

Volume 10, Number 3, March 1991

0 Copydght 7997 American Chemical Society

Communications

Reactivity of Permethylscandocene Derivatives with Acetylene. Structure of Acetylenediylbis(permethylscandocene), $(\eta^5\text{-C}_5\text{Me}_5)_2$ Sc-C \equiv C-Sc $(\eta^5\text{-C}_5\text{Me}_5)_2$ ^t

Martin **St.** Clair,' William P. Schaefer, and John E. Bercaw" *Arnold and Mabel Beckman Laboratories of Chemical Synthesis, California Institute of Technology,

Pasadena, California 91125

CP'2SC-R Scheme I

Sheep; R = H, alkyl, aryl, alkenyl, alkynyl,

FigMe₅; R = H, alkyl, aryl, Pasadena, California 9 1 125*

Received June 27, 1990

Summary: Excess acetylene reacts with Cp*₂Sc-R $(Cp^* = n^5-C_5Me_5$; R = H, alkyl, aryl, alkenyl, alkynyl, amide) below -78° C to yield R- $-H$ and $Cp^*{}_{2}Sc - C =$ CH; the latter then reacts with excess C_2H_2 to form polyacetylene. Cp⁺₂Sc-C=CH cleanly decomposes to $Cp^*{}_{2}Sc - C = C - SCp^*{}_{2}$, most likely via σ bond metathesis involving the Sc-acetylide and terminal C-H bonds for two molecules of Cp^* ₂Sc-C=CH. The structure of this unusual acetylenediyl-bridged dimer has been determined by X-ray diffraction methods. It crystallizes with a half-molecule of toluene per scandium dimer in the tetragonal system, space group **P42,c** (No. **114),** with a = **15.057 (3) A, c** = **18.617 (6) A,** *V* = **4220.7 (18) A3,** and *z* = **4.**

Permethylscandocene hydrido and alkyl derivatives, $Cp_{2}^{\ast}Sc-R$ ($Cp^{\ast} = \eta^{5} \cdot C_{5}Me_{5}$; R = H, CH_{3} , $CH_{2}CH_{3}$, $CH₂CH₂CH₃$, are effective catalysts for the polymerization of ethylene, and we have recently investigated the chainpropagating and -transfer steps for this system.2 With other olefins (e.g. $CH_2=CHR'$) σ bond metathesis to generate relatively unreactive scandocene alkenyls prevails (eq 1). Terminal alkynes react similarly $(eq\ 2)³$ More- Cp^* ₂Sc-R + CH₂=CHR' \rightarrow

 $Cp*₂Sc—CH=CHR' + R-H (1)$ (2) $Cp*_{2}Sc-R + HC=CR' \rightarrow Cp*_{2}Sc-C=CR' + R-H$

over, with excess terminal acetylene catalytic dimerization to the gem enyne is observed, and the mechanism shown in Scheme I has been proposed.³ Simple (stoichiometric) insertion of internal alkynes occurs for Cp_{2} Sc-R (R = $H, CH₃$) to yield alkenyl derivatives that do not undergo further insertion reactions even with excess internal alkyne $(eq \ 3).²$ $\text{Cp*}_2\text{Sc}-\text{R} + \text{R'C} = \text{CR}'' \rightarrow \text{Cp*}_2\text{Sc}-\text{CR'} = \text{CRR}''$ (3)

$$
Cp*_{2}Sc-R + R'C=CR'' \rightarrow Cp*_{2}Sc-CR'=CRR''
$$
 (3)

Since permethylscandocene alkyls readily polymerize ethylene, but *not* higher olefin^,^ it occurred to **us** that the parent acetylene, $HC=CH$, would be the alkyne most likely to undergo oligomerization or polymerization. We report herein our studies **of** the reactivity of acetylene with

^{&#}x27;Contribution No. 8148. (1) Current address: 120 Engineering Research Facility, University of Iowa, Iowa City, IA 52242. (2) Burger, B. J.; Thompson, M. E.; Cotter, W. **D.; Bercaw, J. E.** *J. Am.*

Chem. **SOC. 1990,** *112,* **1566-1577.**

⁽³⁾ Thompson, M. E.; Baxter, S. M.; Bulla, A. *H.;* **Burger, B. J.; Nolan, M. C.; Santarsiero, B. D.; Schaefer,** W. **P.; Bercaw, J. E.** *J. Am. Chem. SOC.* **1987,4109,** *203.*

⁽⁴⁾ Piers, W. **E.; Shapiro, P. J.; Bunel, E. E.; Bercaw, J. E.** *Synlett* **1990, 74-84.**

permethylscandocene derivatives, together with the structure of a novel acetylenediyl-bridged dimer, *(q5-* C_5Me_5)₂Sc—C=C—Sc(η^5 -C₅Me₅)₂.

Addition of excess acetylene⁵ to a frozen benzene solution of $\text{Cp*}_2\text{ScCH}_3$ yields on thawing a black precipitate, CH4 **(0.95** equiv/Sc, Toepler measurement), and a single organometallic compound identified as $Cp^*{}_2Sc-C=\tilde{C}H$ (vide infra). Vinylic ¹H NMR signals $(\delta 5-6)$ suggest the presence of soluble acetylene oligomers that are formed in addition to the polyacetylene precipitate. Monitoring the reaction in toluene- d_8 at low temperature by ¹H NMR spectroscopy revealed that σ bond metathesis between $\rm Cr^{*}\,_{2}Sc-CH_{3}$ and H-C=CH is complete within minutes below -80 "C (eq **4).** No further reaction occurs until ca. CH₄ (0.95 equiv/Sc, Toepler measurement), and a organometallic compound identified as $Cp*_{2}Sc$ —(vide infra). Vinylic ¹H NMR signals (δ 5-6) sugg presence of soluble acetylene oligomers that are in addition to the

$$
Cp*_{2}Sc-CH_{3} + H-C=CH \xrightarrow{\leq -80 °C}
$$

\n
$$
Cp*_{2}Sc-C=CH + CH_{4} (4)
$$

10 °C, at which point free C_2H_2 is consumed and vinyl signals appear. The mechanism shown in Scheme I1 accommodates these features. As in the dimerization of monosubstituted alkynes, termination occurs by σ bond metathesis, but in the case of $HC=CH$ it competes with additional insertions into the Sc-alkenyl bonds of the growing oligoacetylene chains. Observation of Cp*2Sc-C=CH as the principal organoscandium compound during and after consumption of acetylene monomer suggests that the initiation (insertion of $HC=CH$ into the $Sc-C=CH$ bond) is slow relative to both propagation (subsequent insertions of HC=CH into the scandium-carbon bonds of **Cp*2Sc-CH=CH(CH==CH),C=CH)** and termination $(\sigma$ bond metathesis).

The poly- and oligoacetylenes formed in these reactions have not been fully characterized. No conditions could be found that resulted in formation of a film. The basic structure is assumed to be that shown in Scheme 11. **A** cis geometry for the carbon-carbon double bonds seems most likely on the basis of the exclusive cis insertion observed for insertions of alkynes into $Sc-C$ bonds,² and an s-trans arrangement for the C-C single bonds appears necessary to avoid formation of rings that close on themselves. Other conjugated structures may arise from insertions of $C=$ or σ bond metathesis of H-C of the product oligomers $(H-C=CCH=CH)_{n}CH=CH_{2}$) with the propagating scandium-alkenyl intermediates, if these compete effectively with the corresponding processes for the smaller acetylene monomer.

 $Cp*_{2}Sc-C=CH$ has been characterized by ¹H and ¹³C NMR and IR data but could not be isolated (vide infra).⁶ It may also be generated by reaction of a variety of permethylscandocene derivatives with C₂H₂ (eq 5). Attempts

$$
Cp*_{2}Sc-Y + H-C=CH \rightarrow Cp*_{2}Sc-C=CH + H-Y
$$
\n(5)

$$
Y = N(CH_3)_2, C_6H_5, C(CH_3) = C(CH_3)_2, CH_2Si(CH_3)_3, C = CCH_3
$$

to isolate $Cp^*{}_{2}Sc-C=CH$, for example by crystallization from concentrated solutions, invariably gave another compound. *An* X-ray structure determination revealed the identity of this dimer: $Cp*_{2}Sc-C=CC-ScCp*_{2}$. Presumably, concentration of solutions of $Cp*_{2}Sc-C=CH$ accelerates its binuclear decomposition to $\bar{C}p*_2Sc-C=C-$ ScCp^{*}₂ via σ bond metathesis involving the terminal C-H and Sc-C bonds (eq 6). An alternative preparation in-
 $2Cp*_{2}Sc-C\equiv C-H \rightarrow$

$$
Cp*_{2}Sc-C=C-H \rightarrow
$$

\n
$$
Cp*_{2}Sc-C=C-C-Cp*_{2} + H-C=C-H
$$
 (6)

⁽⁵⁾ Caution! Acetylene, in its free state under pressure, may decompose violently. The higher the pressure, the smaller the initial force required to cause an explosion. Acetylene should therefore neuer be used as the free gas outside the cylinder at pressures in excess of 103 kPa (15
psig). See: Chien, J. C. W. *Polyacetylene Chemistry, Physics, and*
Material Science; Academic Press: Orlando, FL, 1984.

⁽⁶⁾ $\text{Cp*}_2\text{Sc}-\text{C}$ =C-H could not be isolated but was prepared and characterized in situ by condensing 34.3 Torr × 33.5 mL of ¹³C₂H₂ (25 °C) (0.06 mmol) into a frozen benzene- d_6 solution of 20 mg of Cp*₂Sc **(0.06** mmol) **in an NMR tube, which was then sealed with a torch. After thawing and thorough mixing, NMR spectra were recorded. 'H NMR** Hz). ¹³C|¹H} NMR: $[C_6(\text{CH}_3)_5]$ δ 121.2; $[C_6(\text{CH}_3)_5]$ δ 12.4; $\text{Sc}^{13}\text{C} \equiv \text{SO}^2-H$
 δ 99.0 (U_{C-C} = 99 Hz). IR (benzene-d₆, NaCl windows): 3265 (m), 2907
(s), 2861 (s), 2267 (m), 1928 (w), 1489 (w) $[{\rm C}_5({\rm CH}_3)_5]$ δ 1.93 s; ${\rm Sc}^{13}{\rm C}$ = $^{13}{\rm C}$ H δ 2.87 dd $({}^{1}J_{\rm C-H} - 215$ ${\rm H}_{\rm Z_2}$ ${}^{2}J_{\rm C-H} = 32$

Figure 1. ORTEP drawing of $Cp*_{2}Sc-C=CC-ScCp*_{2}$ with 50% probability ellipsoids. Hydrogen atoms have been omitted.

volves reaction of $\text{Cp*}_2\text{ScCH}_3$ with $\frac{1}{2}$ equiv of acetylene
 $2\text{Cp*}_2\text{ScCH}_3 + \text{H}-\text{C} = \text{C}-\text{H} \rightarrow$
 $\text{Cp*}_2\text{ScCH}_3 + \text{Cp*}_2\text{ScCH}_3 + \text{Cp*}_2\text{S} = \text{Cp*}_2\text{S} + \text{Cp*}_2\text{S} = \text{Cp*}_2\text{S} + \text{Cp*}_2\text{S$ $(eq 7).$ ⁷

$$
2\text{Cp*}_2\text{ScCH}_3 + \text{H}\text{---C} = \text{C}-\text{H} \rightarrow
$$

\n
$$
\text{Cp*}_2\text{Sc}-\text{C} = \text{C}-\text{ScCp*}_2 + 2\text{CH}_4 \ (7)
$$

An ORTEP drawing of $Cp*_{2}Sc-C=CC-SCp*_{2}$ is shown in Figure 1. The molecule crystallizes at a 2-fold symmetry axis that relates one $[Cp*_2Sc]$ and half the bridging acetylenediyl unit to the other half-molecule. Notable features are the $C=CC$ bond length and the staggered conformation of $[Cp*_2Sc]$ moieties. The C1-C1' bond length (1.224 (9) **A)** is short, similar to that found in CaC, (1.195 Å) ⁸ and only slightly longer than that in acetylene itself (1.21 **A).** The Sc-Cl bond length (2.194 (7) **A)** is only marginally shorter than the scandium-carbon bond length for $\text{Cp*}_2\text{Sc}-\text{CH}_3$ (2.243 (11) Å),² so that multiply bonded resonance structures such as

$$
Sc = C = C^+ - Sc \leftrightarrow Sc - C^+ = C = Sc^-
$$

resulting from donation of $C= $C \pi$ electrons to empty$ oribtals in the wedge of the scandocene units, do not appear to contribute significantly to the $Sc-C=CC-Sc$ bonding. The nearly linear $Sc-C1-C1'$ angle $(175.1 \cdot (6)^{\circ})$ and the dihedral angle between the two centroid-Sc-centroid planes of nearly 90° are as expected, since the fully staggered arrangement minimizes steric interactions between Cp* rings across the dimer. The other features of the structure (e.g. d (Cp^{*}(centroid)–Sc) = 2.171, 2.172 Å; $Cp^*(centroid) - Sc - Cp^*(centroid) = 143.1 (1)°)$ are much like those for other permethylscandocene derivatives.
Although the $M-C=CD-M$ linkage is common for M

 $=$ alkali and noble metals, where it generally results in extended polymeric structures, 9 this structural unit does not appear to have been reported for early and middle transition metals.¹⁰ There has been some interest in in-

Table I. Characteristic Spectroscopic and Structural Features of Compounds Containing the μ -Acetylenediyl Ligand

^{*ο*} v(C=C) measured by Raman spectroscopy. ^{b13}C NMR shift (rela-
tive to TMS) for acetylenediyl carbons. ^cδ(¹³C) reported is for $(PMe₃)₂(I)Pd-C= C-Pd(I)(PMe₃)₂$, ¹³C NMR data not reported for $(PMe₃)₂(I)Pt-C=C-Pt(I)(PMe₃)₂$. ^{*d*} Bridging acetylenediyl is *σ* bonded to Pt and one W and π bonded to the other W. ^{*} Bridging acetylenediyl is σ bonded to two Ru and π bonded to the other two Ru.

corporating μ -acetylide bridges for polymeric backbones of the type $(M-C=CC-M-C=CC-)_n$, where $M = Ni$, Pd, Pt.¹¹ While the structure of the first simple μ_2 - η ¹, η ¹acetylenediyl compound, trans,trans- $(PMe₃)₂Pt(I)$ -C= $C-Pt(I)(PMe₃)₂$, has recently been reported,¹² the only other examples **of** structurally characterized compounds containing $[M-C=CC-M]$ units show additional π coordination of $C=$ to another metal as well.¹³

Thus, the structural and spectroscopic features **of** $Cp*_{2}Sc-C=CC-SCp*_{2}$ and trans,trans-(PMe₃)₂Pt(I)- $C=$ C $-Pt(I)(PMe_3)_2$ distinguish them from polynuclear transition-metal complexes having additional metals π bonded to the μ_n -C \equiv C moiety (Table I), as well as from the two other types of [MCCMI-bridged binuclear compounds: e.g. $(silox)_3Ta=C=C=Ta(silox)_3$ $(silox =$ $(Me_3C)_3SiO^{\perp};$ C=C distance 1.32 Å)¹⁴ and binuclear complexes having bridges of the type $[M=CC=m]$ reported by Schrock and co-workers.¹⁵

Acknowledgment. This work was supported by the USDOE Office of Energy Research, Office of Basic Energy Science (Grant No. DE-FG03-85ER13431), and by Shell Companies Foundation, which are gratefully acknowledged. We thank the NSF (Grant No. CHE-8219039) for funds to purchase the X-ray diffractometer.

Supplementary Material Available: Details of the structure determination, including listings of crystal and intensity collection data, the final atom coordinates, thermal parameters, and bond distances and angles (9 pages); a listing of structure factors (6 pages). Ordering information is given on any current masthead page.

¹⁷⁾ $\text{Cr}^*\text{-}\text{Sc}-\text{Sc}^*\text{-}\text{-}\text{Sc}^*\text{-}\text{S}^*$ is prepared as follows: With use of a swivel frit assembly on a vacuum line $\text{Cr}^*\text{-}\text{SCCH}_3$ **(420 mg, 1.3 mmol)** dissolved in **30** mL of petroleum ether was treated with **292** Torr **X 42.2** mL (0.65 mmol) of acetylene at -78 °C for 40 min. The product was filtered off while cold to yield 312 mg (71%) of an off-white powder. Anal. Calcd: C, 77.03; H, 9.24. Found: C, 76.51; H, 9.08. IR (Nujol mull): 2716 (w) **2.05 s** (C_b(CH₃)_b). ¹³C{¹H} NMR: δ 12.6 (C₅(CH₃)_b); δ 120.7 (C₅(CH₃)_b); δ 179.4 (Sc—C=C—Sc).

⁽⁸⁾ Greenwood, N. N.; Earnshaw, A. *Chemistry of the Elements;* Pergamon Press: Oxford, U.K., **1986;** p **320.**

⁽⁹⁾ Green, M. L. H. Organometallic Compounds: The Transition Elements; Methuen: London, 1968; Vol. 2, p 275.

(10) The compound " $\left(\text{Cp}_2\text{Ti}\right)\left(\text{Sp}_2\right)$ " is reported as the product (the reaction of the compound " \left ^p**220.** However, the reference given is to 'unpublished work", and no characterization is given.

⁽¹¹⁾ Sonogashira, **K.;** Takahashi, S.; Hagihara, N. *Macromolecules* **1977,** *10,* **879-880.**

⁽¹²⁾ Ogawa, **H.;** Onitsuka, **K.;** Joh, T.; Takahashi, S.; Yamamoto, *Y.;*

Yamasaki, H. Organometallics 1988, 7, 2257–2260.
(13) (a) Bruce, M. I.; Snow, M. R.; Tiekink, E. R. T.; Williams, M. L.
J. Chem. Soc., Chem. Commun. 1986, 701–702. (b) Blau, R. J.; Chisholm, M. H.; Folting, K.; Wang, R. J. *J.* Chem. *SOC., Chem. Commun.* **1985, 1582-1584.**

⁽¹⁴⁾ LaPointe, R. **E.;** Wolczanski, P. T.; Mitchell, J. F. *J. Am.* Chem. *SOC.* **1986, 108,6382-6384.**

⁽¹⁵⁾ Listemann, M. L.; Schrock, R. R. *Organometallics* **1985,4,74-83. (16)** Morrison, T. T.; Boyd, R. N. *Organic Chemistry;* Allyn and Ba- con: Boston, **1980;** p **250.**

⁽¹⁷⁾ Rauscher, G.; Clark, T.; Poppinger, D.; Schleyer, P. v. R. *Angew.* Chem., *Int. Ed. Engl.* **1978,** *17,* **276-278.**

⁽¹⁸⁾ Cross, R. **J.;** Davidson, M. F. J. Chem. *SOC., Dalton Trans.* **1986, 411-414.**