ORGANOMETALL

Volume 10, Number 12, December 1991

0 Copyright 199 1 American Chemical Society

$$

Evidence for the Formation of a Tantalum(1V) Arene Species from Arene-Alkyl Complexes of Tantalum(I I I)

David J. **Arney, Michael A. Bruck, and David E. Wigley***

Carl **S.** *Marvel Laboratories of Chemistry, Department of Chemistry, University of Arizona, Tucson, Arizona 8572 1*

Received July 8, 1991

Summary: Alkylation of tantalum(III) arene complexes **affords stable dialkyl and monoalkyl halide species** *(7'-* C_6 Me₆)Ta(DIPP)R₂ (DIPP = 2,6-diisopropylphenoxide) and **(7'-C,Me,)Ta(DIPP)RX. The alkyl hydride complexes** $(\eta^6$ -C₆Me₆)Ta(DIPP)R(H) are also prepared from $(\eta^6$ -C_aMe_s)Ta(DIPP)RX and LiBEt_aH. The arene ring in $(n^6$ -**C,Me,)Ta(DIPP)Et, exhibits a structure consistent with a diene-diyl distortion. The first evidence for the formation of a d' arene species is presented in cyclic voltammetry experiments on these compounds.**

Intramolecular metalation **of** a C-H bond' in pentamethylcyclopentadienyl ligands $(\eta^5$ -C₅Me₅) can provide isolable complexes containing the "tucked-in" n^5 , n^1 - $C_5Me_4CH_2$ moiety. Various mechanistic pathways may lead to these compounds, including C-H addition to an alkyl,2 hydride? **or** benzyne4 ligand, C-H addition across a metal-carbon double bond,5 **or** C-H oxidative addition to a d² metal.⁶ The hexamethylbenzene ligand $(\eta^6$ -C₆Me₆)

(5) (a) McDade, C.; Green, J. C.; Bercaw, J. E. *Organometallics* **1982, 1, 1629. (b)** Bulls, A. R.; Schaefer, W. P.; Serfas, M.; Bercaw, J. E. *Organometallics* **1987, 6, 1219.**

has also been observed to tuck in,' but only by oxidative addition to a d^2 metal. This process renders labile the η^6

⁽¹⁾ For C-H activation reviews, see: (a) Green, M. L. H.; O'Hare, D. *Pure Appl. Chem.* **1985,57,1897. (b)** Rothwell, I. P. *Polyhedron* **1985,** *4,* **177.** *(c)* Shilov, A. E. *Actiuation of Saturated Hydrocarbons by Transition Metal Complexes;* D. Reidel: Dordrecht, Holland, **1984.**

⁽²⁾ (a) Bruno, J. W.; Smith, G. M.; Marks, T. J.; Fair, C. K.; Schultz, A. J.; Williams, J. M. J. *Am. Chem.* **SOC. 1986, 108, 40. (b)** Watson, P. L.; Parshall, G. W. *Acc. Chem.* Res. **1985, 18, 51.**

⁽³⁾ Cloke, F. G. N.; Green, J. C.; Green, M. L. H.; Morley, C. P. *J. Chem.* Soc., *Chem. Commun.* **1985,945.**

⁽⁴⁾ Schock, L. E.; Brock, C. P.; Marks, T. J. *Organometallics* **1987,6, 232.**

⁽⁶⁾ (a) Bercaw, J. E. *J. Am. Chem.* **SOC. 1974,96,5087. (b)** McAlister, D. R.; **Erwin,** D. K.; Bercaw, J. E. *J. Am. Chem.* **SOC. 1978,100,5966,** (c) Parkin, G.; Bunel, E.; Burger, B. J.; Trimmer, M. S.; Van Asselt, A.; Bercaw, J. E. J. Mol. Catal. 1987, 41, 21. (d) Some tuck-in processes are proposed as oxidative additions to a d⁴ metal; see: Parkin, G.; Bercaw, Droposed as oxidative additions to a d⁴ metal; see: Parkin, G.; Bercaw, J. E. *Polyhedron* 1988, 7, 2053.

Figure 1. Cyclic voltammograms of (a) $(\eta^6$ -C₆Me₆)Ta(DIPP)Ph₂ in CH_2Cl_2 and (b) $(\eta^6 \text{-} C_6\text{Me}_6)\text{Ta}(\text{DIPP})\text{Me}_2$ in THF. Both solutions were 0.1 M in "Bu₄NPF₆, and voltammograms were taken **at a Pt-disk electrode (vs Ag/AgCl) at a scan rate of 150 mV/s.**

portion of a nascent η^6, η^1 -C₆Me₅CH₂ ligand and results in the isolation of a $d^0 \eta^1$ -C₆Me₅CH₂ complex.^{7,8} Trapping a neutral⁹ η^6, η^1 -C₆Me₅CH₂ complex will most likely require a $d^{n>0}$ metal, a possibility which prompted us to prepare η^6 -C₆Me₆ complexes of Ta(III) containing alkyl, phenyl, and hydride ligands. We report here the preparation and properties of these compounds, including their one-electron oxidations to provide the first evidence for a d' arene species.

 $(\eta^6$ -C₆Me₆)Ta(DIPP)Cl₂⁸ (1; DIPP = 2,6-diisopropylphenoxide) reacts rapidly with 2 equiv of $CH₃MgBr$ (toluene, -60 °C) to provide, after appropriate workup, blue-violet crystals of $(\eta^6$ -C₆Me₆)Ta(DIPP)Me₂ (2) in ca. 75% yield (Scheme I).¹⁰ The analogous reactions using 2 equiv of CH_3CH_2MgBr or PhLi afford blue-violet (η^6) $(DIPP)Ph₂$ (4) in high yield. In contrast to the precursor dichloride 1 and the related compound $(\eta^6$ -C₆Me₆)Ta- $(DIPP)_2Cl¹¹$ complexes 2-4 are quite stable thermally (qualitatively, $2 \approx 4 > 3$). Thus, while $(\eta^6$ -C₆Me₆)Ta- $(DIPP)_nCl_{3-n}$ $(n = 1, 2)$ are completely decomposed in <1 min in refluxing toluene- d_8 ,⁸ (η ⁶-C₆Me₆)Ta(DIPP)Me₂ (2) and $(\eta^6$ -C₆Me₆)Ta(DIPP)Ph₂ (4) are only ca. 40% decomposed after 5 days under these conditions. The only identifiable thermolysis product is C_6Me_6 , while the metal-containing species reduces to an intractable, insoluble material. Even the β -H-containing complex $(\eta^6$ - $\mathrm{C}_6\mathrm{Me}_6\mathrm{)}\mathrm{Ta}(\mathrm{DIPP})\mathrm{Et}_2$ (3) decomposes more slowly than the chloride complexes.12 C_6Me_6)Ta(DIPP)Et₂ (3) and purple $(\eta^6-C_6Me_6)$ Ta-

The thermal robustness of **2-4** has permitted their full characterization. Thus, molecular ion peaks were obtained

(10) Analytical and spectroscopic data for **compounds 2-8 are available as supplementary material.**

(11) Bruck, M. A.; Copenhaver, A. S.; Wigley, D. E. *J. Am. Chem. Soc.* **1987, 209,6525.**

(12) No elimination products (e.g. C_2H_6 or C_2H_4) were observed spectroscopically in the thermolysis of **3**. The photolysis of **3** and **4 achieved the same decomposition results over a period of 2-3 h.**

Figure 2. ORTEP drawing of $(\eta^6$ -C₆Me₆)Ta(DIPP)Et₂ (3), with atoms **shown as 50% probability ellipsoids.**

for $(\eta^6$ -C₆Me₆)Ta(DIPP)Me₂ $(m/z = 550)$ and $(\eta^6$ - C_6Me_6)Ta(DIPP)Et₂ ($m/z = 578$) in low-resolution CI mass spectrometry studies. Cyclic voltammetry experiments on $(\eta^6$ -C₆Me₆)Ta(DIPP)Ph₂ (4; CH₂Cl₂, 0.1 M in ${}^{n}Bu_4NPF_6$) reveals two one-electron-oxidation processes (Figure 1). A quasi-reversible oxidation (the Ta(III) \rightleftharpoons Ta(IV) couple) quasi-reversible oxidation (the Ta(III) \rightleftharpoons Ta(IV) couple)
occurs at $E_{1/2} = -0.22$ V vs Ag/AgCl ($E_{pa} - E_{pc} = 120$ mV),
while a second, irreversible oxidation (Ta(IV) \rightarrow Ta(V))
comes at $E_{pa} = +0.53$ V vs Ag/AgCl. A for the -0.22 V oxidation, and i_{pa}/i_{pc} becomes 1.0 at scan rates **>300** mV/s, so this process is best described as quasi-reversible on the CV time scale. Bulk electrolysis of a solution of 4 reveals that 1.0 ± 0.1 electron is transferred in the -0.22 V oxidation, although the resulting solution is devoid of electrochemically active species. Dilute samples of **4** may be chemically oxidized in toluene $(Cp_2Fe][BPh_4]$, -78 °C) to afford highly reactive solutions which exhibit an ESR signal $(X$ -band, $\langle g \rangle = 1.933$, peakto-peak separation 145 G). However, 181 Ta hyperfine is not observed nor necessarily expected in these spectra (at room temperature or at -196 0C).8J5 Compounds **2** and 3 **also** exhibit two electrochemical oxidations in THF13 **(2** and 3 are unstable in CH_2Cl_2 and $N=CMe$, but both are irreversible (Figure 1). Consistent with the ease of oxidation of $(\eta^6$ -C₆Me₆)Ta(DIPP)Me₂ (2) is the very low energy ionization band (at 5.91 eV) observed in its He I photoelectron spectrum.¹⁴ Although $(\eta^6$ -C₆Me₆)Ta- $(DIPP)_2Cl$ can be reduced by one electron,¹⁵ 2-4 are not observed to undergo an electrochemical reduction to ca. -2 V vs Ag/AgCl in THF. All of these data support the metal center in **2-4** being more "electron rich" than in their chloride **precursor** and suggest that their improved thermal stability may arise through enhanced back-bonding to the arene (vide infra).

⁽⁷⁾ Ballard, K. R.; Gardiner, I. M.; **Wigley, D.** E. *J.* **Am. Chem. SOC. 1989,111, 2159.**

⁽⁸⁾ Arney, D. J.; Wexler, P. A.; Wigley, D. E. **Organometallics 1990,** *9,* **1282.**

^{(9) (}a) Apparently, when δ symmetry back-bonding between a metal
orbital and arene LUMO levels is lost, i.e. upon oxidizing the metal to
a neutral d⁰ complex, simple L \rightarrow M donation is not sufficient to maintain
ar case when the metal center is cationic, as $[(\eta^6 \text{-} C_6 \text{Me}_6) \text{Ti} \tilde{C} I_3]^+$ is a stable **species. See: Solari, E.; Floriani, C.; Chiesi-Villa, A.; Guastini, C.** *J.* **Chem. SOC.,** *Chem. Commun.* **1989,1747. (b) See also: Bochmann, M.; Karger,** *G.;* **Jaggar, A. J.** *J.* **Chem.** *SOC.,* **Chem. Commun. 1990, 1038.**

⁽¹³⁾ Redox potentials (V vs Ag/AgCl) in THF: $(\eta^6 \text{-} C_6\text{Me}_6) \text{Ta}$
(DIPP)Me₂ (2), $E^1_{\text{pa}} = +0.07$, $E^2_{\text{pa}} = +0.50$; $(\eta^6 \text{-} C_6\text{Me}_6) \text{Ta}(\text{DIPP}) \text{Et}_2$ (3),
 $E^1_{\text{pa}} = +0.21$, $E^2_{\text{pa}} = +0.70$.

⁽¹⁴⁾ Jatcko, M.; Lichtenberger, D. L. Unpublished results.

⁽¹⁵⁾ **Wexler, P. A.; Wigley, D. E.; Koerner, J. B.; Albright, T. A. Organometallics 1991,** *10,* **2319.**

The molecular structure of $(\eta^6$ -C₆Me₆)Ta(DIPP)Et₂^{16,17} (3; Figure 2) reveals an interesting comparison to the parent chloride. Both structures feature a coordinated C_6Me_6 ligand which shows (i) substantial folding¹⁸ (the dihedral angle between the $C(1)-C(2)-C(3)-C(4)$ and C- $(1)-C(2')-C(3')-C(4)$ planes in 3 is 27.3 $(0.2)^\circ$, which cominterruption of aromaticity within the C_6Me_6 ring (viz. a 1,4-diene type π localization), and (iii) the close approach of C(l) and C(4) to the metal (2.302 (5) and 2.187 *(5)* **A,** respectively, compared to an average 2.481 (4) **A** for the other arene carbons). These features may be attributed to a back-bonding interaction between filled metal δ functions and the arene LUMO.^{8,15} In addition, the metal-carbon distances $(C(1)$ vs $C(4)$) may reflect a structural trans effect since $C(1)$ is "trans" to the strong π -donor alkoxide ligand. The rotational conformation of the arene ring in 3 is such that the ethyl $Ta-C_{\alpha}$ and alkoxide Ta-O- C_{ipso} linkages perfectly eclipse the arene carbon atoms, rather than stagger them as in $(\eta^6$ - C_6Me_6)Ta(DIPP)Cl₂ (1).⁸ Finally, the plane of the DIPP ligand is oriented perpendicular to the arene, **90"** from the DIPP plane in 1. pares with 26.8 $(0.3)^\circ$ for $(\eta^6$ -C₆Me₆)Ta(DIPP)Cl₂⁸), (ii) an

Because α - or β -H elimination/abstraction reactions did not lead to tuck-in complexes in the dialkyls,^{5a} alkyl hydrides were prepared. $(\eta^6$ -C₆Me₆)Ta(DIPP)Cl₂ reacts with 1 equiv of CH₃CH₂MgBr (toluene, -60 °C) to provide the "double exchange" product $(\eta^6$ -C₆Me₆)Ta(DIPP)EtBr (5;

(17) Selected bond lengths (A) and angles (deg) for $(\eta^6$ -C₆Me₆)Ta-(DIPP)Et₂ (3) (Bz* = C₆Me₆ centroid): Ta-C(1) = 2.302 (5), Ta-C(2) = 2.513 (3), Ta-C(3) = 2.448 (4), Ta-C(4) = 2.187 (5), Ta-C(10) = 2.207 (4), (1), C(10)-Ta-C(10') = 103.1 (1), O(20)-Ta-C(10) = 88.0 (1), Ta-O-
(20)-C(21) = 177.4 (3), Ta-C(10)-C(11) = 113.1 (3), C(1)-Ta-O(20) = 170.9 (2).

(18) A summary of structurally characterized "bent arenes" appears in ref 8.

 $m/z = 628$ (⁷⁹Br), 630 (⁸¹Br)) in >95% yield (by ¹H NMR). This reaction is no doubt driven by the lattice energy of MgCl₂, as the expected product $(\eta^6$ -C₆Me₆)Ta(DIPP)EtCl is present in $\langle 5\% \text{ yield. } (\eta^6 \text{-} C_6 \text{Me}_6) \text{Ta}(\text{DIPP}) \text{EtBr}$ (5) reacts with LiBEt₃H (Et₂O, -65 °C) to provide (η^6 - C_6Me_6)Ta(DIPP)Et(H) (6) as an extremely soluble magenta solid in high yield (Scheme I). Similarly, $(\eta^6$ -**C6Me6)Ta(DIPP)(CH2SiMe3)C1 (7;** prepared from 1 and 1 equiv of $LiCH₂SiMe₃$) reacts smoothly with $LiBEt₃H$ under identical conditions to afford $(\eta^6$ -C₆Me₆)Ta-(DIPP)(CH2SiMe3)(H) (8) **as** a purple solid. Both **6** and 8 exhibit a TaH hydride resonance at ca. δ 5.87 (C₆D₆) and a ν (Ta-H) stretch between 1760 and 1780 cm⁻¹. While 8 is stable for months at room temperature in Et₂O, 6 decomposes slowly (to C_6Me_6 and unidentified products) over a period of hours.

The improved thermal stability of these **alkyl** complexes vs that of chloride complexes will allow a thorough PES characterization of their electronic structures, which has thus far not been possible for tantalum(II1) arenes. Perhaps most significant is the electrochemical evidence for the formation and limited stability of a d' arene complex, an observation which supports their participation in the deoxygenative coupling of an acyl and a cyclopentadienyl ligand.¹⁹ The isolation of such a complex with an appropriate counterion is an area of **our** continued research.

Acknowledgment. We gratefully acknowledge the support of the National Science Foundation (Grant No. CHE-8919367).

Registry NO. 1,126255-41-2; **2,** 137007-18-2; 3, 137007-19-3; 4,137007-20-6; **5,** 137007-21-7; 6,137007-22-8; 7,137007-23-9; **8,** 137007-24-0; PhLi, 591-51-5.

Supplementary Material Available: Analytical and spectroscopic data for compounds **2-8** and complete crystallographic details, including tables of atomic positional and thermal parameters, bond distances and angles, least-squares planes, and dihedral angles and ORTEP figures, for $(\eta^6$ -C₆Me₆)Ta(DIPP)Et₂ (18 pages); tables of observed and calculated structure factor amplitudes (14 pages). Ordering information is given on any current masthead page.

Synthetic Routes to the First P-Metalated Phosphiranes: Synthesis and Structure of (q5-Cyclopentadienyl)dicarbonyl[2,2,3-tris(trimethylsilyl)- $1\lambda^3$ -phosphacyclopropyl]iron

Heike Brombach, Edgar Niecke,* and Martin Nieger

Anorganisch-Chemisches Instifut der Universitat Bonn, Gerhard Domagk Strasse 1, 0-5300 Bonn 1, FRG Received August 20, 799 **⁷**

Summary: Metallophosphiranes 2a-c have been obtained by heterogeneous metalation of CIPCH(SiMe₃)C- $(SiMe₃)$ ₂ (1) or by reaction of the corresponding $P Me₅C₅$ -substituted phosphirane 4 with $(CO)₃Mo(MeCN)₃$ via a C_5Me_5 shift from phosphorus to the transition metal. One of the final products 2a has been characterized by X-ray structure analysis.

The coordination chemistry of phosphorus-containing small ring systems is well established, and a vast number of such species, including saturated **as** well **as** unsaturated three-membered P/C -ring systems, are known.¹ Only recently this chemistry has been further expanded by in-

⁽¹⁶⁾ Crystal data for $C_{28}H_{45}O$ Ta (3): orthorhombic, *Pnma* (No. 62) (crystallographic mirror plane), $a = 18.717$ (4) Å, $b = 12.487$ (4) Å, $c = 11.431$ (3) Å, $V = 2671.8$ (11) Å³, $Z = 4$, $D(\text{calc}) = 1.44$ g cm⁻³, $\$ atoms were located (rotating anode source, 45 kV, 100 **mA)** and refined with $B_{180} = 5.0$ Å²; Lorentz and polarization corrections and an empirical absorption correction were applied to the data. Relative transmission coefficients ranged from 0.585 to 0.999 (average 0.789). Final *R* = 0.020, $R_w = 0.027$. The highest peak in the final difference Fourier was 0.42 e \AA^{-3} .

⁽¹⁹⁾ A transient $Ta(IV)$ arene complex, (arene) $Ta(O)Cl_2$, is a possible intermediate in this reaction. See: Meyer, T. Y.; Messerle, L. *J. Am.* Chem. *SOC.* 1990,112, 4564.

⁽¹⁾ Mathey, F. Chem. *Reu.* 1990,90,997 and references cited therein.