solution with $Rh_2(CO)_4Cl_2$ in dichloromethane to give the known⁹ CoRh(μ -dppm)₂(μ -CO)(CO)₂(μ -Cl)]Cl (9) in 43% yield. Further such studies are in progress.

(to D.G.H., A.N.H., and R.J.P.) is gratefully acknowledged.

Acknowledgment. The financial support of the Naturd Sciences and Engineering Research Council of Canada

Supplementary Material Available: Tables of atomic coordinates, isotropic and anisotropic thermal parameters, and bond distances and angles for **1** and ORTEP diagrams of **1 (5** pages); a listing of structure factors for **1** (20 pages). Ordering information is given on any current masthead page.

Notes

Imine-Transfer Reactions from Zirconium to Phosphorus and Boron. Synthesis of the First C-Phosphanyl-, N-Phosphanyi-, or N-Boranylimines

Florence Boutonnet, Nathalie Dufour, Tom Straw, Alain Igau, and Jean-Pierre Majoral

Laboratoire de Chimie de Coordination du CNRS, [†] 205 route de Narbonne,

3 *1077 Toulouse Cedex, France*

Received April 19, 199 1

Summary: **A "one-pot'' reaction involving (i-Pr,N),PCN** (1), the Schwartz reagent Cp₂ZrHCI (2), and halogenated **phosphorus or boron species allows the synthesis of the first C-phosphanyl-, N-phosphanyl-, or N-boranylimines, 4-a.**

Organozirconium reagents have found widespread application in organic synthesis but less frequently in main-group element chemistry.' Our continuing interest in this area is to develop new routes to functionalized organic derivatives possessing one or more main-group elements. We have already provided examples of unusual neutral or cationic metallacycles obtained via hydrozirconation² of analogous phosphorus compounds of alkenes or imines, i.e., phospha-alkenes $R-P=C$ or iminophosphanes R-P=N-.

Here we report the use of the readily available N -zirconium-imino compound **3** for the facile preparation of the first N- and C-diphosphanyl- or C-phosphanyl-N-boranylimines, **4-6** or **7** and **8.** Until now only diphosphorylated species **9,** in which the two phosphorus atoms are tetracoordinated, were known.3

The N-zirconium-imino species **3** was conveniently prepared in near-quantitative yield by reacting bis(diisopropylamino)cyanophosphane $(1)^4$ with Cp₂ZrHCl (2) in THF.5 Evidence for the formation of **3** was mainly given

Meyer, F.; Caminade, A,-M.; Choukroun, R.; Gervais, D. *J. Chem. SOC., Chem. Commun.* **1990,507.**

(3) Levkova, L. N.; Alimov, P. I. *Izu. Akad. Nauk SSSR, Ser. Khim* **1966, 12, 2218.**

(4) Rcquerr, C.; MaziBres, M. **R.;** Majoral, J.-P.; Sanchez, M.; Foucaud, A. *J.* Org. *Chem.* **1989,54, 5535.**

by ¹H NMR (δ CH=N 9.66 ppm (d, ${}^{2}J_{\text{PH}}$ = 60.0 Hz)) and ¹³C NMR spectroscopy ($\delta(\bar{C}=N)$ 184.56 ppm (d, $^1J_{CP}$ = 13.7 Hz)).

We have demonstrated that derivative **3** is a useful starting reagent for the synthesis of a large variety of C-phosphanyl-imines. Thus, treatment of 3 (0.295 g, 0.570 mmol) in THF (8 mL) at -40 °C with Ph_2PCl (0.126 g, 0.570 mmol) resulted in an immediate reaction. After removal **of** the solvent, the resulting powder was extracted with pentane $(2 \times 5 \text{ mL})$ to afford 4 $(70\% \text{ yield})$. The structure of **4 was** deduced from 'H, 13C, and 31P NMR **as** well **as** IR and mass spectrometry and elemental analysis. For example, the imino carbon signal appeared as a doublet of doublets $(^1J_{CP} = 24.7 \text{ Hz}, ^2J_{CP} = 4.0 \text{ Hz})$ centered at 178.21 ppm in the 13C NMR spectrum, while a doublet of doublets at 8.62 ($^{2}J_{\text{HP}} = 56.7 \text{ Hz}$, $^{3}J_{\text{HP}} = 29.9$) **Hz)** ppm was observed for the imino proton in the 'H NMR spectrum. Lastly, the 31P NMR spectrum exhibited two doublets (δ = 56.5 and 60.6 ppm, ² J_{PP} = 26.2 Hz) corroborating the presence of two different phosphane groups.

The iminodiphosphane **5** was similarly prepared from **3** and (diisopropylamino)dichlorophosphane $(i-Pr_2N)PCl_2$.

[†] UP 8241 liée par conventions à l'Université Paul Sabatier et à 1'Institut National Polytechnique.

⁽¹⁾ See for example: (a) Fryzuk, M. D.; Bates, G. S.; Stone, C. *Tet-rahedron Lett.* **1986,27,1537.** (b) Muklenbemd, T.; Benn, R.; Rufinska, A. Organometallics 1986, 5, 1023. (c) Heisteeg, B. J. J.; Schat, G.; Ak-
kermann, O. S.; Bickelhaupt, F. Organometallics 1986, 5, 1749. (d) Fagan,
P. J.; Nugent, W. A. J. Am. Chem. Soc. 1988, 110, 2310. (e) Fryzuk, M.
D.;

^{(5) (}a) Hydrozirconation of p-tolunitrile with $Cp_{2}ZrH_{2}$ has been reported to provide the azomethine insertion product: Bercaw, J. E.; Davies, D. L.; Wolczanski, P. T. *Organometallics* **1986,5, 443.** (b) Hydrozirconation of $R-C=N$ $(R = CH_3, C_6H_5, CH_2C_6H_5)$ with Cp₂ZrHCl led to formation of the corresponding metalla-imines: Frömberg, W.; Erker, G. J. *Organomet. Chem.* **1985,280, 343.**

An analogous reaction with the more sterically crowded bis(diisopropylamino)chlorophosphane $(i-Pr_2N)_2PC1$ required stirring for 36 h to generate the expected compound **6.**

Surprisingly, **6** was also obtained by treatment of 3 with **(trimethylsily1)trifluoromethanesulfonate.** This reaction involves an unusual phosphorus-carbon bond cleavage with subsequent transfer of the $(i-Pr_2N)_2P$ moieties.

The C-phosphanyl-imino unit can also be transferred from zirconium to boron. The addition of bis(diiso**propylamino)chloroborane,** $(i\text{-}\text{Pr}_2\text{N})_2\text{BCl}$ **, or tris(tri**methylsilyl)hydrazinodichloroborane, $Me₃Si₂NN (SiMe₃)BC1₂$ ⁶ in the same way as described for phosphine chlorides, generated the corresponding C-phosphanyl-Nboranylimines **7** and **8** in excellent isolated yield.

To our knowledge such reactions leading to new maingroup element substituted imines have not previously been achieved. The zirconium imine 3 need not to be isolated, and "one-pot" syntheses can be carried out in all cases.

Depending on the experimental conditions, small amounts (as indicated by 31P NMR analysis) of cyanophosphane $(i-Pr_2N)_2PCN$ were formed during the reaction involving 3 and halogenated phosphorus or boron compounds, pointing out the possibility of an equilibriumlargely displaced toward 3-between **3** and the starting reagents $(i-Pr_2N)_2PCN$ and Cp_2ZrHCl .

The fact that ³¹P chemical shifts of the C-phosphanyl part of the molecules **3,4-6,7** and **8** are very close (between 56.2 and 61.2 ppm) might suggest a trans conformation for these derivatives, the hydrozirconation of the cyanophosphane **1** being cis, as expected. Indeed, no evidence has been found **for** the formation of the unsaturated four-membered rings **10** or **11:** NMR studies showed no resolvable coupling between phosphorus and protons of the Cp groups in **3,** and there was no deshielding effect in the ³¹P NMR spectrum due to dative bond P \rightarrow Zr or P \rightarrow $B²$

The phosphanyl-imino transfer also seems to operate in other metalloid systems. For example, addition of Me₃SnCl to 3 afforded the corresponding unstable phosphorus tin imine 12 $(\delta(^{119}Sn) = 115.2$ ppm), which can be trapped with Ph2PC1 to give the imine **4.**

Hydrozirconation of diphenylcyanophosphane **13** led to the very unstable **C-phosphanyl-N-zirconia-imine 14** which can be detected by ³¹P NMR spectroscopy $(\delta^{(31P)} = 0.04$ ppm, $^{2}J_{PH}$ = 48.7 Hz) but cannot be isolated: this compound quickly rearranged to give the diphenylphosphane

Ph₂PH as the major product.
\nPh₂PH₂W + Cp₂ZrHCI
$$
\longrightarrow
$$
 $\begin{bmatrix} Ph_2P & & & & \text{Ph}_2PH & + \dots & & \text{Ph}_2PH & + \dots & \text{Ph}_2PH & + \dots$

These highly functionalized imines are now being evaluated in organic synthesis as well as in coordination chemistry and catalysis.

General Considerations. All manipulations were carried out under a dry and oxygen-free atmosphere of argon by using standard Schlenk techniques. NMR spectra were recorded on a Brucker AC *80* or AC 200 spectrometer and referenced **as** follows: ^{31}P , external 85% H_3PO_4 ; ^{1}H and ^{13}C , external TMS; ^{11}B , external $BF_3\textrm{-}OEt_2$; ¹¹⁹Sn, external Me₄Sn. IR spectra were recorded on a Beckman IR 10 spectrometer. Mass spectra were obtained on a Ribermag R10 10E spectrometer. Microanalyses were conducted at the laboratory. Solvents and reagents were purified **as** follows: THF distilled from Na/benzophenone; pentane distilled from sodium; C_6D_6 distilled over CaH₂ and stored over molecular sieves 3 Å; Ph₂PCl (Aldrich) and Me₃SnCl (Aldrich) used as received. $\text{Cp}_2\text{ZrHCl},^7$ (*i*-Pr₂N)₂PCl,⁸ (*i*-Pr₂N)₂PCN,⁴ Ph₂PCN,⁹ and (*i*- Pr_2N ₂BCl¹⁰ were prepared by literature procedures.

Preparation of $(i\text{-}Pr_2N)_2PC(H)=NZrCp_2Cl$ **(3). A solution** of cyanophosphine $(i-Pr_2N)_2PCN$ (1) $(0.566 \text{ g}, 2.20 \text{ mmol})$ in THF (10 mL) was added dropwise to an heterogeneous mixture of Cp_2ZrHCl (2) (0.567 g, 2.20 mmol) in THF (10 mL) at room temperature. **An** immediate bright yellow-orange color appeared; the mixture became homogenous (10-15 min) when the reaction was complete. Solvent was removed in vacuo to give **3** (1.133 g, 2.20 mmol, quantitative yield) *BS* a yellow-orange powder. NMR 6.5 Hz, CH₃CH), 1.30 (d, ${}^{3}J_{HH}$ = 6.5 Hz, CH₃CH), 3.32 (sept d, data (C₆D₆): ³¹P{¹H} NMR δ 59.1 (s); ¹H NMR δ 1.19 *(d,* $^{3}J_{\text{HH}}$ = ${}^{3}J_{\text{HH}}$ = 6.5 Hz, ${}^{3}J_{\text{HP}}$ = 13.0 Hz, CH₃(CH), 5.87 (s, C₅H₅), 9.66 (d, ² J_{HP} = 60.0 Hz, HC=N); ¹³C{¹H} NMR δ 24.42, 24.72, 25.17, 25.51 $\rm (s, CH₃CH, 49.05$ (d, ²J_{CP} = 9.0 Hz, CH₃CH), 111.27 (s, C₆H₅), 184.56 (d, ¹J_{CP} = 13.7 Hz, HC=N): IR v(C=N) 1654 (w) cm⁻¹. Mass spectrum m/e 515. Anal. Calcd for $C_{23}H_{39}C1N_3PZr$: C, 53.61; H, 7.63. Found: C, 53.49; H, 7.61.

Preparation of $(i\text{-}Pr_2N)_2PC(H)=NPPh_2(4)$ **.** The following experiment is representative. A solution of chlorophosphine Ph2PCl (0.126 g, 0.570 mmol) in 14 mL of THF was added dropwise to a freshly prepared solution of **3** (0.295 g, 0.570 mmol) in 8 mL of THF at -40 °C. The color changed immediately, resulting in a brown solution. At room temperature, solvent **was** removed in vacuo. The product was extracted from the residue with pentane (2 **X** 5 mL), and removal of the solvent gave **4** (0.177 g, 0.400 mmol, 70%) as a white solid. NMR data (C_6D_6) : ³¹P{¹H} 7.08, 7.48, 7.56 (m, aryl H), 8.62 (dd $^{2}J_{\text{HP}} = 56.7 \text{ Hz}, ^{3}J_{\text{HP}} = 29.9$ Hz, HC=N): ¹³C(¹H} NMR δ 24.33, 24.64, 24.85, 25.18 (s, \overline{C} H₃CH), CH₃CH), 130.54-136.68 (m, aryl C), 178.21 (d, ¹J_{CP} = 24.7 Hz, ${}^{2J}_{QCP}$ = 4.0 Hz, HC=N), 182.85 (d, ${}^{2J}_{QCP}$ = 6.0 Hz, ipso C). Mass spectrum: m/e 443. Anal. Calcd for $C_{25}H_{39}N_3P_2$: C, 67.70; H, 8.86. Found: C, 67.59; H, 8.82. NMR δ 56.5 (d, ¹J_{PP} = 26.2 Hz, PN), 60.6 (d, ¹J_{PP} = 26.2 Hz, PhP); NMR δ 1.16 (d, ${}^{3}J_{\text{HH}}$ = 6.5 Hz, CH₃CH), 3.32 (m, CH₃CH), 47.70 (d, $^{2}J_{\text{CP}}$ = 13.2 Hz, CH₃CH), 49.53 (d, $^{2}J_{\text{CP}}$ = 10.1 Hz,

Preparation of $(i\text{-}Pr_2N)_2PC(H)=NP(N\text{-}i\text{-}Pr_2)Cl$ **(5). In** a procedure analogous to that given for **4,3** (0.286 g, 0.550 mmol), prepared in situ in 4 **mL** of THF, was treated with a THF solution (8 mL) of *i*-Pr₂NPCl₂ (0.112 g, 0.550 mmol) to give, after stirring 10 min at -20 °C, 5 (0.171 g, 0.440 mmol, 80%) as a beige oil.
NMR data (C₆D₆): ³¹P{¹H} NMR δ 59.1 (d, ³J_{PP} = 21.8 Hz, PC), 135.7 (d, ${}^{3}J_{\text{PP}} = 21.8$ Hz, PCl); ¹H NMR δ 1.10 (d, ${}^{3}J_{\text{HH}} = 6.3$ Hz, CH_3CH), 1.17 (d, ${}^3J_{HH}$ = 6.3 Hz, CH₃CH), 3.28 (m, CH₃CH), 9.37 (d.d, ² J_{HP} = 56.6 Hz, ₃ J_{HP} = 35.0 Hz, HC=N); ¹³C(¹H) NMR δ 23.84, 24.17, 24.30, 24.49, 24.62, 24.82, 25.98, 26.15 **(s, CH₃CH)**, 48.97 (d, $^{2}J_{\text{CP}}$ = 12.2 Hz, CH₃CH), 50.19 (d, $^{2}J_{\text{CP}}$ = 10.4 Hz, CH_3CH), 186.85 (d, ${}^1J_{CP} = 8.8 \text{ Hz}$, ${}^2J_{CP} = 5.1 \text{ Hz}$, HC=N). Mass spectrum: *m/e* 389. Anal. Calcd for C₁₉H₄₃N₄P₂: C, 58.59: H, 11.13. Found: C, 58.47; H, 11.02.

Preparation of $(i\text{-}Pr_2N)_2PC(H)=NP(N\text{-}i\text{-}Pr_2)_2$ (6). Method A: In a procedure analogous to that given for **4,3** (0.465 g, 0.903 mmol), prepared in situ, was treated with a THF solution (10 mL) of $(i-Pr_2N)_2$ PCl (0.241 g, 0.903 mmol) to give, after stirring 36 h at room temperature, $6(0.331 \text{ g}, 0.677 \text{ mmol}, 75\%)$ as a white solid. Method B: **A** Schlenk flask was charged with 3 (0.721 g, 1.400

Notes

Experimental Section

⁽⁷⁾ Buchwald, S. L.; LaMaire, S. J.; Nielsen, R. B.; Wataon, B. T.; King, S. M. *Tetrahedron Lett.* **1987,67,** 3895.

⁽⁸⁾ King, R. B.; Sundaram, P. M. J. Org. Che*m.* 1**984**, 49, 1784.
(9) Jones, C. E.; Coskran, K. J. *Inorg. Chem.* 1**97**1, *10*, 1971.
(10) Higashi, J.; Eastman, A. D.; Parry, R. W*. Inorg. Chem.* 1**982**, 21,

^{716.}

⁽⁶⁾ Brodie, N.; Majoral, J.-P. Unpublished results.

mmol), CH₂Cl₂ (20 mL), and a stir bar. The solution was cooled to -50 °C, then $Me₃SiOSO₂CF₃$ (0.270 mL, 1.400 mmol) was added. The reaction mixture was stirred for 1 h at -50 °C. Solvent was removed at room temperature in vacuo. The residue was extracted with pentane $(2 \times 5 \text{ mL})$. Removal of the solvent gave 6 (0.463) **g**, 1.190 mmol, 85%). NMR data (C₆D₆): ³¹P{¹H} NMR δ 56.2 *^b***1.08-1.34** (CH3CH), **3.49** (m, CH3CH), **9.14** (dd, *'JHp* = **64.0** Hz, (d, 3Jpp = **25.0** Hz, PC), **92.2** (d, 3Jpp = **25.0** Hz, NP); 'H NMR $^{3}J_{\text{HP}}$ = 30.0 Hz, HC=N); ¹³C(¹H) NMR δ 24.45, 24.55, 24.63, 24.76, **24.87, 24.97, 25.02, 25.31 (s,** CH,CH), **46.37** (d, 'Jcp = **12.0** Hz, CH_3CH), 49.48 (d, ${}^2J_{CP} = 10.0$ Hz, CH_3CH), 178.60 (d, ${}^1J_{CP} = 23.0$ Hz, HC=N). Mass spectrum: m/e **489.** Anal. Calcd for CIHS7N5P2: C, **61.32;** H, **11.73.** Found: C, **61.22;** H, **11.61.**

Preparation of $(i\text{-}Pr_2N)_2PC(H)=NB(N\text{-}i\text{-}Pr_2)_2$ **(7).** In a procedure analogous to that given for **4,3** prepared in situ in a toluene **(40** mL) solution **(1 1.26** g, **4.90** mmok **2 1.26** g, **4.89** mmol), was treated with a toluene (10 mL) solution of $(i\text{-}Pr_2\text{-}N)_2$ BCl (1.21) **g, 4.90** mmol) to give, after stirring **70** h, **7 (1.90** mg, **4.04** mmol, 83%) **as** a red-brown oil. NMR data (C6D6): 31P(1H) NMR 6 **61.2** (s); ¹¹B NMR δ 31.8 (s); ¹H NMR δ 1.04–1.34 (CH₃CH), 3.43 (m, CH₃CH), 8.89 (d, $^2J_{HP}$ = 74.6 Hz, HC=N); ¹³C(¹H) NMR δ 22.86, **23.45,23.61, 23.97, 24.15, 24.55, 24.85, 25.18, 25.52** (9, CHaCH), **46.20, 47.45 (s, CH₃CHNB), 47.72 (d, ²J_{CP} = 11.6 Hz, CH₃CHNP), 49.93** (d, $^{2}J_{CP}$ = 9.6 Hz, CH₃CHNP), 170.58 (d, $^{1}J_{CP}$ = 6.0 Hz,

HC=N); IR v(C=N) **1657** (m) cm-'. Mass spectrum: m/e **469.** Anal. Calcd for C₁₉H₄₃N₄P₂: C, 58.59; H, 11.13. Found: C, 58.47; H, **11.02.**

Preparation of $(i-Pr_2N)_2PC(H)=NBCI[N(SiMe_3)N-$ (SiMe3)zl **(8).** In a procedure analogous to that given for **4,** 3 **(0.487** g, **0.940** mmol), prepared in situ in toluene **(4** mL), was treated with a toluene (8 mL) solution of $(Me_3Si)_2N(Me_3Si)NBCl_2$ **(0.311 g, 0.940** mmol) to give, after stirring **30** min at **-40** "C, 8 $(0.440 \text{ g}, 0.790 \text{ mmol}, 85\%)$ as a beige powder. NMR data (C_6D_6) : 31P{1HJ NMR **d 58.2** (s); ''B NMR (C6D6) 6 **31.4** (5); 'H NMR (C6D6) 8 **0.23 (8,** NSiCH3), **0.32** (9, BNSiCH3), **0.97-1.23** (CH3CH), **3.30** (m, CH3CH), **9.20** (d, *'JH~* = **49.9** Hz, HC=N); 13C(lHJ NMR 10.0 Hz, $CH_3(CH)$, 184.34 (d, ${}^1J_{CP}$ = 8.8 Hz, HC=N). Mass spectrum: *m/e* **469.** Anal. Calcd for C19H,3N,Pz: C, **58.59;** H, **11.13.** Found: C, **58.47;** H, **11.02.** (C6De) 6 **22.61,23.06,23.51, 24.03, 24.32, 24.61, 24.92, 25.14,25.47** $\overline{\textbf{C}}$ (s, $\overline{\textbf{C}}$ H₃CH), 50.07 (d, ²J_{CP} = 12.4 Hz, $\overline{\textbf{C}}$ H₃CH), 50.12 (d, ²J_{CP} =

Registry **No. 1,97135-49-4; 2,37342-97-5; 3, 136044-16-1; 4,** Ph₂PCl, 1079-66-9; $(i-Pr_2N)PCl_2$, 921-26-6; $(i-Pr_2N)_2PCl$, 56183-**63-2;** Me3SiOSOZCF3, **27607-77-8;** (i-Pr2N)zBCI, **28049-80-1;** (Me3Si),NN(SiMe3)BCl2, **136044-24-1;** Me3SnC1, **1066-45-1. 136044-18-3; 5, 136044-19-4; 6, 136044-20-7; 7, 136044-21-8; 8, 136044-22-9; 12, 136044-23-0; 13, 4791-48-4; 14, 136044-17-2;**

Synthesis, NMR Studies, and Reactions with Tetracyanoethylene of (q'-Allyl) (aryl)platinum(I I) Complexes

Hideo Kurosawa," Kenjin Shiba, Kenzo Ohkita, and Isao Ikeda

Department of Applied Chemistry, Faculty of Engineering, Osaka Universiw, Suita, Osaka 565, Japan Received April 22, 199 1

Summary: Some $(n^1$ -allylXaryl)platinum(II) complexes of the type $Pt(\eta^1 - CH_2CR = CH_2)(Ar)(diphos)$ (R = H, Me; Ar $= C_6F_5$, $C_6H_3Cl_2$ -2,5; diphos $= Ph_2PCH_2CH_2PPh_2$, $(p$ **tol),PCH,CH,P(p** -tal),) **have been prepared from the** corresponding η^3 -allyl complexes Pt(η^3 -CH₂CRCH₂)(Ar)-**(PPh,) and diphosphines. 'H NMR spectra of the 2,5-dichlorophenyl analogues were interpreted by occurrence of a restricted rotation of the aryl group about the Pt-C-** (Ar) bond. NOE experiments on the CH₂CMe=CH₂ de**rivatives suggested the occurrence of one dominant rotamer with regard to rotation about the** $C(\alpha)$ **-C(** β **) bond** where the $CH₂=C(\beta)$ $-C(\alpha)$ plane is nearly perpendicular to the Pt- $-C(\alpha)$ - $C(\beta)$ plane. Reactions of tetracyanoethylene with the η^1 -CH₂CH= $-$ CH₂ analogues afforded **formal [2** + **31 cycloadducts, whereas the reactions with** the η ¹-CH₂CMe⁻⁻⁻CH₂ analogues led to formation of linear **adducts containing a PtC(CN),C(CN),CH,CMe=CH, linkage.**

The η^1 -allyl ligand bound to transition metals is known to be susceptible to the attack of electrophilic olefins, primarily resulting in the formation of $[2 + 3]$ cycloadducts **1.'** Of the group 10 metal allyl analogues, platinum derivatives were shown to adopt the η^1 -allyl form with the

greatest ease, 2 and thus their reactions with the olefins were studied in more detail than for the palladium and nickel derivatives.³⁻⁵ One class of the $(\eta^1$ -allyl)platinum(II) complexes studied has the general formula Pt(ally1)- $(CI)(PR_3)_2$, in which the reactive η^1 -allyl form $Pt(\eta^1$ -al $lyl)$ (Cl) (PR₃)₂ exists only as an equilibrium mixture with the cationic η^3 -allyl form $[Pt(\eta^3$ -allyl $)(PR_3)_2]^+Cl^-$, even

^{(1) (}a) Rosenblum, M. Acc. Chem. Res. 1974, 7, 122. (b) Wojcicki, A.
Ann. N.Y. Acad. Sci. 1974, 239, 100. (c) Dodd, D.; Johnson, M. D.;
Steeples, I. P.; McKenzie, E. D. J. Am. Chem. Soc. 1976, 98, 6399. (d)
Wright, M. E.; *metallics* **1984, 3, 1630.**

^{(2) (}a) Numata, S.; Okawara, R.; Kurosawa, H. *Inorg. Chem.* 1977, 16, 1737. (b) Henc, B.; Jolly, P. W.; Salz, R.; Stobbe, S.; Wilke, G.; Benn, R.; Mynott, R.; Seevogel, K.; Goddard, R.; Kruger, C. *J. Organomet. Chem.* 19 *243.*

^{(3) (}a) Calligaris, M.; Carturan, G.; Nardin, G.; Scrivanti, A.; Wojcicki, A. Organometallics 1983, 2, 865. (b) Bertani, R.; Carturan, G.; Scrivanti, A.; Wojcicki, A. Organometallics 1983, 2, 865. (b) Bertani, R.; Cartura

⁽⁵⁾ Benn, R.; Gabor, G.; Jolly, P. W.; Mynott, R.; Raspel, B. *J. Organomet. Chem.* **1985,296, 443.**