 1 with alkynes to that of a Lewis base adduct, $[(C_5H_5)_2 ZrMe(THF)][B(4 C_6H_4F)_4]^3$ was prepared as a pale yellow solid by protonolysis of $(C_5H_5)_2 ZrMe_2$ in the presence of THF and characterized by ¹H and ¹³C NMR spectroscopy. Whereas complexes 2 and 3 are formed within 1 min at or below 25 °C, the reaction between $[(C_5H_5)_2 ZrMe(THF)][B(4 C_6H_4F)_4]$ (ca. 0.07 M) and 1.2 equiv of Me₃SiC=CMe or PhC=CPh in C₆D₅Br is only 12% and 5% complete, respectively, after 2 h at 25 °C. Extended reaction times lead, for Me₃SiC=CMe, to extensive product decomposition and, for both alkynes, to only partial conversion (PhC=CPh: 36% after 6 days) to $[(C_5H_5)_2Zr\{CR^1=$ $CHR^2](THF)][B(4-C_6H_4F)_4]$ (2a·THF, 3a·THF).

Lewis base adducts of the alkenyl complexes may be more cleanly prepared in situ by addition of THF or MeCN to solutions of complexes 2 (in CD_2Cl_2) or 3 (in C_6D_5Br), respectively. However, only analytically pure crystalline 2a-MeCN (2 isomers, 4:1 ratio) and precipitate 3a-THF have been isolated and further characterized by both ¹H and ¹³C NMR spectroscopy. The observation of

(10) Jordan, R. F. J. Organomet. Chem. 1985, 294, 321.

 ^{(9) (}a) Honeychuck, R. V.; Hersch, W. H. Inorg. Chem. 1989, 28, 2869.
 (b) Ibid. J. Am. Chem. Soc. 1989, 111, 6056.

¹H NMR resonances for both free and coordinated MeCN on addition of excess MeCN to complexes 2 or 3 shows that MeCN exchange, if it occurs, is slow on the NMR time scale. In contrast, with the exception of the THF adducts of 2a and 3a,b,d, which show coordination-shifted THF resonances, all other THF adducts show only free THF resonances, although the cation resonances are clearly shifted compared to the base-free adducts.

With the exception of complexes 2d and 3d, which contain the inherently chiral $rac-C_2H_4(indenyl)_2Zr$ fragment, all the complexes 2 and 3 show NMR resonances for equivalent cyclopentadienyl ligands, indicating that the alkenyl ligand lies in the equatorial plane of symmetry. Structural and NMR studies show that complexes 2 contain the bulky SiMe₃ substituent in the sterically less favorable α -position. Such regiospecificity probably arises because the alkyne methyl substituent most effectively stabilizes the postulated δ + charge at the β -carbon in the transition state and the SiMe₃ group stabilizes the δ - charge at the α -carbon, provided steric effects are not dominant.^{3c,11,12} Alternatively, an attractive interaction of a Si-Me bond of the coordinated alkyne with [Cp'₂ZrMe]⁺ before insertion may be responsible for the product regiochemistry. Only in the case of the reaction of crowded 1e with Me₃SiC=CMe is a complex *mixture* of α - and β -SiMe₃-substituted isomers (and other products) obtained.

The free anion resonance observed in the ¹⁹F NMR spectrum (CD₂Cl₂, -90 °C, δ -121.3 ppm) for each of complexes 2 confirms that separated cations and anions are present. The cations show restricted rotation of the SiMe₃ group about the C_{α} -Si bond. The ¹H and ¹³C NMR spectra of complexes 2 in CD_2Cl_2 each show a single SiMe₃ resonance at 25 °C, which broadens (2a) and splits into a more complex pattern (2b-d) at lower temperatures. Thus, the ¹³C NMR spectrum of complex 2c at -90 °C contains two SiMe resonances at δ 1.2 and -1.2 ppm, in a 1:2 ratio, with ${}^{1}J_{CH}$ values of 110 and 119 Hz, respectively. Chiral complex 2d, at -60 °C, shows three equal SiMe resonances at δ 2.7, -0.5, and -5.2 ppm with ${}^{1}J_{CH}$ values of 116, 124, and 122 Hz, respectively. The lower coupling constant for the downfield resonance in each case is indicative of an agostic interaction¹³ of a methyl C-H bond with zirconium; rapid methyl rotation averages out the different ${}^{1}J_{CH}$ values in the unique methyl group. No low-energy C-H vibration bands in the region 2700-2350 cm⁻¹, characteristic of some forms of agostic C-H-M bonding, may be observed in the IR spectra of complexes 2a-d (or 3a,c,e) in Nujol mull.

Band shape analysis of the variable-temperature ¹H NMR spectrum of 2d showed that ΔG^* for SiMe₃ rotation is 10.7 (±0.2) kcal mol⁻¹ at -15 °C (coallescence temperature). Steric crowding plays an important role in the restricted SiMe₃ rotation. The energy barrier for the fluxional process decreases as the steric bulk of the cyclopentadienyl ligand decreases in the series (approximate ΔG^* , kcal mol⁻¹, -90 °C): 2c (8.9) > 2b (8.1) > 2a (7.1).

The importance of agostic interactions in restricting $SiMe_3$ rotation is seen, however, in the observation that Lewis base adducts of complexes 2 undergo more facile $SiMe_3$ rotation than the base-free complexes. Thus,

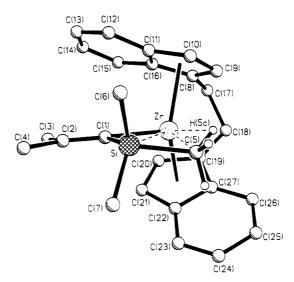


Figure 1. Molecular geometry of the cation in 2d. Hydrogen atoms, except for those of the coordinated methyl group, have been omitted for clarity.

Table I.	Crystallographic	Data for	Complex 2d
----------	------------------	----------	------------

formula:	a = 15.402 (3) Å
$C_{52}H_{49}BCl_2F_4SiZr$	b = 17.606 (3) Å
fw: 950.99	c = 16.960 (3) Å
cryst syst: monoclinic	$\beta = 101.87 \ (2)^{\circ}$
space group: $P2_1/n$	$V = 4500 (2) Å^3$
(No. 14)	Z = 4
cryst dimens: $0.35 \times$	$D_{\rm x} = 1.40 {\rm ~g~cm^{-3}}$
$0.40 \times 0.50 \text{ mm}$	$T = -73 {}^{\circ}\text{C}$
Nicolet P3m: 20 range	$\lambda = 0.71069 \text{ Å} (\text{Mo K}\alpha)$
4.0-50.0°	$\mu = 4.4 \text{ cm}^{-1}$ (graphite monochromator)
no. of rflns: 8557	S = 1.54
no. of indep rflns: 7962	
no. of rflns $(I > 2\sigma(I))$:	
5392	
$R = 5.0\%; R_w = 5.8\%$	
(5392 rflns)	
$w^{-1} = \sigma_{\rm c}^2(F_{\rm o}) +$	
$0.0005F_0^2$	

whereas the ¹H NMR spectrum (CD₂Cl₂, -90 °C) of 2c shows two sharp SiMe resonances (2:1 ratio), 2c·MeCN exhibits a single sharp ("averaged") SiMe resonance. Similarly, whereas 2d shows three sharp resonances at -90 °C, the two isomers of 2d·MeCN (85:15 ratio) show three broad SiMe resonances and a single sharp SiMe resonance, respectively. It is tempting to assign the major isomer of 2d as the endo isomer,^{3b} with the SiMe₃ adjacent to a bulky indenyl group such that the slower SiMe₃ rotation results from steric interaction of the groups. The minor isomer might be assigned as the exo complex,^{3b} in which the more freely rotating SiMe₃ group is adjacent to the coordinated acetonitrile ligand. However, we have no conclusive evidence for the structures of the two isomers of 2d·MeCN.

Important evidence for agostic interaction of a Si-Cbond with zirconium is provided by ²⁹Si NMR spectroscopy. The $SiMe_3$ resonances (CD₂Cl₂, 0 °C) of **2a** and **2c** at δ -54.7 and -59.6 ppm, respectively, are located 43.1 and 46.9 ppm upfield, respectively, of the resonances for the Lewis base adducts, **2a**·MeCN and **2c**·MeCN, in which agostic coordination is presumably weaker. Such a novel upfield shift of the ²⁹Si NMR resonance on coordination of a β -Si-C bond is reminiscent of upfield ¹H and ¹³C NMR resonances for the β -CH_n fragment of alkyl groups involved in agostic β -C-H-M bonding in related d⁰ cations;¹⁴ it should be noted, however, that the ¹³C NMR resonance

⁽¹¹⁾ Burger, B. J.; Thompson, M. E.; Cotter, W. D.; Bercaw, J. E. J. Am. Chem. Soc. 1990, 112, 1566.

^{(12) (}a) Guram, A. S.; Jordan, R. F.; Taylor, D. F. J. Am. Chem. Soc.
1991, 113, 1833. (b) Hyla-Kryspin, I.; Gleiter, R.; Krüger, C.; Zwettler,
R.; Erker, G. Organometallics 1990, 9, 517. (c) Buchwald, S. L.; Nielson,
R. B. J. Am. Chem. Soc. 1989, 111, 2870.

⁽¹³⁾ Brookhart, M.; Green, M. L. H. J. Organomet. Chem. 1983, 250, 395.

⁽¹⁴⁾ Jordan, R. F.; Bradley, P. K.; Baenziger, N. C.; La Pointe, R. E. J. Am. Chem. Soc. 1990, 112, 1289.

Table II. Bond Lengths (Å) for the Cation of 2d -

Table IV.	Atomic Coordinates (×10 ⁴) and Equ	livalent
Isotropic	Displacement Parameters $(Å^2 \times 10^3)$) for 2d

1 adie II. E	sond Lengths	(A) for the Catlo	1 01 2u
Zr···Si	2.935 (2)	Zr-C(1)	2.180 (5)
ZrC(5)	2.578 (5)		2.263 (67)
Zr-C(8)	2.482 (5)		2.452 (5)
Zr-C(10)	2.504 (5)		2.606 (5)
Zr-C(16)	2.558(5)		2.457 (5)
Zr-C(20)	2.453 (4)	Zr-C(21) 2	2.511 (5)
Zr-C(22)	2.568(5)	Zr-C(27)	2.527 (5)
Si-C(1)	1.895 (5)		1.953 (6)
Si-C(6)	1.866 (5)		1.869 (6)
C(1)-C(2)	1.334 (6)		1.501 (6)
C(2)-C(4)	1.517 (7)).945 (67)
C(5) - H(5B)	1.002(76)		0.964 (80)
C(8) - C(9)	1.406 (6)	C(8) - C(16)	1.430 (7)
C(8) - C(17)	1.512 (7)	C(9)-C(10)	1.405 (7)
C(10) - C(11)	1.423 (7)		1.418 (7)
C(11) - C(16)	1.436 (7)		1.356 (8)
C(13)-C(14)	1.426 (9)		1.353 (8)
C(15)-C(16)	1.429 (7)		1.532 (8)
C(18) - C(19)	1.503 (7)	C(19) - C(20)	1.419 (6)
C(19)-C(27)	1.417 (7)	C(20)-C(21)	1.412 (7)
C(21) - C(22)	1.431 (7)		1.418 (7)
C(22)-C(27)	1.453 (7)		1.354 (7)
C(24) - C(25)	1.413 (8)	C(25)-C(26)	1.366 (8)
C(26)-C(27)	1.423 (6)		
Table III. Selec	ted Bond Ang	(les (deg) for the	Cation of 2d
Si-Zr-C(1)	40.2 (1)	Si-Zr-C(5)	40.8 (1)
C(1) - Zr - C(5)	80.6 (2)	Si-Zr-H(5C)	58.3 (19)
		· · · · · · · · · · · · · · · · · · ·	21.7 (20)
C(1)-Zr-H(5C)	98.3 (19)	C(5)-Zr-H(5C)	
Zr-Si-C(1)	48.0 (1)	Zr-Si-C(5)	59.7 (1)
C(1)-Si- $C(5)$	107.0 (2)	C(1)-Si- $C(6)$	115.0(2)
C(5)-Si-C(6)	106.1(2)	C(1)-Si- $C(7)$	114.1 (2)
C(5)-Si-C(7)	101.4 (2)	C(6)-Si-C(7)	111.7 (3)
Zr-C(1)-Si	91.8 (2)	Zr-C(1)-C(2)	146.1 (4)
Si-C(1)-C(2)	121.8 (4)	C(1)-C(2)-C(3)	122.5 (4)
C(1)-C(2)-C(4)	125.4(4)	C(3)-C(2)-C(4)	112.1(4)
Zr-C(5)-Si	79.4 (2)	Zr-C(5)-H(5A)	150.3 (53)
Si-C(5)-H(5A)	98.9 (44)	Zr-C(5)-H(5B)	103.0 (39)
Si-C(5)-H(5B)	111.3 (42)	Zr-C(5)-H(5C)	60.4 (39)
Si-C(5)-H(5C)	122.2 (43)	Zr-H(5C)-C(5)	97.9 (46)
C(9)-C(8)-C(16)	107.1 (4)	C(9)-C(8)-C(17)	126.2(4)
C(16)-C(8)-C(17		C(8)-C(9)-C(10)	109.5 (4)
C(9)-C(10)-C(11)		C(10)-C(11)-C(12)	
C(10)-C(11)-C(1		C(12)-C(11)-C(16)	
C(11)-C(12)-C(1)		C(12)-C(13)-C(14)	
C(13)-C(14)-C(1	5) 121.0 (5)	C(14)-C(15)-C(16)	
C(8)-C(16)-C(11)) 108.2 (4)	C(8)-C(16)-C(15)	132.4 (4)
C(11)-C(16)-C(1	5) 119.6 (5)	C(8)-C(17)-C(18)	110.3 (4)
C(17)-C(18)-C(1	· · · · · · · · · · · · · · · · · · ·	C(18)-C(19)-C(20)	
C(18)-C(19)-C(2)	- 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	C(20)-C(19)-C(27)	
C(19)-C(20)-C(2)		C(20)-C(21)-C(22)	
C(21)-C(22)-C(2)		C(21)-C(22)-C(27)	
C(23)-C(22)-C(2)		C(22)-C(23)-C(24)	
C(23)-C(24)-C(2		C(24)-C(25)-C(26)	
C(19)-C(27)-C(2		C(19)-C(27)-C(26)	
C(22)-C(27)-C(2			
0(22) 0(21) = 0(2	0) 110.4 (4)		
anonihad to the	anostia math	i in complexes 2	ia gonorollu

ascribed to the agostic methyl in complexes 2 is generally observed downfield of the resonance(s) of the noncoordinated methyl groups.

X-ray crystal structure analysis for ethylenebis(indenyl) complex 2d as its dichloromethane solvate shows that the complex exists as isolated cations and anions. The structure of the cation in 2d is illustrated in Figure 1, crystal data are given in Table I, bond distances and angles are given in Tables II and III, respectively, and atomic coordinates are given in Table IV. The study confirms that a SiMe group interacts strongly with the metal center, but via coordination of both a Si-C and a C-H bond, such that the metal attains a formal 18-electron count. The $Zr{\cdots}C(5)$ separation of 2.578 (5) Å compares to a normal Zr-C(sp³) single-bond length of ca. 2.33 Å,¹⁵ whereas the

(15) Lappert, M. F.; Riley, P. I.; Yarrow, P. I. W.; Atwood, J. L.; Hunter, W. E.; Zawortko, M. J. J. Chem. Soc., Dalton Trans. 1981, 814.

	x	У	z	U(eq) ^a
Zr	2329 (1)	7516 (1)	9306 (1)	18 (1)
Si	3800 (1)	6464 (1)	9276 (1)	24 (1)
C(1)	2580 (3)	6429 (3)	8778 (3)	21 (1)
$\tilde{C}(2)$	2246 (3)	5877 (3)	8267 (3)	22 (2)
Č(3)	1303 (3)	5880 (3)	7808 (3)	30(2)
C(4)	2755 (4)	5191 (3)	8065 (3)	34 (2)
C(5)	4034 (3)	7478 (3)	9739 (3)	27(1)
H(5A)	4552 (51)	7369 (41)	10129 (44)	80
H(5B)	5231 (46)	7835 (42)	9350 (44)	80
H(5C)	3688 (49)	7694 (40)	10097 (44)	80
C(6)	4147 (3)	5782 (3)	10124 (3)	35 (2)
C(7)	4565 (3)	6437 (3)	8552 (3)	40 (2)
Č(8)	1210 (3)	7828 (3)	10121 (3)	22(2)
Č(9)	2052 (3)	7871 (3)	10631 (3)	24 (2)
C(10)	2424 (3)	7140 (3)	10745 (3)	28 (2)
C(11)	1795 (3)	6612 (3)	10327 (3)	29 (2)
Č(12)	1781 (4)	5808 (3)	10277 (3)	36 (2)
C(13)	1051 (5)	5472 (3)	9829 (4)	48 (2)
C(14)	311 (4)	5895 (3)	9407 (4)	44 (2)
C(15)	301 (3)	6663 (3)	9441 (3)	33 (2)
C(16)	1044 (3)	7045 (3)	9921 (3)	23 (2)
C(17)	599 (3)	8489 (3)	9834 (3)	30 (2)
C(18)	1071 (3)	9074 (3)	9401 (3)	28 (2)
C(19)	1525 (3)	8683 (3)	8808 (3)	23 (2)
C(20)	1168 (3)	8092 (3)	8270 (3)	23 (1)
C(21)	1808 (3)	7837 (3)	7843 (3)	26 (2)
C(22)	2585(3)	8292 (3)	8092 (3)	23 (2)
C(23)	3416 (3)	8325 (3)	7856 (3)	30 (2)
C(24)	4021 (4)	8847 (3)	8204 (3)	36 (2)
C(25)	3849 (3)	9351 (3)	8802 (3)	32 (2)
C(26)	3061 (3)	9349 (3)	9053 (3)	26 (2)
C(27)	2399 (3)	8819 (3)	8696 (3)	20 (1)
F (1)	4592 (2)	4667 (2)	7709 (2)	45 (1)
F (2)	9827 (2)	7271 (2)	6745 (2)	41 (1)
F (3)	7264 (2)	3318 (2)	3312 (2)	42 (1)
$\mathbf{F}(4)$	10252 (2)	2376 (2)	8816 (2)	57 (1)
B	7931 (4)	4399 (3)	6629 (3)	21 (2)
C(28)	6993 (3)	4481 (3)	6946 (3)	21(1)
C(29)	6441 (3)	5128 (3)	6779 (3)	28 (2)
C(30)	5644 (3)	5199 (3)	7033 (3)	30 (2)
C(31)	5382 (3)	4606 (3)	7459 (3)	31(2)
C(32)	5861(3)	3961 (3) 3907 (3)	7622 (3) 7370 (3)	28 (2) 25 (2)
C(33) C(34)	6671 (3) 8420 (3)	5231 (3)	6633 (3)	23(2) 22(1)
C(34) C(35)	8975 (3)	5231(3) 5411(3)	6100 (3)	22(1) 23(2)
C(36)	9451 (3)	6085 (3)	6132(3)	28 (2)
C(37)	9365 (3)	6601 (3)	6708 (3)	30 (2)
C(38)	8828 (3)	6479 (3)	7254 (3)	30(2)
C(39)	8376 (3)	5788 (3)	7212 (3)	26 (2)
C(40)	7730 (3)	4054 (3)	5702 (3)	20 (1)
C(41)	8397 (3)	3735 (3)	5360 (3)	24 (2)
C(42)	8261 (3)	3490 (3)	4566 (3)	28 (2)
C(43)	7418 (3)	3560 (3)	4103 (3)	27 (2)
C(44)	6723 (3)	3855 (3)	4388 (3)	27 (2)
C(45)	6892 (3)	4094 (3)	5189 (3)	23 (2)
C(46)	8593 (3)	3826 (3)	7238 (3)	23 (2)
C(47)	9219 (3)	4092 (3)	7903 (3)	28 (2)
C(48)	9773 (3)	3614 (3)	8438 (3)	35 (2)
C(49)	9697 (4)	2849 (4)	8302 (3)	40 (2)
C(50)	9105 (4)	2541 (3)	7675 (3)	41 (2)
C(51)	8559 (3)	3039 (3)	7148 (3)	32 (2)
C1(1)	7338 (2)	1308 (1)	5946 (1)	102 (1)
C1(2)	7751 (3)	1459 (2)	4385 (2)	168 (2)
C(52)	7243 (6)	1853 (5)	5106 (5)	78 (3)

^a Equivalent isotropic U defined as one-third of the trace of the orthogonalized U_{ii} tensor.

Zr. Si separation of 2.935 (2) Å is only slightly greater than the Zr-Si single-bond distance of 2.813 (2) Å in (C₅H₅)₂Zr(SiPh₃)Cl.¹⁶ Coordination of the Si-CH₃ bond results in clear Si-C bond lengthening by ca. 0.1 Å. The remaining major structural features of the alkenyl ligand

⁽¹⁶⁾ Muir, K. W. J. Chem. Soc. A 1971, 2663.

(Zr-C(1) and C(1)-C(2) bond distances and Zr-C(1)-C(2)and Zr-C(1)-Si bond angles) are relatively similar to those of the related Lewis base adduct $[(C_5H_5)_2Zr\{C(Me)=C (Me)(n-Pr)(THF)][BPh_4].^{3b}$

The structure of 2d is of particular importance, since the hydrogens of the coordinated methyl group were independently located, unlike the poorly refined related structure of [(C₅H₅)₂TiC(SiMe₃)=C(Ph)Me][AlCl₄].^{2c} In contrast to other species showing agostic Si-Me-M bonding, in which two methyl hydrogens generally point towards the metal,¹⁷ in 2d one of the hydrogens, H(5c), is uniquely close to zirconium (Zr...H distances: 2.26 (7) Å, H(5c); 2.97 (7) Å, H(5b); 3.43 (7) Å, H(5a)). Ab initio MO calculations¹⁸ on the model complex $[Ti\{C(SiH_2CH_3)=$ CH_2 Cl_2 + suggested, in contrast, that the methyl group should adopt a *staggered* conformation to maximize more important β -Si-C-M bonding and minimize repulsion between the hydrogens and titanium. Considering that coordinated methyl rotation about the Si-CH₃ bond is fast (solution NMR) and therefore the different agostic C-H-M bonding modes are relatively similar in energy, and that the metal and ligands in the model system and 2 are very different, further speculation about the origin of the differences in C-H-M bonding is unwarranted. It is likely, however, that electron donation from the C(5)-H(5c) bond to the metal plays a subsidiary role to donation from the Si-C(5) bond.

Unlike complexes 2a-d, weak anion coordination to the cations, via a Zr-F-C interaction involving one phenyl group, is confirmed by ¹⁹F NMR spectroscopy for PhC= CPh insertion products 3a,b,d. Solutions of complex 3a in $C_2D_2Cl_4$ /toluene- d_8 show two major fluorine resonances at -55 °C (3:1 ratio of peaks at δ -121.9 and -175.8 ppm), which broaden as the temperature is raised, coalesce at ca. 0 °C, and give a single broad resonance at δ –134.9 ppm at 50 °C. More crowded 3b,d (C₂D₂Cl₄, -30 °C) show relatively sharp "averaged" resonances at δ -126.2 and -126.9 ppm, respectively, due to rapid exchange of the two fluorine environments. More sterically crowded compounds 3c ($Cp' = (Me_3C)C_5H_4$) and 3e ($Cp' = C_5Me_5$), and Lewis base adduct 3a. THF, contain "free" counteranion (δ -121.8 ppm).

Among complexes 3, only crowded 3e shows evidence of restricted rotation of the α -phenyl ring. The unusual upfield location of the α -phenyl o- and m-hydrogen resonances (C_6D_5Br , -30 °C; δ 6.41 and 6.67 ppm, respectively) and of the *broad* o-carbon resonance ($C_2D_2Cl_4$, -30 °C; δ 114.7 ppm) may be due to a weak in-plane C_0-H_0-Zr agostic interaction, in combination with the ring current effect of the β -phenyl ring on the fluxional *in-plane* α phenyl group. Electron donation from the filled π -orbital of the ipso-carbon to zirconium, related to bonding in η^2 -benzyl complexes,¹⁹ may be more significant in the less crowded complexes 3a-d.

Conclusions

The labile anion $[B(4-C_6H_4F)_4]^-$ has allowed the in situ synthesis of highly electrophillic methylzirconocene cations, which, with bulky alkynes, are significantly more reactive than Lewis base adducts. The electron deficiency of the alkenyl products is reflected in weak anion coordination for the less crowded compounds and in unusual coordination of Si–C and C–H σ -bonds to zirconium in complexes

2. A related secondary interaction of the β -C-H bond of the growing polymer chain with the metal¹⁴ may play an important role in the stereoselectivity of alkene polymerization by metallocene catalysts.

Experimental Section

All experiments were performed under nitrogen in a Braun MB 200-G drybox or under argon with standard Schlenk techniques. Bromobenzene (Aldrich, "Gold Label") was dried by distillation from calcium. Other solvents were dried by refluxing over and distilling from standard reagents. NMR solvents and 1-(trimethylsilyl)prop-1-yne were dried over 4-Å molecular sieves before use. $rac-C_2H_4(indenyl)_2ZrCl_2$, containing less than 5% of the meso isomer, was prepared by following the improved procedure of Collins.²⁰ { $(Me_3Si)C_5H_4]_2ZrCl_2$,²¹ { $(Me_3C)C_5H_4]_2ZrCl_2$,²² and $(C_5Me_5)_2$ ZrCl₂²³ were obtained by literature methods. The dichloride complexes were converted to dimethylzirconocene complexes by reaction with LiMe in ether, followed by recrystallization from toluene/hexane solution. $Na[B(C_6H_5F)_4]$ was obtained by literature methods²⁴ and converted to $[PhMe_2NH][B(C_6H_4F)_4]$ by a metathesis reaction with [PhMe₂NH]Cl in cold distilled water. All other reagents were purchased from commercial sources and used without further purification.

¹H NMR (200.00 MHz) spectra were recorded on a Varian XL-200 instrument, and ¹³C NMR (75.43 MHz), ¹⁹F NMR (283.23 MHz), and $^{29}\mathrm{Si}$ NMR (59.60 MHz) spectra were recorded on a Varian VXR-300 instrument. NMR data are listed in parts per million downfield from TMS for proton, carbon, and silicon and relative to CFCl₃ for fluorine. Elemental analyses were performed by Analytische Laboratorien, Engelskirchen, Germany,

Reaction of $(C_5H_5)_2$ ZrMe₂ with [PhMe₂NH][B(4-C₆H₄F)₄]. Addition of a solution of $(C_5H_5)_2$ ZrMe₂ (6 mg, 0.024 mmol) in C_6D_5Br (0.7 mL) to solid [PhMe₂NH][B(4-C_6H_4F)_4] (12 mg, 0.023) mmol) in a reaction bottle at -30 °C resulted in the deposition of a yellow solid (believed to be $[(C_5H_5)_2ZrMe(NMe_2Ph)][B(4 C_6H_4F_4]$; on warming to 25 °C (<5 min) a yellow solution containing $B(4-C_6H_4F)_3$, NMe_2Ph , and $(C_5H_5)_2ZrMe(4-C_6H_4F)$ was obtained. ¹H NMR of neutral complex (25 °C): δ 7.2–7.0 (m, 4, C₆H₄F), 5.89 (s, 10, C₅H₅), 0.17 (s, 3, Zr-Me). When the above reaction was repeated in $C_2D_2Cl_4$ in an NMR tube at -30 °C, $[(C_5H_5)_2ZrMe(NMe_2Ph)][B(4-C_6H_4F)_4]$ (1a) was observed spectroscopically as the major product (ca. 70%) in addition to unidentified decomposition products. ¹H NMR (-30 °C): δ , 7.25 (br, 8, o-C₆H₄F), 7.14 (dd, coord NMe₂Ph m-H), 6.77 (dd, 8, m-C₆H₄F), 6.70 (d, 2, coord NMe₂Ph o-H), 5.93 (s, 10, C₅H₅), 2.62 (s, 6, coord NMe₂Ph), 0.76 (s, 3, Zr-Me); p-H of NMe₂Ph obscured. ¹⁹F NMR (-30 °C): δ -121.6 ($\Delta \nu_{1/2}$ = 28 Hz). Reaction of [{(Me₃Si)C₅H₄]₂ZrMe₂] with [PhMe₂NH][B-

 $(4-C_6H_4F)_4$]. Addition of a solution of $\{(Me_3Si)C_5H_4\}_2$ ZrMe₂ (20) mg, 0.051 mmol) in C_6D_5Br (0.7 mL) to solid [PhMe₂NH][B(4- $C_6H_4F)_4$] (26 mg, 0.051 mmol) in a reaction bottle at -30 °C, followed by warming to ca. 10 °C, gave a yellow solution containing $[(Me_3Si)C_5H_4]_2ZrMe(NMe_2Ph)][B(4-C_6H_4F)_4]$ (1b) as the major product, together with decomposition products. ¹H NMR (-30 °C): δ 7.72 (br, 8, *o*-C₆H₄F), 7.03 (m, 8, *m*-C₆H₄F), 6.39 (d, 2, coord $NMe_2Ph \ o-H$), 6.03, 5.78, 5.75, 5.62 (s, 2, (Me_3Si) C_5H_4), 1.89 (s, 6, coord NMe₂Ph), 0.65 (s, 3, Zr-Me), 0.08 (s, 18, (Me₃Si)C₅H₄); other resonances obscured. ¹⁹F NMR (-30 °C): δ -122.6 ($\Delta \nu_{1/2}$ = 44 Hz). The broadening and upfield shift of the anion ^{19}F NMR resonance compared to that for the "free" anion (δ -122.2, $\Delta \nu_{1/2}$ = 24 Hz) is indicative of a weak anion-cation interaction. The mixture of Complexes decomposed at 25 °C ($t_{1/2}$ ca. 10 min) to a mixture of B(4-C₆H₄F)₃, NMe₂Ph, and [{Me₃Si}C₅H₄]₂ZrMe(4-C₆H₄F). ¹H NMR (25 °C): δ 6.30, 6.15, 6.13, 5.96 (s, 2,

⁽¹⁷⁾ Van der Heijden, H.; Schaverien, C. J.; Orpen, A. G. Organo-

metallics 1989, 8, 255.
 (18) Koga, N.; Morokuma, K. J. Am. Chem. Soc. 1988, 110, 108.
 (19) Jordan, R. F.; LaPointe, R. E.; Baenziger, N.; Hitch, G. D. Organometallics 1990, 9, 1539.

⁽²⁰⁾ Collins, S.; Kuntz, B. A.; Taylor, N. J.; Ward, D. G. J. Organomet.

 ⁽²⁰⁾ Control (20) Control (20)

Organomet. Chem. 1986, 303, 213. (23) Manriquez, J. M.; McAlister, D. R.; Rosenberg, E.; Shiller, A. M.; Williamson, K. L.; Chan, S. I.; Bercaw, J. E. J. Am. Chem. Soc. 1979, 100, 3078

⁽²⁴⁾ Moore, C. E.; Cassaretto, F. P.; Posvic, H.; McLafferty, J. J. Anal. Chem. Acta 1966, 35, 1.

Cationic Zirconocene Complexes

 $(Me_3Si)C_5H_4$, 0.19 (s, 3, Zr-Me), 0.09 (s, 18, $(Me_3Si)C_5H_4$); other resonances obscured.

Reaction of $[{(Me_3C)C_5H_4}_2ZrMe_2]$ with $[PhMe_2NH][B(4 C_6H_4F_4$]. Addition of a solution of $\{(Me_3C)C_5H_4\}_2ZrMe_2$ (14 mg, 0.039 mmol) in C₆D₅Br to solid [PhMe₂NH][B(4-C₆H₄F)₄] (20 mg, 0.041 mmol) at -30 °C, followed by warming to 25 °C, gave a yellow solution containing [$(Me_3C)C_5H_4$]₂ZrMe(NMe₂Ph)][B(4-C₆H₄F)₄] (1c) as the major product. ¹H NMR (-30 °C): δ 7.72 (br, 8, o-C₆H₄F), 6.99 (dd, 8, m-C₆H₄F), 6.43 (d, 2, NMe₂Ph o-H), 5.77, 5.69, 5.51, 5.36 (m, 2, $(Me_3C)C_5H_4$), 1.91 (br, 6, NMe_2Ph), 0.90 (s, 18, (Me₃C)C₅H₄), 0.74 (s, 3, Zr-Me); other resonances obscured. ¹H NMR (25 °C): δ 7.64 (br, 8, o-C₆H₄F), 6.90 (dd, 8, m-C₆H₄F), 6.60 (d, 2, NMe₂Ph o-H), 6.09, 5.81 (vbr, 4, $(Me_{3}C)C_{5}H_{4}$, 2.63 (br, 6, $NMe_{2}Ph$), 0.90 (s, 18, $(Me_{3}C)C_{5}H_{4}$), 0.74 (s, 3, Zr-Me). ¹⁹F NMR (-30 °C): δ -122.9 ($\Delta\nu_{1/2}$ = 85 Hz). ¹⁹F NMR (25 °C): δ -124.3 ($\Delta \nu_{1/2}$ = 105 Hz). The broadening and upfield shift of the anion ¹⁹F NMR resonance compared to that for the "free" anion (see above) suggest that the above complex in temperature-dependent equilibrium with "{ $(Me_{3}C)C_{5}H_{4}$ }2 $ZrMe(B(4-C_{6}H_{4}F)_{4})$ " [-30 °C; ($Me_{3}C$)C₅H₄: δ 0.83 ppm; other resonances broad/obscured] and free NMe₂Ph. The downfield shift of the average NMe₂Ph resonance (-30 °C, δ 2.44 ppm; 25 °C, δ 2.63 ppm) as the temperature is raised suggests that the equilibrium is shifted in the direction of the aniline-free species at higher temperatures. The mixture of complexes decomposed at 25 °C ($t_{1/2}$ ca. 60 min) to unidentified products.

Reaction of $rac - C_2 H_4 (indenyl)_2 Zr Me_2$ with $[PhMe_2NH][B(4-C_6H_4F)_4]$. A solution of $rac-C_2H_4$ (inde $nyl)_2ZrMe_2$ (15 mg, 0.040 mmol) in C_6D_5Br (0.7 mL) at -30 °C was added to solid $[PhMe_2NH][B(4-C_6\dot{H}_4\dot{F})_4]$ (20 mg, 0.041 mmol) in a reaction bottle at -30 °C. The stirred reaction mixture was warmed to 25 °C over 5 minutes and rapidly filtered to give an intense yellow solution. The ¹H NMR resonances of [rac- $C_{2}H_{4}(indenyl)_{2}ZrMe(NMe_{2}Ph)][B(4-C_{6}H_{4}F)_{4}] (1d) \ were \ assigned \ by \ using \ a \ 2-D \ COSY \ NMR \ experiment. \ ^{1}H \ NMR \ (C_{6}D_{5}Br, -20)$ °C): δ 7.70 (br, 8, o-C₆H₄F), 7.52 (d, 1, ind C₆), 6.95 (m, 9, m-C₆H₄F) and NMe₂Ph m-H), 5.97 (m, 1, NMe₂Ph p-H), 5.91, 5.79 (d, 1, ind C₅), 5.75 (m, 2, NMe₂Ph o-H), 5.71, 4.39 (d, 1, ind C₅), 3.5-3.0 (m, 4, -CH₂CH₂-), 1.83, 1.34 (s, 3, NMe₂Ph), -0.50 (Zr-Me); other resonances obscured. ¹H NMR (C₆D₅Br, 25 °C): 1.91 (vbr, 6, NMe₂Ph). ¹⁹F NMR (C₆D₅Br, -30 °C): δ -122.4 ($\Delta \nu_{1/2}$ = 35 Hz). The slight broadening and upfield shift of the anion ¹⁹F NMR resonance compared to that for the "free" anion (see above) is indicative of a weak anion-cation interaction. The solutions of 1d in C₆D₅Br decomposed at 25 °C ($t_{1/2}$ ca. 30 min) to give $B(4-C_6H_4F)_3$, NMe₂Ph, and $rac-C_2H_4(indenyl)_2ZrMe(4-C_6H_4F)$. ¹H NMR (25 °C): δ 6.66 (dd, 2, $C_{\theta}H_{4}F$), 6.53 (d, 1, ind C_{5}), 6.43 $(dd, 2, C_6H_4F)$, 6.31, 5.91, 5.84 (d, 1, ind C₅), 3.3-1.9 (m, 4, $-CH_2CH_2$ -), -0.75 (Zr-Me); other resonances obscured.

Preparation of $(C_5Me_5)_2$ **ZrMe** $[B(4-C_6H_4F)_4]$ (1e). Bromobenzene (10 mL) at -30 °C was added to a mixture of $(C_5Me_5)_2$ **ZrMe**₂ (300 mg, 0.77 mmol) and [PhMe₂NH][B(4- $C_6H_4F_{4}$ (370 mg, 0.72 mmol) in a reaction bottle at -30 °C. The stirred mixture was warmed to 10 °C over 10 min and then rapidly filtered to remove a small amount of unreacted starting material. Addition of hexane (12 mL) at 0 °C gave a yellow microcrystalline solid, which was separated and washed twice with hexane (20 mL). After being dried at 25 °C in the glovebox (1 h), 580 mg of product was obtained. NMR spectroscopy and elemental analysis showed the presence of ca. 0.2 equiv of C₆H₅Br. ¹H NMR (C₆D₅Br, 25 °C): δ 7.63 (br, 8, o-C₆H₄F), 6.84 (br, 8, m-C₆H₄F), 1.52 (s, 30, C₅Me₅), 0.44 (s, 3, Zr-Me). ¹H NMR (C₂D₂Cl₄, -30 °C): δ 7.30 (br, 2, $o-C_6H_4F$), 7.15 (br, 6, $o-B(C_6H_4F)_3$), 6.82 (br, 6, m-B- $(C_6H_4F)_3)$, 6.35 (vbr, 2, *m*- C_6H_4F), 1.89 (s, 30, C_5Me_5), 0.66 (s, 3, Zr-*Me*). ¹H NMR ($C_2D_2Cl_4$, 25 °C): δ 7.21 (br, 8, o- C_6H_4F), 6.76 $(br, 8, m-C_6H_4F)$, 1.93 (s, 30, C_5Me_5), 0.70 (s, 3, Zr-Me). ¹³C NMR $(C_2D_2Cl_4, -30 \text{ °C})$: 163.1 (br, $p-C_6H_4F$), 160.3 (d, ${}^1J_{CF} = 240$ Hz, $p-B(C_6H_4F)_3$), 158.9 (br, $ipso-B(C_6H_4F)_3$), 138.2 ($o-C_6H_4F$), 137.2 $(o-B(C_6H_4F)_3)$, 125.4 (C_5Me_5) , 112.8 $(m-B(C_6H_4F)_3)$, 110.6 $(m-B(C_6H_4F)_3)$ C_6H_4F), 51.7 (Zr-Me), 11.9 (C_5Me_5); ipso- C_6H_4F resonance obscured. ¹⁹F NMR (C₂D₂Cl₄ -30 °C): δ -121.1 ($\Delta \nu_{1/2}$ = 35 Hz, 3 F), -135.5 ($\Delta v_{1/2}$ = 70 Hz, 1 F). Anal. Calcd for C₄₆₂H₅₀BBr_{0.2}F₄Zr: C, 69.50; H, 6.27; F, 9.59. Found (repeat analysis in parentheses): C, 69.57 (69.45); H, 6.31 (6.22); F, 9.29 (9.10). A 0.005 M solution of 1e in C_6D_5Br decomposed to the extent of ca. 50% within 2 h at 25 °C

Preparation of $[(C_5H_5)_2$ **ZrMe(THF)]**[**B**(4-C₆H₄F)₄]. A solution of THF (73 µL, 0.90 mmol) in bromobenzene (8 mL) at -30 °C was added to a mixture of $(C_5H_5)_2$ **ZrMe**₂ (150 mg, 0.60 mmol) and [PhMe₂NH][**B**(4-C₆H₄F)₄] (320 mg, 0.62 mmol) in a reaction bottle at -30 °C. The stirred mixture was allowed to warm to 25 °C over 5 min and filtered, and hexane (10 mL) was then added to deposit a pale yellow oil. The oil was washed with hexane (2 × 10 mL) while it was vigorously stirred to give a solid, which was dried in vacuo to give 360 mg of product (86% yield). The product was shown by NMR spectroscopy to be ca. 95% pure. Attempted crystallization of the complex from various solvent combinations failed as, in each case, an oil was obtained. Solutions of the complex in C₆D₅Br or CD₂Cl₂ show <10% decomposition after 24 h at 25 °C. ¹H NMR (CD₂Cl₂, 25 °C): δ 7.22 (m, 8, o-C₆H₄F), 6.77 (dd, 8, m-C₆H₄F), 6.40 (s, 10, C₅H₅), 3.72, 1.98 (m, 4, THF), 0.82 (s, 3, Zr-Me). ¹³C NMR (CD₂Cl₂, 25 °C): δ 159.6 (d, ¹J_{CF} = 238 Hz, p-C₆H₄F), 158.0 (q, ¹J_{CE} = 50 Hz, *ipso*-C₆H₄F), 136.3 (o-C₆H₄F), 114.5 (C₆H₆), 111.6 (d, ²J_{CF} = 18 Hz, m-C₆H₄F), 76.8 (THF), 43.9 (Zr-Me), 25.0 (THF).

Preparation of $[(C_5H_5)_2ZrC(SiMe_3)=CMe_2][B(4-C_6H_4F)_4]$ (2a). A solution of 1-(trimethylsilyl)prop-1-yne (150 μ L, 1.00 mmol) in bromobenzene (8 mL) at -30 °C was added to a mixture of (C₅H₅)₂ZrMe₂ (210 mg, 0.84 mmol) and [PhMe₂NH][B(4- $C_6H_4F_{4}$ [420 mg, 0.82 mmol) in a reaction bottle at -30 °C. The stirred mixture was warmed to 25 °C and filtered, and hexane (15 mL) was then added to give an orange oil, which solidified on washing with hexane (10 mL). Reprecipitation from dichloromethane solution (5 mL) with hexane (15 mL), followed by washing with hexane $(2 \times 10 \text{ mL})$ and drying in vacuo, gave 460 mg (75%) of pure product. Crystalline analytically pure material was obtained by slow cooling of a dichloromethane/ hexane solution to -40 °C. ¹H NMR (\overline{CD}_2Cl_2 , 25 °C): δ 7.22 (m, 8, $o-C_6H_4F$), 6.76 (dd, 8, $m-C_6H_4F$), 6.33 (s, 10, C_5H_5), 1.93, 1.65 (s, 3, C(SiMe₃)=CMe₂), 0.19 (s, 9, C(SiMe₃)=CMe₂). ¹H NMR (CD₂Cl₂, -90 °C): δ 7.12 (m, 8, $o-C_6H_4F$), 6.76 (dd, 8, $m-C_6H_4F$), 6.76 (dd, 8, $m-C_6H_4F$), 6.27 (s, 10, C₅H₅), 1.82, 1.55 (s, 3, C(SiMe₃)=CMe₂), 0.11 (br, 9, $C(SiMe_3) = CMe_2)$. ¹³C NMR (CD_2Cl_2 , -60 °C): δ 213.6 (C-C(SiMe₃)=CMe₂). SC NMR (CD₂Cl₂, -60 °C): δ 213.6 (C-(SiMe₃)=CMe₂), 161.7 (C(SiMe₃)=CMe₂), 158.6 (d, ¹J_{CF} = 240 Hz, p-C₆H₄F), 157.0 (q, ¹J_{CB} = 50 Hz, *ipso*-C₆H₄F), 135.4 (o-C₆H₄F), 112.7 (C₅H₅), 111.4 (d, ²J_{CF} = 16 Hz, *m*-C₆H₄F), 31.1, 27.0 (C(SiMe₃)=CMe₂), 0.4 (sharp, ¹J_{CH} = 120 Hz, C(SiMe₃)=CMe₂). ¹⁹F NMR (CD₂Cl₂, -90 °C): δ -121.3 (m, $\Delta \nu_{1/2}$ = 20 Hz). ¹⁹F NMR spectra of complexes 2b-d show an identical sharp multiplet. ²⁸Si NMB (CD₂Cl₂, 0 °C): δ -54.7 npm Anal Calcd for NMR (CD_2Cl_2 , 0 °C): δ -54.7 ppm. Anal. Calcd for C41H41BF4SiZr: C, 66.56; H, 5.59; F, 9.80; Si, 3.80. Found: C, 66.56; H, 5.66; F, 10.27; Si, 3.71. Reaction of THF (excess) with a solution of 2a in CD₂Cl₂ gave a THF adduct, obtained as a yellow precipitate on addition of hexane. ¹H NMR (anion: see 2a): δ 6.35 (s, 10, C₅H₅), 3.76, 1.92 (m, 4, THF), 1.85, 1.45 (s, 3, C- $(SiMe_3) = CMe_2), 0.21 (s, 9, C(SiMe_3) = CMe_2).$

Preparation of $[(C_5H_5)_2Zr(C(SiMe_3)=CMe_2)(NCMe)][B (4-C_6H_4F)_4$] (2a·MeCN). Addition of acetonitrile (200 μ L, 3.80) mmol) to a solution of complex 2a (250 mg, 0.34 mmol) in dichloromethane (4 mL) resulted in an instantaneous color change from red to yellow. Addition of hexane (5 mL) resulted in the precipitation of a yellow solid, which was washed with hexane $(2 \times 10 \text{ mL})$ and dried in vacuo. A 230-mg (85%) amount of the yellow title complex (two isomers, 4:1 ratio) was obtained. An analytically pure sample was obtained by recrystallization from dichloromethane/hexane solution. ¹H NMR (CD₂Cl₂, 25 °C) (anion: see 2a): major isomer, δ 6.28 (s, 10, C₅H₅), 2.15 (br, 3, NCMe), 1.72, 1.03 (s, 3, $C(SiMe_3) = CMe_2$), 0.23 (s, 9, $C(SiMe_3)$ -=CMe₂); minor isomer, δ 0.09 (br, 9, C(SiMe₃)==CMe₂); other resonances obscured. ¹³C NMR (CD₂Cl₂, 10 °C) (anion: see 2a): major isomer, δ 187.3 (C(SiMe₃)=CMe₂), 138.2 (C(SiMe₃)=CMe₂), 133.9 (NCMe), 112.5 (C_5H_5), 30.5, 9.9 (C(SiMe₃)=CMe₂), 2.6 (NCMe), 2.0 (C(SiMe₃)=CMe₂); minor isomer, δ 113.5 (\tilde{C}_5H_5), 29.7 (C(SiMe₃)=CMe₂), 2.9 (C(SiMe₃)=CMe₂); other resonances obscured. ²⁹Si NMR of in situ prepared sample (CD₂Cl₂, 0 °C): δ -11.6 ppm. Anal. Calcd for C₄₃H₄₄BF₄NSiZr: C, 66.13; H, 5.68; N, 1.79; F, 9.73. Found: C, 65.58; H, 5.87; N, 1.70; F, 9.67.

Preparation of $[{(Me_3Si)C_5H_4}_2ZrC(SiMe_3)=CMe_2][B(4-C_6H_4F)_4]$ (2b). Reaction of a solution of 1-(trimethylsilyl)prop-1-yne (50 μ L, 0.34 mmol) in bromobenzene (3 mL) with a mixture of ${(Me_3Si)C_5H_4}_2ZrMe_2$ (109 mg, 0.28 mmol) and $[PhMe_2NH]$ -[B(4-C₆H₄F)₄] (138 mg, 0.27 mmol), in a procedure similar to that

leading to 2a above, gave 150 mg (73%) of product as an orange solid. Slow cooling of a CH₂Cl₂/hexane solution provided a crystalline sample, which was shown by NMR spectroscopy and elemental analysis to contain 0.5 equiv of CH₂Cl₂ of crystallization. ¹H NMR (CD₂Cl₂, 25 °C) (anion: see 2a): δ 6.87, 6.75 (obscured), 6.33, 6.24 (s, 2, (Me_3Si)C₅H₄), 1.95, 1.68 (s, 3, C(SiMe₃)=CMe₂) 0.29 (s, 18, $(Me_3Si)C_5H_4$), 0.23 (s, 9, $C(SiMe_3)$ =CMe₂). ¹H NMR (CD₂Cl₂, -90 °C): δ 6.82, 6.75 (obscured), 6.27, 6.15 (s, 2, (Me₃Si)C₅H₄), 1.84, 1.57 (s, 3, $C(SiMe_3)$ =CMe₂), 0.36 (br, 6, C(SiMe₃)=CMe₂), 0.20 (s, 18, (Me₃Si)C₅H₄), -0.33 (br, 3, C-(SiMe₃)=CMe₂). ¹³C NMR (CD₂Cl₂, -90 °C) (anion: see **2a**): δ 213.9 $(C(SiMe_3) = CMe_2)$, 161.8 $(C(SiMe_3) = CMe_2)$, 124.9, 122.3, 117.8, 117.4, 113.7 ($(Me_3Si)C_5H_4$), 31.1, 27.1 ($C(SiMe_3)=CMe_2$), 2.6 (1 C, $C(SiMe_3)=CMe_2$), 1.0 (2 C, $C(SiMe_3)=CMe_2$), -1.2 ($(Me_3Si)C_5H_4$). Anal. Calcd for $C_{47.5}H_{58}BCIF_4Si_3Zr$: C, 61.56 H, 6.31. Found: C, 61.65; H, 6.23. Addition of THF (1.0 equiv or excess) to a solution of 2b in CD_2Cl gave an orange fluxional THF adduct. ¹H NMR (25 °C) (anion: see 2a): δ 6.32, 6.21 (m, 2, $(Me_3Si)C_5H_4$, 1.92, 1.61 (s, 3, $C(SiMe_3)=CMe_2$), 0.28 (s, 18, (Me₃Si)C₅H₄), 0.22 (s, 9, C(SiMe₃)=CMe₂); only "free" THF resonances observed, δ 3.68, 1.82 (m, 4).

Addition of acetonitrile (excess) to a solution of **2b** in CD_2Cl_2 gave a yellow acetonitrile adduct. ¹H NMR (25 °C) (anion: see **2a**): δ 6.93, 6.29 (m, 2, (Me_3Si)C_5H_4), 6.18 (m, 4, (Me_3Si)C_5H_4), 2.20 (s, 3, MeCN), 1.71, 0.97 (s, 3, C(SiMe_3)=CMe_2), 0.24 (s, 9, C(SiMe_3)=CMe_2), 0.22 (s, 18, (Me_3Si)C_5H_4).

Preparation of $[{(Me_3C)C_5H_4}_2ZrC(SiMe_3)=CMe_2][B(4 C_6H_4F_4$] (2c). Reaction of a solution of 1-(trimethylsilyl)prop-1-yne (150 μ L, 1.0 mmol) in bromobenzene (8 mL) with a mixture of $\{(Me_3C)C_5H_4\}_2ZrMe_2$ (300 mg, 0.83 mmol) and $[PhMe_2NH]$ - $[B(4-C_6H_4F)_4]$ (420 mg, 0.82 mmol) was carried out by using a procedure similar to that leading to 2a above. A microcrystalline solid was obtained directly on addition of hexane to the filtered reaction mixture, and the solid was recrystallized from dichloromethane/hexane solution to give 650 mg (88%) of orange crystals, after drying in vacuo. NMR spectroscopy and elemental analysis showed the crystals to contain 0.5 equiv of CH_2Cl_2 of crystallization. ¹H NMR (CD₂Cl₂, 25 °C) (anion: see 2a): δ 6.75 (obscured), 6.46, 6.09, 5.98 (m, 2, $(Me_3C)C_5H_4$), 1.96, 1.68 (s, 3, C(SiMe_3)=CMe_2), 1.25 (s, 18, $(Me_3C)C_5H_4$), 0.31 (s, 9, C- $(SiMe_3) = CMe_2$. ¹H NMR $(CD_2Cl_2, -90 \circ C)$: $\delta 6.74$ (obscured), 6.38, 5.97, 5.91 (m, 2, $(Me_3C)C_5H_4$), 1.85, 1.56 (s, 3, $C(SiMe_3) = CMe_2$), 1.12 (s, 18, $(Me_3C)C_5H_4$), 0.33 (s, 6, $C(SiMe_3) = CMe_2$), 0.07 (s, 3, $C(SiMe_3) = CMe_2$). ¹³C NMR (CD_2Cl_2 , -90 °C) (anion: see **2a**): $\delta 208.1 (C(SiMe_3) = CMe_2), 160.7 (C(SiMe_3) = CMe_2), 146.4, 118.6, 111.0, 108.4, 103.5 ((Me_3C)C_5H_4), 32.4 ((Me_3C)C_5H_4), 30.1$ $((Me_{3}C)C_{5}H_{4}), 29.8, 27.7 (C(SiMe_{3})=CMe_{2}), 1.2 (1 C, {}^{1}J_{CH} = 110$ Hz, $C(SiMe_3) = CMe_2)$, -1.2 (2 C, ${}^{1}J_{CH} = 119$ Hz, $C(SiMe_3) = CMe_2)$, -1.2 (2 C, ${}^{1}J_{CH} = 119$ Hz, $C(SiMe_3) = CMe_2)$. ²⁹Si NMR (CD₂Cl₂, 0 °C): δ -59.6 ppm. Anal. Calcd for C49.5H59BClF4SiZr: C, 66.46; H, 6.54; F, 8.50; Si, 3.14. Found (repeat analysis in parentheses): C, 66.86 (66.53); H, 6.52 (6.42); F, 8.56; Si, 2.98

Addition of THF (excess) to a solution of 2c in CD_2Cl_2 gave a yellow fluxional THF adduct. ¹H NMR (25 °C) (anion: see 2a): $\delta 6.60, 6.55, 6.09, 5.92$ (m, 2, $(Me_3C)C_5H_4$), 1.88, 1.53 (s, 3, $C(SiMe_3) = CMe_2$), 1.23 (s, 18, $(Me_3C)C_5H_4$), 0.29 (s, 9, C- $(SiMe_3) = CMe_2$); only "free" THF resonances observed.

Addition of acetonitrile (excess) to a solution of 2c in CD₂Cl₂ gave a yellow acetonitrile adduct. ¹H NMR (25 °C) (anion: see 2a): $\delta 6.65, 6.13, 6.03, 6.02$ (m, 2, (Me₃C)C₅H₄), 2.16 (s, 3, NCMe), 1.69 (s, 3, C(SiMe₃)=CMe₂), 1.22 (s, 18, (Me₃C)C₅H₄), 1.07 (s, 3, C(SiMe₃)=CMe₂), 0.21 (s, 9, C(SiMe₃)=CMe₂). ¹H NMR (-90 °C) (anion: see 2a): $\delta 6.61, 6.14, 5.80, 5.76$ (m, 2, (Me₃C)C₅H₄), 2.16 (s, 3, NCMe), 1.57 (s, 3, C(SiMe₃)=CMe₂), 1.12 (s, 18, (Me₃C)C₅H₄), 0.93 (s, 3, C(SiMe₃)=CMe₂), 0.10 (s, 9, C(SiMe₃)= CMe₂). ²⁹Si NMR (CD₂Cl₂, 0 °C): $\delta -12.7$ ppm.

Preparation of $[rac - C_2H_4(indenyl)_2ZrC(SiMe_3) = CMe_2][B(4-C_6H_4F)_4]$ (2d). Reaction of 1-(trimethylsilyl)prop-1-yne (95 µL, 0.64 mmol) in bromobenzene (3 mL) at -30 °C with $rac - C_2H_4(indenyl)_2ZrMe_2$ (200 mg, 0.53 mmol) and [PhMe₂NH][B(4-C_6H_4F)_4] (260 mg, 0.51 mmol), in a procedure similar to that leading to 2c above, gave 335 mg of pure product (66%) as an orange crystalline solid, after recrystallization and drying in vacuo. Large X-ray-quality crystals were obtained by slow cooling of a solution of 2d in dichloromethane/hexane. The product was shown by NMR spectroscopy, elemental analysis, and a crystal structure determination to contain 1 equiv of CH₂Cl₂ of crystallization. ¹H NMR (CD₂Cl₂, 40 °C) (anion: see **2a**): δ 7.8–7.0 (m, 9, ind), 6.43, 6.30, 6.10 (d, 1, ind C₆), 4.1–3.6 (m, 4, $-CH_2CH_2$ -), 1.75, 1.27 (s, 3, C(SiMe₃)= CMe_2), -0.19 (br, 9, C-(SiMe₃)= CMe_2). ¹H NMR (CD₂Cl₂, -90 °C): δ 7.7–7.1 (m, 9, ind), 6.40, 6.30, 6.22 (d, 1, ind C₅), 4.0–3.4 (m, 4, $-CH_2CH_2$ -), 1.64, 1.12 (s, 3, C(SiMe₃)= CMe_2), 0.27, 0.02, -1.26 (s, 3, C(SiMe₃)= CMe_2). ¹³C NMR (CD₂Cl₂, -90 °C) (anion: see **2a**): δ 208.1 (C(SiMe₃)= CMe_2), 160.7 (C(SiMe₃)= CMe_2), 128.4, 126.8, 125.7, 125.4, 125.3, 124.5, 124.4, 124.3, 123.8, 123.0, 122.8, 120.8, 120.7, 117.3, 114.0, 112.2, 106.3, 103.8 (ind), 30.8 (C(SiMe₃)= CMe_2), 28.6, 28.2 (-C-H₂CH₂-), 26.2 (C(SiMe₃)= CMe_2), 2.7 (¹J_{CH} = 116 Hz, C-(SiMe₃)= CMe_2), -0.5 (¹J_{CH} = 124 Hz, C(SiMe₃)= CMe_2), -5.2 (¹J_{CH} = 122 Hz, C(SiMe₃)= CMe_2). Anal. Calcd for C₅₂H₄₉BCl₂F₄SiZr: C, 65.68; H, 5.19; F, 7.99; Si, 2.95. Found: C, 65.50; H, 5.23; F, 7.85; Si, 3.13.

Addition of THF to a solution of 2d in CD_2Cl_2 gave a red fluxional THF adduct. ¹H NMR (25 °C) (anion: see 2a): δ 7.7-7.2 (m, 9, ind), 6.87, 6.40, 6.30, 6.23 (m, 1, ind C₅), 4.0-3.5 (m, 4, $-CH_2CH_2$ -), 1.72, 1.28 (s, 3, C(SiMe_3)=CMe_2), -0.14 (s, 9, C-(SiMe_3)=CMe_2); only "free" THF resonances observed.

Addition of acetonitrile (excess) to a solution of 2d in CD_2Cl_2 gave a yellow acetonitrile adduct. ¹H NMR (25 °C) (anion: see 2a): δ 7.7-7.1 (m, 9, ind), 6.38 (m, 2, ind C₅), 6.20 (m, 1, ind C₅), 3.8-3.2 (m, 4, $-CH_2CH_2$ -), 1.97 (NCMe), 1.63, 1.12 (s, 3, C-(SiMe₃)= CMe_2), 0.15 (s, 9, C(SiMe₃)= CMe_2). ¹H NMR (-90 °C) (anion: see 2a): major isomer, δ 7.7-7.0 (m, 9, ind), 6.34, 6.20, 6.16 (m, 1, ind C₅), 3.7-3.1 (m, 4, $-CH_2CH_2$), 1.81 (s, 3, NCMe), 1.51, 1.00 (s, 3, C(SiMe₃)= CMe_2), 0.17, 0.14, -0.09 (s, 3, C-(SiMe₃)= CMe_2); minor isomer, 6.43, 6.25 (m, 1, ind C₅), 1.97 (s, 3, NCMe), 1.55, 1.28 (s, 3, C(SiMe₃)= CMe_2), -0.09 (br, 9, C-(SiMe₃)= CMe_2); other resonances obscured.

Preparation of $[(C_5H_5)_2ZrC(Ph)=C(Ph)Me][B(4-C_6H_4F)_4]$ (3a). A solution of diphenylethyne (125 mg, 0.64 mmol) in bromobenzene (5 mL) at -30 °C was added to a mixture of (C₅H₅)₂ZrMe₂ (150 mg, 0.60 mmol) and [PhMe₂NH][B(4-C₆H₄F)₄] (298 mg, 0.58 mmol) in a reaction bottle at -30 °C. The stirred mixture was warmed to 10 °C and filtered, and hexane (15 mL) was then added to give a yellow oil, which was washed with hexane (10 mL). Dissolution of the oil in bromobenzene, followed by addition of hexane, again gave an oil, which solidified on extensive washing with hexane $(3 \times 10 \text{ mL})$. A 410-mg amount of yellow product (85%) was obtained after drying in vacuo. The product was contaminated with traces of unidentified complexes, and attempted crystallization from dichloromethane/hexane or bromobenzene/hexane solution led only to decomposition. ¹H NMR $(C_6D_5Br, 25 \text{ °C}): 7.63 \text{ (br, 8, } o-C_6H_4F), 6.83 \text{ (dd, 8, } m-C_6H_4F),$ 6.18 (s, 10, C_5H_5), 1.73 (s, 3, C(Ph)=C(Ph)Me); phenyl resonances obscured. ¹H NMR (C₂D₂Cl₄, -30 °C): δ 7.48 (br, 4, Ph), 7.33 (br, 2, Ph), 7.23 (br, 8, o-C₆H₄F), 7.12, 7.02 (br, 2, Ph), 6.71 (br, 8, m-C₆H₄F), 6.34 (s, 10, C₅H₅), 1.96 (s, 3, C(Ph)=C(Ph)Me). ¹³C NMR (C₂D₂Cl₄, -30 °C): δ 182.7 (C(Ph)=C(Ph)Me), 160.8 (brd, p-C₆H₄F), 159.3 (br, *ipso*-C₆H₄F), 142.9, 142.2 (1 C, *ipso*-Ph), 137.2 (o-C₆H₄F), 134.8 (2 C, Ph), 131.1 (1 C, p-Ph), 130.7, 128.4 (2 C, Ph), 127.0 (2 C, Ph and 1 C, p-Ph), 122.6 (C(Ph)=C(Ph)Me), 112.5 $(m-C_6H_4F \text{ and } C_5H_5)$, 24.9 (C(Ph)=C(Ph)Me). ¹⁹F NMR (C₂D₂Cl₄, -30 °C): δ -121.3 (Δ $\nu_{1/2}$ = 370 Hz), -175 (vbr). ¹⁹F NMR (C₂D₂Cl₄/C₇D₈, -55 °C): δ -121.9 (Δ $\nu_{1/2}$ = 45 Hz, 3 F), -175.8 (Δ $\nu_{1/2}$ = 75 Hz, 1 F); minor peaks, δ -121.4, -122.2. ¹⁹F NMR $(C_2D_2Cl_4/C_7D_8, 50 \ ^\circ C): \ \bar{\delta} -134.9 \ (\Delta \nu_{1/2} = 290 \ Hz).$

Addition of acetonitrile (excess) to a solution of 3a in C_6D_5Br gave an instantaneous color change from orange to yellow and (after 10 min) resulted in the precipitation of a yellow solid. ¹H NMR (C_6D_5Br , 25 °C): 7.62 (br, 8, o- C_6H_4F), 6.92 (m, 8, m- C_6H_4F), 5.66 (s, 10, C_5H_5), 1.85 (s, 3, NCMe), 0.95 (s, 3, C(Ph)=C(Ph)Me); Ph resonances obscured.

Preparation of $[(C_5H_5)_2Zr[C(Ph)=C(Ph)Me](THF)][B(4-C_6H_4F)_4]$ (3a·THF). Addition of tetrahydrofuran (200 µL, 2.46 mmol) to a solution of complex 3a (470 mg, 0.58 mmol) in bromobenzene (4 mL) resulted in an instantaneous color change from dark to pale yellow. Addition of hexane (5 mL) resulted in the precipitation of a yellow solid, which was washed with hexane (2 × 10 mL) and dried in vacuo. A 380-mg (75%) amount of yellow $[(C_5H_5)_2Zr[C(Ph)=C(Ph)Me](THF)][B(4-C_6H_4F)_4]$ was obtained. ¹H NMR (C₆D₅Br, 25 °C): δ 7.65 (br, 8, o-C₆H₄F), 6.94 (m, 8, m-C₆H₄F), 5.82 (s, 10, C₅H₅), 2.36 (br, 4, THF), 1.67 (s, 3, C-

(Ph)=C(Ph)Me), 0.97 (br, 4, THF); other Ph resonances obscured. ¹H NMR (C₂D₂Cl₄, -30 °C): δ 7.28 (br, 8, o-C₆H₄F), 7.01 (br, 4, Ph), 6.78 (m, 8, m-C₆H₄F), 6.29 (s, 10, C₅H₅), 2.89 (br, 4, THF), 1.92 (s, 3, C(Ph)=C(Ph)Me), 1.51 (br, 4, THF); other Ph resonances obscured. ¹³C NMR (C₂D₂Cl₄, -30 °C): δ 182.2 (C(Ph)=C(Ph)Me), 159.9 (d, ¹J_{CF} = 239 Hz, p-C₆H₄F), 158.3 (q, ¹J_{BC}) = 49 Hz, ipso-C₆H₄F), 144.7 (2 C, ipso-Ph), 137.1 (o-C₆H₄F), 133.7 (2 C, Ph), 130.4 (1 C, p-Ph), 130.1 (2 C, Ph; 1 C, p-Ph), 128.0, 127.5 (2 C, Ph), 126.4 (C(Ph)=C(Ph)Me), 112.3 (m-C₆H₄F and C₅H₆), 78.6 (THF), 26.4 (THF), 25.4 (C(Ph)=C(Ph)Me). ¹⁹F NMR (C₂D₂Cl₄, -30 °C): δ -121.8 ($\Delta \nu_{1/2}$ = 27 Hz).

Preparation of [[(Me₃Si)C₅H₄]₂ZrC(Ph)=C(Ph)Me][B(4- $C_6H_4F_4$] (3b). A solution of diphenylethyne (54 mg, 0.28 mmol) in bromobenzene (4 mL) was reacted with $\{(Me_3Si)C_5H_4\}_2ZrMe_2$ (100 mg, 0.25 mmol) and [PhMe₂NH][B(4-C₆H₄F)₄] (127 mg, 0.25 mmol) in a procedure similar to that leading to 3a above. The red oil obtained was redissolved in bromobenzene (4 mL) and hexane then added to again give an oil, which, however, crystallized on further stirring. After washing with hexane $(2 \times 10 \text{ mL})$ and drying in vacuo, 150 mg (62%) of pure red crystalline product was obtained. Recrystallization from cold dichloromethane/ hexane solution gave an analytically pure sample. ¹H NMR $(C_8D_5Br, 25 \circ C): \delta 7.62 (br, 8, o-C_6H_4F), 6.84 (dd, 8, m-C_6H_4F),$ $6.29, 6.18 \text{ (m, 2, (Me_3Si)C_5H_4), 6.11 (m, 4, (Me_3Si)C_5H_4), 1.72 (s, 6.18 (m, 2, (Me_3Si)C_5H_4)), 1.72 (s, 6.18 (m, 2, (Me_3Si)C_5H_4)))$ 3, C(Ph)=C(Ph)Me), 0.07 (s, 18, $(Me_3Si)C_5H_4$); Ph resonances obscured. ¹H NMR ($C_2D_2Cl_4$, -30 °C): δ 7.40 (m, 2, Ph), 7.23 (br, 14, o- C_6H_4F and Ph), 7.03 (m, 2, Ph), 6.71 (dd, 8, m- C_6H_4F), (b), 14, 0 C $_{614}$ and 1 m), 1.00 (m), 2, 1 m), 0.11 (dd, 0, m^{2} C $_{814}$), 6.63, 6.49 (m, 2, (Me_{3}Si)C_{5}H_{4}), 6.40 (m, 4, (Me_{3}Si)C_{5}H_{4}), 1.86 (s, 3, C(Ph)=C(Ph)Me), 0.22 (s, 18, (Me_{3}Si)C_{5}H_{4}). ¹³C NMR (C_{2}D_{2}Cl_{4}, -30 °C): δ 183.3 (C(Ph)=C(Ph)Me), 160.8 (d, $^{1}J_{CF} =$ 237 Hz, p-C₆H₄F), 158.5 (q, ¹J_{BC} = 50 Hz, *ipso*-C₆H₄F), 144.6, 142.0 (1 C, *ipso*-Ph), 137.1 (o-C₆H₄F), 134.5 (2 C, Ph), 133.0 (C(Ph)= C(Ph)Me), 131.6 (1 C, p-Ph), 128.4 (2 C, Ph), 127.9 (2 C, Ph), 127.7 (1 C, p-Ph; 2 C, (Me₃Si) C_5H_4), 125.4 (2 C, (Me₃Si) C_5H_4), 123.3 (2 C, α -Ph: o-C), 119.4, 118.3, 115.8, (2 C, (Me₃Si) C_5H_4), 112.3 (d, ${}^{2}J_{CF} = 14$ Hz, $m \cdot C_{6}H_{4}F$), 25.1 (C(Ph)=C(Ph)Me), -0.2 $((Me_3Si)C_5H_4)$. ¹⁹F NMŘ $(C_2D_2Cl_4, -30 °C)$: $\delta -126.2 (\Delta \nu_{1/2} = 10^{-3} C_2C_1)$ 100 Hz. Anal. Calcd for C₅₅H₅₅BF₄Si₂Zr: C, 69.52; H, 5.83; F, 8.00; Si, 5.91. Found: C, 69.56; H, 5.96; F, 7.66; Si, 6.16.

Addition of THF (excess) to a solution of **3b** in C_6D_5Br gave a yellow THF adduct. ¹H NMR (25 °C): δ 7.63 (br, 8, o- C_6H_4F), 6.95 (dd, 8, m- C_6H_4F), 6.42, 6.24 (m, 2, (Me₃Si) C_5H_4), 6.04 (m, 4, (Me₃Si) C_5H_4), 2.49 (br, 4, THF), 1.78 (s, 3, C(Ph)=C(Ph)Me), 1.05 (br, 4, THF), 0.22 (s, 18, (Me₃Si) C_5H_4); Ph resonances obscured.

Addition of acetonitrile (excess) to a solution of **3b** in C_6D_5Br gave a yellow acetonitrile adduct. ¹H NMR (25 °C): δ 7.66 (br, 8, o- C_6H_4F), 6.95 (dd, 8, m- C_6H_4F), 6.60 (m, 1, Ph), 6.39, 5.95 (m, 2, (Me₃Si) C_5H_4), 5.84 (m, 4, (Me₃Si) C_5H_4), 1.94 (s, 3, NCMe), 0.95 (s, 3, C(Ph)=C(Ph)Me), 0.02 (s, 18, (Me₃Si) C_5H_4); Ph resonances obscured.

Preparation of $[{(Me_3C)C_5H_4}_2ZrC(Ph)=C(Ph)Me][B(4 C_6H_4F_4$] (3c). A solution of diphenylethyne (120 mg, 0.60 mmol) in bromobenzene (8 mL) was reacted with a mixture of ${(Me_{3}C)C_{5}H_{4}}_{2}ZrMe_{2}$ (200 mg, 0.55 mmol) and [PhMe₂NH][B(4- $C_6H_4F_4$] (280 mg, 0.55 mmol) in a procedure similar to that leading to 3a above. The red oil obtained was redissolved in cold dichloromethane (3 mL), and cold hexane (10 mL) was added to give an oil, which crystallized on further stirring. The solid was washed twice with hexane (10 mL) and then dried in vacuo to give 350 mg (66%) of pure red product. NMR spectroscopy and elemental analysis showed the crystals to contain 0.5 equiv of CH₂Cl₂ of crystallization. ¹H NMR (C₆D₅Br, 25 °C): δ 7.66 (br, 8, $o-C_6H_4F$), 6.95 (dd, 8, $m-C_6H_4F$), 6.37, 5.95, 5.71, 5.36 (m, 2, $(Me_3C)C_5H_4)$, 1.61 (s, 3, C(Ph)=C(Ph)Me), 0.64 (s, 30, $(Me_3C)C_5H_4$; phenyl resonances obscured. ¹H NMR (C₂D₂Cl₄, -30 °C): δ 7.48 (m, 3, Ph), 7.36 (m, 2, Ph), 7.25 (br, 11, o-C₆H₄F and Ph), 7.07 (m, 2, Ph), 6.80 (m, 10, m-C₆H₄F and (Me₃C)C₅H₄), and 1 h, 7.57 (h, 2, 1 h), 0.50 (h, 10, $m^{-2}C_{6}H_{4}F$ and $(m^{-2}C_{5}H_{4})$, 6.44, 6.06, 5.84 (m, 2, $(Me_{3}C)C_{5}H_{4}$), 1.82 (s, 3, C(Ph)=C(Ph)Me), 0.93 (s, 30, $(Me_{3}C)C_{5}H_{4}$). ¹³C NMR $(C_{2}D_{2}Cl_{4}, -30 \ ^{\circ}C)$: δ 182.6 (C(Ph)=C(Ph)Me), 159.9 (d, ¹ J_{CF} = 238 Hz, p-C₆H₄F), 158.4 (q, ¹ J_{BC} = 49 Hz, *ipso*-C₆H₄F), 146.7 (2 C, $(Me_{3}C)C_{5}H_{4}$), 144.9, 141.0 (1 C, *ipso*-Ph), 137.0 (o-C₆H₄F), 136.7 (2 C, Ph), 135.7 (C(Ph)= (C(Ph)Me), 121 (2 C, Ph), 135.7 (C(Ph)= C(Ph)Me), 131.5 (1 C, p-Ph), 128.5 (2 C, Ph), 128.0 (2 C, Ph; 1 C, p-Ph), 119.6 (2 C, $(Me_3C)C_5H_4$), 119.1 (2 C, α -Ph o-C), 114.0 $(2 \text{ C}, (\text{Me}_{3}\text{C})C_{5}\text{H}_{4}), 112.5 (^{2}J_{\text{BC}} = 16 \text{ Hz}, m-C_{6}\text{H}_{4}\text{F}), 108.9, 106.3$ (2 C, $(Me_3C)C_5H_4$), 33.4 ($(Me_3C)C_5H_4$), 29.5 ($(Me_3C)C_5H_4$), 24.8 (C(Ph)=C(Ph)Me). ¹⁹F NMR ($C_2D_2Cl_4$, -30 °C): δ -121.8 ($\Delta\nu_{1/2}$ = 21 Hz). Anal. Calcd for $C_{57.5}H_{56}BClF_4Zr$: C, 71.90; H, 5.88. Found: C, 71.51; H, 6.06.

Addition of THF (excess) to a solution of 3c in C_6D_5Br gave a yellow fluxional THF adduct. ¹H NMR (25 °C): δ 7.64 (br, 8, $o-C_6H_4F$), 6.93 (dd, 8, $m-C_6H_4F$), 6.28 (m, 2, (Me₃C)C₅H₄), 5.86 (m, 4, (Me₃C)C₅H₄), 5.76 (m, 2, (Me₃C)C₅H₄), 1.77 (s, 3, C(Ph)-=C(Ph)Me), 1.16 (s, 30, (Me₃C)C₅H₄); phenyl resonances obscured and only "free" THF resonances observed.

Addition of acetonitrile to a solution of **3c** in C_6D_5Br gave a yellow acetonitrile adduct. ¹H NMR (25 °C): δ 7.67 (m, 8, o- C_6H_4F), 6.94 (br, 8, o- C_6H_4F), 6.54 (m, 2, Ph), 6.41 (m, 2, (Me₃C)C₅H₄), 5.58, (m, 4, (Me₃C)C₅H₄), 5.38 (m, 2, (Me₃C)C₅H₄), 1.94 (s, 3, NCMe), 0.85 (s, 18, (Me₃C)C₅H₄), 0.78 (s, 3, C(Ph)= C(Ph)Me); phenyl resonances obscured.

Preparation of $[rac-C_2H_4(indenyl)_2ZrC(Ph)=C(Ph)-$ Me][B(4-C₆H₄F)₄] (3d). A solution of diphenylethyne (78 mg, 0.40 mmol) in bromobenzene (5 mL) was reacted with a mixture of $rac-C_2H_4(indenyl)_2ZrMe_2$ (143 mg, 0.38 mmol) and $[PhMe_2NH][B(4-C_6H_4F)_4]$ (190 mg, 0.37 mmol) in a procedure similar to that leading to 3a above. The red oil obtained was redissolved in bromobenzene (5 mL) and hexane (15 mL) added to again give an oil, which solidified on washing with hexane (3 \times 10 mL). After drying in vacuo, 290 mg (82%) of dark red solid product was obtained. The product was contaminated with traces of unidentified complexes, and attempted crystallization from dichloromethane/hexane or bromobenzene/hexane solution led only to decomposition. ¹H NMR (C₆D₅Br, 25 °C): δ 7.63 (br, 8, o-C₆H₄F), 6.80 (dd, 8, m-C₆H₄F), 5.77, 5.53, 5.32 (m, 1, ind C₅) $3.5-3.0 \text{ (m, 4, -CH_2CH_2-), 1.42 (s, 3, C(Ph)=C(Ph)Me). }^{1}H NMR$ $(C_2D_2Cl_4, -30 \text{ °C})$: δ 7.6-6.7 (m, 18, ind C₆ and Ph), 7.23 (br, 8, $o \cdot \hat{C}_6 \hat{H}_4 F$), 6.71 (m, 8, $m \cdot \hat{C}_6 H_4 F$), 6.29, 6.14, 5.62, 5.47 (br, 1, ind \hat{C}_5), 4.0–3.5 (m, 4, $CH_2 CH_2$), 1.59 (s, 3, C(Ph)=C(Ph)Me). ¹³C NMR ($C_2D_2Cl_4$, -30 °C): δ 190.7 (C(Ph)=C(Ph)Me), 160.7 (d, ${}^{1}J_{CF} = 237$ Hz, $p - C_6H_4F$), 158.8 (q, ${}^{1}J_{BC} = 50$ Hz, $ipso - C_6H_4F$), 144.8, 144.0 (1 C, ipso - Ph), 137.0 ($o - C_6H_4F$), 134.9, 133.4, 132.4, 132.4, 129.0, 128.2, 127.8, 127.6, 127.1, 126.5, 126.0, 125.7, 125.2, 123.7, 122.9, 121.6, 121.1 (ind, Ph, C(Ph)=C(Ph)Me), 114.5, 113.1 (ind C_5), 112.5 (d, ${}^2J_{CF} = 15$ Hz, $m \cdot C_6H_4F$), 107.8, 105.3 (ind C_5), 29.8, 28.5 ($-CH_2CH_2$), 27.1 (C(Ph)=C(Ph)Me). ¹⁹F NMR (C₂D₂Cl₄, -30 °C): δ -126.9 ($\Delta \nu_{1/2}$ = 60 Hz).

Addition of THF (excess) to a solution of **3d** in C_6D_5Br gave a yellow THF adduct. ¹H NMR (25 °C): δ 7.63 (br, 8, o- C_6H_4F), 6.93 (dd, 8, m- C_6H_4F), 6.28, 5.78, 5.60 (m, 1, ind C_5), 2.2 (vbr, THF), 1.69 (s, 3, C(Ph)=C(Ph)Me); other resonances obscured.

Addition of acetonitrile (excess) to a solution of **3d** in C_6D_5Br gave a yellow acetonitrile adduct. ¹H NMR (25 °C): δ 7.66 (br, 8, o- C_6H_4F), 6.95 (dd, 8, m- C_6H_4F), 6.49 (m, 1, ind C_5), 6.20 (m, 1, Ph), 5.85, 5.63, 5.53 (m, 1, ind C_5), 1.57 (NCMe), 0.83 (s, 3, C(Ph)=C(Ph)Me); other resonances obscured.

Preparation of $[(C_5Me_5)_2ZrC(Ph)=C(Ph)Me][B(4 C_6H_4F_4$] (3e). A solution of diphenylethyne (78 mg, 0.40 mmol) in bromobenzene (5 mL) was reacted with a mixture of (C₅Me₅)₂ZrMe₂ (150 mg, 0.38 mmol) and [PhMe₂NH][B(4- $C_6H_4F_4$] (190 mg, 0.37 mmol) in a procedure similar to that leading to 2a above. The obtained red oil was redissolved in bromobenzene (5 mL) and hexane added to again give an oil, which solidified on extensive washing with hexane $(3 \times 10 \text{ mL})$. A 260-mg amount of red product (85%) was obtained after drying in vacuo. The product contained traces of unidentified impurities. and attempted crystallization from dichloromethane/hexane or bromobenzene/hexane solution led only to decomposition. ¹H NMR (C_6D_5Br , -30 °C): δ 7.71 (m, 8, o- C_6H_4F), 7.15 (br, 2, Ph), 7.06 (m, Ph), 6.98 (br, 8, m-C₆H₄F), 6.85 (t, 1, p-Ph), 6.67 (t, 2, m-Ph), 6.41 (d, 2, o-Ph), 1.45 (s, 30, C₅ Me_5), 1.35 (s, 3, C(Ph)= C(Ph)Me). ¹H NMR (C₂D₂Cl₄, -30 °C): δ 7.24 (m, 8, o-C₆H₄F), 6.79 (br, 8, m-C₆H₄F), 1.89 (s, 30, C₅Me₅), 1.66 (s, 3, C(Ph)=C (Ph)Me); phenyl resonances obscured. ¹³C NMR (C₂D₂Cl₄, -30 °C): δ 194.4 (C(Ph)=C(Ph)Me), 159.9 (d, ¹J_{CF} = 238 Hz, p- C_6H_4F), 158.5 (q, ${}^1J_{BC} = 50$ Hz, *ipso*- C_6H_4F), 148.5 (C(Ph)=C-(Ph)Me), 142.3, 139.8 (1 C, *ipso*-Ph), 137.0 (o- C_6H_4F), 136.3 (2 C, Ph), 132.8 (1 C, p-Pn), 120.0, 120.0 (2 C, 14), 120.1 (1, 2), 127.8 (C_5Me_5), 114.7 (br, 2 C, α -Ph o-C), 112.5 (d, ${}^2J_{CF}$ = 15 Hz, 127.8 (C, H E), 27.5 (C(Ph)=C(Ph)Me), 11.9 (C_5Me_5). ¹⁹F NMR C, Ph), 132.8 (1 C, p-Ph), 128.8, 128.3 (2 C, Ph), 128.1 (1 C, p-Ph), $(C_2 D_2 Cl_4, -30 \ ^\circ C): \ \delta -121.8 \ (\Delta \nu_{1/2} = 45 \ Hz).$

Addition of THF (excess) to a solution of 3e in C_6D_5Br did not result in any changes in the ¹H NMR spectrum. However, addition of acetonitrile (excess) resulted in the formation of a yellow acetonitrile adduct. ¹H NMR (25 °C): δ 7.67 (m, 8, o-C₆H₄F), 6.95 (br, 8, o-C₆H₄F), 2.09 (s, 3, NCMe), 1.61 (s, 30, C₅Me₅), 1.43 (s, 3, C(Ph)=C(Ph)Me); phenyl resonances obscured.

Reaction of $[(C_5H_5)_2 ZrMe(THF)][B(4-C_6H_4F)_4]$ with Alkynes. The reaction of the title complex (15 mg, 0.043 mmol) with Me₃SiC==CMe (3.8 μ L, 0.051 mmol) or PhC==CPh (4.6 mg, 0.051 mmol) in C₆D₅Br (0.6 mL) was monitored by ¹H NMR spectroscopy. The following conversion information was obtained for the reaction with PhC==CPh, which was not accompanied by a solution color change: 2 h, 5%, 4 h, 9%, 20 h, 17%; 44 h, 25%, 144 h, 36%; very little decomposition was observed. The reaction with Me₃SiC==CMe was accompanied by a solution color change to intense yellow and the following conversions to product: 2 h, 12%; 4 h, 17%; 20 h, 21%; 44 h, 15%; 144 h, 10%; resonances due to a large number of side products were observed for the longer reaction times.

Crystal Structure Determination of [rac-C2H4(inde $nyl_2ZrC(SiMe_3) = CMe_2[B(4-C_6H_4F)_4]-CH_2Cl_2$ (2d). A single crystal of 2d (approximate dimensions $0.35 \times 0.40 \times 0.50$ mm) was mounted in a thin-walled glass capillary under N2 and held in place with silicone grease. All diffraction measurements were at low temperature (200 K) on a Nicolet P3m diffractometer fitted with an LT-1 crystal-cooling device, using graphite-monochromated Mo K α X-radiation. Unit cell dimensions were determined from 32 centered reflections in the range $11.0 < 2\theta <$ 30.3°. A total of 9086 diffracted intensities, including check reflections, were measured in a unique quadrant of reciprocal space for $4.0 < \theta < 50.0^{\circ}$ by Wyckoff ω scans. Three check reflections (329, 581, 10,6,2) remeasured after every 50 ordinary data showed no decay and variation of $\pm 3\%$ over the period of data collection; an appropriate correction was therefore applied. Of the 8557 intensity data (other than checks) collected, 7962 unique observations remained after averaging of duplicate and equivalent measurements and deletion of systematic absences; of these, 5392 with $I > 2\sigma(I)$ were retained for use in structure solution and refinement. An absorption correction was applied in the basis of 302 azimuthal scan data; maximum and minimum transmission coefficients were 0.840 and 0.780, respectively. Lorentz and polarization corrections were applied.

The structure was solved by direct and Fourier methods. All non-hydrogen atoms were assigned anisotropic displacement parameters, and all hydrogen atoms, fixed isotropic displacement parameters. All non-hydrogen atoms and the hydrogen atoms H(5A), H(5B), and H(5C) (which were located in difference Fourier syntheses) were refined without positional constraints. All other hydrogen atoms were constrained to idealized geometries $(C-H = 0.96 \text{ Å}; H-C-H = 109.5^{\circ})$. Full-matrix least-squares refinement of this model (559 parameters) converged to final residual indices R = 0.050, $R_w = 0.058$, and S = 1.54. Weights, w, were set equal to $[\sigma_c^2(F_o) + gF_o^2]^{-1}$, where $\sigma_c^2(F_o)$ is the variation in F_{o} due to counting statistics and g = 0.0005 was chosen to minimize the variation in S as a function of $|F_0|$. Final difference electron density maps showed no features outside the range +0.8 to $-0.8 \text{ e} \text{ Å}^{-3}$, the largest of these being close to the chlorine atoms of the dichloromethane of solvation. All calculations were carried out on a Nicolet R3m/V structure determination system using programs of the SHELXTL-PLUS package.²⁵ Complex neutral-atom scattering factors were taken from ref 26.

Acknowledgment. We are grateful to Mr. J. H. G. Frijns (KSLA) for assistance with variable-temperature NMR spectroscopy.

Supplementary Material Available: For 2d, complete lists of bond angles for the cation, anisotropic displacement parameters, and hydrogen atomic parameters (3 pages); a listing of observed and calculated structure factors (29 pages). Ordering information is given on any current masthead page.

 ⁽²⁵⁾ Sheldrick, G. M. SHELXTL-PLUS Rev 2.4. Göttingen, FRG, 1988.
 (26) International Tables for X-ray Crystallography; Kynoch Press: Birmingham, England, 1974; Vol. IV.