

Subscriber access provided by American Chemical Society

Models for organometallic molecule-support complexes. Very large counterion modulation of cationic actinide alkyl reactivity

Xinmin. Yang, Charlotte. Stern, and Tobin J. Marks

Organometallics, **1991**, 10 (4), 840-842• DOI: 10.1021/om00050a008 • Publication Date (Web): 01 May 2002 Downloaded from http://pubs.acs.org on March 8, 2009

More About This Article

The permalink http://dx.doi.org/10.1021/om00050a008 provides access to:

- Links to articles and content related to this article
- Copyright permission to reproduce figures and/or text from this article

 C_{β} becomes dominant and maximizes at rotation of the $C_{\gamma}H_2$ unit of 88° with respect to the CH_2 plane in the ground state. Concomitantly, a positive charge develops on C_{β} , while C_{α} and C_{γ} still bear negative charges. Thus, nucleophilic attack at C_{β} appears to be favored by both charge and orbital factors.

These preliminary results suggest a rich chemistry for μ - η^1 : η^2 -allenyl complexes as a source of three-carbon fragments in synthesis.

Acknowledgment. We are grateful to the Natural Sciences and Engineering Research Council of Canada for financial support of this work.

Supplementary Material Available: Tables of structure determination details, atomic coordinates and equivalent isotropic displacement parameters, bond lengths and angles, and anisotropic displacement parameters for 2a, 3a, and 5 (26 pages); tables of observed and calculated structure factors (86 pages). Ordering information is given on any current masthead page.

Models for Organometallic Molecule-Support Complexes. Very Large **Counterion Modulation of Cationic Actinide Alkyl Reactivity**

Xinmin Yang, Charlotte L. Stern, and Tobin J. Marks* Department of Chemistry, Northwestern University, Evanston, Illinois 60208 Received February 13, 1991

Summary: The reaction of $Cp'_{2}Th(CH_{3})_{2}$ ($Cp' = \eta^{5}$ - $(CH_3)_5C_5$ with $HN^nBu_3^+B(C_6F_5)_4^-$ yields the crystallographically characterized, cationic thorium alkyl $Cp'_{2}ThCH_{3}^{+}B(C_{6}F_{5})_{4}^{-}$. The $B(C_{6}F_{5})_{4}^{-}$ anion is weakly coordinated, the NMR spectroscopic parameters are similar to those of Cp'2Th(CH3)2 adsorbed on dehydroxylated alumina, and the complex is a highly active catalyst for ethylene polymerization and 1-hexene hydrogenation.

Surface spectroscopic¹ and chemical² evidence argue that cationic alkyls play a major role in facile olefin transformations catalyzed by organoactinides adsorbed on electron-deficient supports (e.g., A in eq 1). Furthermore,

analogous group 4 species 3,4 are thought to be important

(1) (a) Finch, W. C. Gillespie, R. D.; Hedden, D.; Marks, T. J. J. Am. Chem. Soc. 1990, 112, 6221-6232. (b) Gillespie, R. D.; Burwell, R. L., Jr.; Marks, T. J. Langmuir 1990, 6, 1465–1477. (c) Hedden, D.; Marks, T. J. J. Am. Chem. Soc. 1988, 110, 1647–1649. (d) Toscano, P. J.; Marks, T. J. Langmuir 1986, 2, 820–823. (e) Toscano, P. J.; Marks, T. J. J. Am. Chem. Soc. 1985, 107, 653-659. (f) He, M. Y.; Xiong, G.; Toscano, P. J.; Burwell, R. L., Jr.; Marks, T. J. J. Am. Chem. Soc. 1985, 107, 641-652. (g) Marks, T. J.; Burwell, R. L., Jr.; He, M.-Y.; Toscano, P. J. Abstracts Papers, 186th National Meeting of the American Chemical Society, Washington, DC, Aug 1983; American Chemical Society: Washington,

DC, 1983; INDE 55 (first proposal of cationic species). (2) (a) Lin, Z.; Le Marechal, J.-F.; Sabat, M.; Marks, T. J. J. Am. Chem. Soc. 1987, 109, 4127-4129. (b) Lin, Z.; Yang, X.; Le Marechal,

Chem. Soc. 1987, 109, 4127-4125. (D) Lin, L., Tang, A., Le Marconal, J.-F.; Marks, T. J., manuscript in preparation.
(3) (a) Bochmann, M.; Jagger, A. J.; Nicholls, J. C. Angew. Chem., Int. Ed. Engl. 1990, 29, 780-782. (b) Jordan, R. F.; LaPointe, R. E.; Bradley, P. K.; Baenziger, N. Organometallics 1989, 8, 2892-2903. (c) Hlatky, G. G.; Turner, H. W.; Eckman, R. R. J. Am. Chem. Soc. 1989, 111, 2728-2729. (d) Taube, R.; Krukowa, L. J. Organomet. Chem. 1988, 347. (Co. Clo (c) Caseman P. C.; Californian M. R. M. R. J. Chem. Soc. 1987. C9-C10. (e) Gassman, P. G.; Callstrom, M. R. J. Am. Chem. Soc. 1987. 109, 7375-7876. (f) Jordan, R. F.; Echols, S. F. Inorg. Chem. 1987, 26, 383-386. (g) Jordan, R. F.; LaPointe, R. F.; Bagjur, C. S.; Echols, S. F.; Willett, R. J. Am. Chem. Soc. 1987, 108, 4111-4113. (h) Bochmann, M.; Wilson, L. M. J. Chem. Soc., Chem. Commun. 1986, 1610-1611. (i) Eisch, J.; Piotrowski, A. M.; Brownstein, S. K.; Gabe, E. R.; Lee, F. L. J. Am. Chem. Soc. 1985, 107, 7219-7200.
 (4) Dahmen, K. H.; Hedden, D.; Burwell, R. L., Jr.; Marks, T. J. Langmuir 1988, 4, 1212-1214.

Figure 1. Molecular structure of $Cp'_{2}ThCH_{3}^{+}B(C_{6}F_{5})_{4}^{-}$ (1). Important bond distances (Å) and angles (deg) are as follows: Th-C(21) = 2.399 (8), Th- C_{ring} = 2.754 (3) (av), Th-F(18) = 2.757 (4), Th-F(19) = 2.675 (5), C(43)-F(18) = 1.325 (6), C(44)-F(19) = 1.344 (7); ring centroid-Th-ring centroid = 140.1 (3). Thermal ellipsoids are drawn at the 35% probability level.

Table I.	Solution-Phase Catalytic Activity of
	Cp ₂ ['] ThCH ₃ ⁺ X ⁻ Complexes ^a

	X-			
reaction	CH3-	$^{1/2}$ Fe(1,2- C ₂ B ₉ H ₁₁) $^{2-}$	BPh4-	B(C ₆ F ₅) ₄ -
ethylene polymerization ^b	0	0	1.1 × 10 ⁻²	36
1-hexene hydrogenation ^c	1.4×10^{-4}	0	1.1×10^{-3}	4.57

^aAs expressed in turnover frequencies (N_t, s^{-1}) . ^bProcedure of ref 15: $P_{\text{ethylene}} = 1.0 \text{ atm}, T = 25 \text{ °C}$, solvent toluene or benzene. ^cProcedure of ref 15: $P_{\text{H}_2} = 1.0 \text{ atm}, T = 25 \text{ °C}$, solvent toluene or benzene. benzene.

in homogeneous Ziegler-Natta catalysis.⁵ Nevertheless, an isolable, structurally characterized, base-free complex that models both the salient spectroscopic and catalytic properties of A has not been available. We report here on

^{(5) (}a) Kaminsky, W., Sinn, H., Eds. Transition Metal and Organometallics as Catalysts for Olefin Polymerization; Springer: New York, 1988. (b) Keii, T., Soga, K., Eds. Catalytic Polymerization of Olefins; Elsevier: Amsterdam, 1986. (c) Sinn, H.; Kaminsky, W. Adv. Organomet. Chem. 1980, 18, 99-149.

the synthesis, crystal structure, and catalytic properties of such a highly reactive thorium alkyl cation, stabilized/activated by the weakly coordinated $B(C_6F_5)_4^$ counterion.6,7

Protonolytic reaction² of tri-*n*-butylammonium tetrakis(pentafluorophenyl)borate⁸ with thorium alkyls in noncoordinating solvents affords cationic complexes in high yields (eq 2, $Cp' = \eta^5$ -(CH_3)₅C₅). Less bulky amines yield

$$Cp'_{2}ThR_{2} + HN^{n}Bu_{3}^{+}B(C_{6}F_{5})_{4}^{-} \xrightarrow{C_{6}H_{6}} Cp'_{2}ThR^{+}B(C_{6}F_{5})_{4}^{-} + RH \quad (2)$$

1, R = CH₃, 90% isolated yield; 2, R = CH₂C₆H₅, 70% isolated yield

cationic amine complexes. Complexes 1 and 2 were characterized by standard spectroscopic/analytical techniques.⁹ A low-field Th-¹³CH₃ signal as in 1 has previously been proposed^{1a,c,e,2} to be diagnostic of "cation-like" A structures. The crystal structure of 1¹⁰ (Figure 1) consists of loosely associated "bent-sandwich" Cp'₂ThCH₃⁺ cations and $B(C_6F_5)_4$ anions. Conspicuous in the former are the short Th-CH₃ (cf. 2.49 (1) Å in $Cp'_2Th(CH_3)(THF)_2$ +BPh₄-(3),² 2.480 (3) Å in $Fe[(1,2-C_2B_9H_{11})Th^+(CH_3)Cp'_2]_2$ (4)^{6,11}) and Th- $C_{ring}(av)$ distances (vs 2.80 (1) Å in 3 and 2.817 (3) Å in $4^{6,11}$). The shortest Th-F contacts (Th-F(18),F(19)) are significantly longer than the sums of relevant Th⁴⁺ and F^- ionic radii^{12a} (~2.28 Å), the length assigned to a $F \rightarrow Yb$ dative bond¹³ after correction for differences in Th⁴⁺/Yb²⁺ ionic radii^{12a} (~2.29 Å), and a Th \leftarrow O(THF) bond distance^{2a} after correction for differences in F/O covalent radii^{12b} (~ 2.56 Å). The present C-F(18),F(19) distances are unexceptional¹⁴ (1.323 (8) Å average in 1), and the 19 F

(7) As this work was nearing completion, we became aware of patent literature claiming $B(C_6F_5)_4^-$ (as well as other tetraarylborates) as similar components of organo-group 4 catalysts: Turner, H. W.; Hlatky, G. G. PCT Int. Appl. WO 88/05793 (Eur. Pat. Appl. EP 211004, 1988).

(8) (a) By metathesis with $LiB(C_6F_5)_4$.^{8b} (b) Massey, A. G.; Park, A. J. J. Organomet. Chem. 1964, 2, 245-250.

(9) Analytical and spectroscopic data for 1 are as follows. NMR (C_6D_6 , (a) Analytical and spectroscopic data for 1 are as follows. NMR ($C_{6}D_{6}$, room temperature): ¹H, δ 1.54 (s, 30 H), 0.34 (s, 3 H); ¹³C, δ 77.27 (q, ¹ J_{C-H} = 116.1 Hz, Th-CH₃), 10.77 (q, ¹ J_{C-H} = 126.2 Hz, Cp); ¹⁹F, δ -132.63 (s, br, 8 F, o-F), -162.11 (t, ³ J_{F-F} = 21.2 Hz, 4 F, p-F), -166.03 (m, 8 F, m-F); ¹¹B (in C₆D₆ + THF, vs BF₃·OEt₂), δ -16.6 (s). Anal. Calcd for C₄₅H₃₃BF₃₀Th: C, 45.17; H, 2.78; N, 0.00. Found: C, 44.53; H, 2.88; N, 0.00 Analytical and spectroscopic data for 2 are as follown. NMR (C D C₄₅H₃₃BF₂₀1 n. C, 49.17; H, 2.78; N, 0.00. Found: C, 44.53; H, 2.88; N, 0.00. Analytical and spectroscopic data for 2 are as follows. NMR (C₆D₆, room temperature): ¹H, δ 6.82 (t, ³J_{H-H} = 7.6 Hz, 2 H, *m* Ph), 6.75 (t, ³J_{H-H} = 7.2 H, 1 H, *p* Ph), 6.23 (d, ³J_{H-H} = 2 H, *o* Ph), 2.11 (s, 2 H), 1.50 (s, 30 H); ¹⁹F, δ -131.91 (s, br, 8 F, *o*-F), -161.53 (t, ³J_{F-F} = 21.5 Hz, 4 F, *p*-F), -167.00 (m, 8 F, *m*-F). Anal. Calcd for C₅₁H₃₇BF₂₀Th: C, 48.13; H, 2.93; N, 0.00. Found: C, 47.64; H, 3.07; N, 0.11.

(10) Crystal data: ThF₂₀C₄₅BH₃₃·2.5C₆H₆; monoclinic, space group $P2_1/c$; a = 18.390 (7) Å, b = 16.444 (4) Å, c = 18.731 (6) Å, $\beta = 99.20$ (3)° at -120 °C; V = 5592 (3) Å³; Z = 4, $d_{calcd} = 1.653$ g cm⁻³. The structure was solved by Patterson methods (SHELXS-86) and refined with weighted and unweighted difference Fourier syntheses and blocked-matrix least squares (SHELX-76). R(F) and $R_w(F) = 0.035$ and 0.037, respectively, for 4074 absorption-corrected reflections with $I > 2.58\sigma(I)$ measured on a CAD4 diffractometer (Mo K α radiation, $\lambda = 0.71069$ Å, $2\theta = 42^{\circ}$).

(11) (a) Marks, T. J. Abstracts of Papers, 197th National Meeting of the American Chemical Society, Dallas, TX, April 9–14, 1989; American Chemical Society: Washington, DC, 1989; INOR 8. (b) Yang, X.; King, W. A.; Marks, T. J., unpublished results. The structure consists of unexceptional^{2a} $Cp'_2ThCH_3^+$ cations capping dicarbollide B(8), B(9), B(12) faces.

NMR spectrum shows magnetically equivalent $C_{e}F_{*}$ rings down to -70 °C in toluene- d_8 .

As measured¹⁵ by ethylene polymerization and 1-hexene hydrogenation activity in solution (Table I), the catalytic properties of Cp'₂ThCH₃⁺X⁻ species are remarkably sen-Thus, 1 is far more reactive than sitive to X^{-} . $Cp'_{2}ThCH_{3}^{+}BPh_{4}^{-}$ (~3300× more reactive for ethylene polymerization; \sim 4100 more reactive for 1-hexene hydrogenation), for which low-temperature NMR spectroscopy suggests π -arene coordination,² and 4, where there are two sets of three close B-H...Th+(CH₃)Cp'₂ contacts.^{6,11} Indeed, the α -olefin hydrogenation activity of 1 approaches that of Cp'₂Th(CH₃)₂-dehydroxylated alumina ($N_t \approx 3 \text{ s}^{-1}$ per active site at -45 °C; $E_a = 3.6$ (2) kcal mol⁻¹).^{1b} This marked counterion sensitivity offers an appealing explanation for the wide variation in adsorbate cation heterogeneous catalytic activity both as a function of support (in this case the counterion) and as a function of site on the same support.^{1b,f} Interestingly, finely ground powders of 1 are also heterogeneous catalysts for olefin hydrogenation $(N_{\rm t} \approx 0.1 \text{ s}^{-1} \text{ at } 0 \text{ °C for propylene}).$

Chemically, 1 is a strong Lewis acid and forms μ -alkyl complexes with hydrocarbyls such as $Cp'_{2}Th(CH_{3})_{2}$ (eq 3).

$$1 + Cp'_{2}Th(CH_{3})_{2} = Cp'_{2}(CH_{3})Th(\mu-CH_{3})Th(CH_{3})Cp'_{2}+B(C_{6}F_{5})_{4}^{-} (3)$$
5

At room temperature in solution, bridge and terminal methyl groups of 5 are in rapid exchange; however, discrete CH₃ signals (in a 2:1 ratio) are observable below ca. -20 °C or in the solid.¹⁶ The large ${}^{1}J_{C-H} = 132.3$ Hz value for the bridging CH₃ is characteristic of electron-deficient μ -alkyls.^{17,18}

These structural and catalytic results demonstrate that, and suggest the means by which, the reactivity of cationic acetinide hydrocarbyls is strongly controlled by the nature of the charge-compensating environment. Furthermore, the $B(C_6F_5)_4^-$ anion exhibits unprecedented activating characteristics in such systems and may find a variety of other applications in the quest for minimally coordinating anions.19

Acknowledgment. We are grateful to the Division of Chemical Sciences, Office of Basic Energy Sciences, Office of Energy Research, U.S. Department of Energy, for support of this research under Grant DE-FG02-86ER13511.

(16) Spectroscopic data for $5({}^{13}CH_3)$ are as follows. NMR (toluene- d_8 , -27 °C): ¹H, δ 1.74 (s, 30 H), 0.070 (d, 6 H, $J_{^{13}C-H}$ = 113.8 Hz), -1.20 (d, 3 H, $J_{^{13}C-H}$ = 132.3 Hz); ¹³C (CPMAS), δ 127.3 (Cp C), 76.5 (s, CH₃), 56.6 (s, CH₃), 10.9 (Cp' (CH₃)).

(s, CH₃), 10.9 (Cp' (CH₃)).
(17) (a) Stern, D.; Sabat, M.; Marks, T. J. J. Am. Chem. Soc., in press.
(b) Evans, W. J.; Chamberlain, L. R.; Ulibarri, T. A.; Ziller, J. W. J. Am. Chem. Soc. 1988, 110, 6423-6432.
(c) Busch, M. A.; Harlow, R.; Watson, P. L. Inorg. Chim. Acta 1987, 140, 15-20.
(d) Holton, J.; Lappert, M. F.; Pearce, R.; Yarrow, P. I. W. Chem. Rev. 1983, 83, 135-201 and references therein.
(e) Holton, J.; Lappert, M. F.; Ballard, D. G. H.; Pearce, R.; Atwood, J. L.; Hunter, W. E. J. Chem. Soc., Dalton Trans. 1979, 54-61.
(18) Ozawa, F.; Park, J. W.; Mackenzie, P. B.; Schaefer, W. P.; Henling, L. M.; Grubbs, R. H. J. Am. Chem. Soc. 1989, 111, 1319-1327 and references therein.

references therein.

(19) (a) Moirot, M. D.; Anderson, O. P.; Strauss, S. H. Inorg. Chem. 1987, 26, 2216-2223 and references therein. (b) Shelley, K.; Finster, D. C.; Lee, Y. J.; Scheidt, W. R.; Reed, C. A. J. Am. Chem. Soc. 1985, 107, 5955-5959. (c) Shelley, K.; Reed, C. A.; Lee, Y. J.; Scheidt, W. R. J. Am. Chem. Soc. 1986, 108, 3117-3118.

⁽⁶⁾ Communicated in part at the XIVth International Conference on Organometallic Chemistry, Detroit, MI, Aug 1990, Abstract 120.

^{(12) (}a) Shannon, R. D. Acta Crystallogr., Sect. A 1976, A32, 751-767. (b) Huheey, J. E. Inorganic Chemistry, 3rd ed.; Harper and Row: New York, 1983, pp 258-259.

⁽¹³⁾ Burns, C. J.; Andersen, R. A. J. Chem. Soc., Chem. Commun. 1989. 136-137.

⁽¹⁴⁾ Trotter, J. In The Chemistry of the Carbon-Halogen Bond; Patai, S., Ed.; Wiley: London, 1973; Chapter 2

 ⁽¹⁵⁾ Procedure: (a) Jeske, G.; Lauke, H.; Mauermann, H.; Swepston,
 P. N.; Schumann, H.; Marks, T. J. J. Am. Chem. Soc. 1985, 107,
 8091-8103. (b) Jeske, G.; Lauke, H.; Mauermann, H.; Schumann, H.;
 Marks, T. J. J. Am. Chem. Soc. 1985, 107, 8111-8118. (c) NMR data and kinetic plots for 1-hexene hydrogenation indicate observed rates are not due to catalyst deactivation.

We thank Dr. R. D. Gillespie for assistance with the heterogeneous catalytic experiments and Dr. P. C. Sishta for assistance with the CPMAS NMR spectra.

Supplementary Material Available: Details of the crystal

data collection and structure refinement, a fully labeled diagram, and tables of crystal data, atomic coordinates, anisotropic thermal parameters, and bond distances and angles for 1 (15 pages); a table of structure factors (34 pages). Ordering information is given on any current masthead page.

Photochemistry of Permethyloligosilanes

Iain M. T. Davidson, *,[†] Josef Michl,[‡] and Terry Simpson[†]

Department of Chemistry, The University, Leicester LE1 7RH, Great Britain, and Center for Structure and Reactivity, Department of Chemistry, The University of Texas

at Austin, Austin, Texas 78712-1167

Received November 28, 1990

Summary: Primary photochemical pathways have been identified in the irradiation of three oligosilanes at 254 nm. These pathways include a reductive elimination not previously observed in oligosilanes but closely analogous to a chain-scission process that has been observed in polysilane materials.

Investigation of the thermal and photochemical breakdown of polysilanes is of topical interest because of the importance of these compounds as photoresists.¹ To complement work on the photoablation of these materials,² we are undertaking separate pyrolysis³ and photochemical studies on a number of permethyloligosilanes as simple models for polysilanes; we now report preliminary results of our photochemical experiments.

The compounds we have studied so far are 2,3-bis(trimethylsilyl)octamethyltetrasilane (I), (Me₃Si)₂Si(Me)Si-(Me)(Me₃Si)₂, 2-(trimethylsilyl)heptamethyltrisilane (II), (Me₃Si)₃SiMe, and 2,2-diethylhexamethyltrisilane (III), (Me₃Si)₂SiEt₂. Ishikawa and Kumada have published a preliminary account⁴ of the photochemistry of the branched oligosilanes I and II and a more detailed account⁵ of the photochemistry of the series of linear oligosilanes $Me(Me_2Si)_nMe$, where n = 4-8, in cyclohexane solution at 254 nm, using diethylmethylsilane as a silylene trap. They found extrusion of dimethylsilylene, :SiMe₂, to be the main primary photochemical pathway, together with some homolytic Si-Si bond rupture; e.g., irradiation of the permethylated tetrasilane gave 84% Me₈Si₃ (the stable product concomitant with extrusion of :SiMe2), with 11% Si-Si bond rupture. Likewise,⁶ dimesitylsilylene was formed photochemically from the trisilane (Me₃Si)₂SiMes₂, although Wilking and Gaspar recently reported that irradiation at 254 nm of the mesityl-substituted disilane and trisilane (MesMe₂Si)₂ and (MesMe₂Si)₂SiMe₂ mainly caused Si-Si bond rupture followed by radical reactions.7

- Miller, R. D.; Michi, J. Chem. Rev. 1989, 89, 1359.
 Magnera, T. F.; Balaji, V.; Michl, J.; Miller, R. D.; Sooriyakumaran, R. Macromolecules 1989, 22, 1624.
- (3) Bortolin, B. N.; Davidson, I. M. T.; Lancaster, D.; Simpson, T.; Wild, D. A. Organometallics 1990, 9, 281.
 (4) Ishikawa, M.; Kumada, M. J. Chem. Soc. D 1971, 489

Photochemical studies of polysilanes have revealed that three types of simultaneous primary processes may occur:

(A) chain scission by homolytic Si-Si bond cleavage⁸

-RR'Si-RR'Si-RR'Si-RR'Si-→ -RR'Si-RR'Si* + *RR'Si-RR'Si-

(B) chain abridgement by elimination of a silylene from the polysilane chain⁸

 $-RR'Si-RR'Si-RR'Si-RR'Si- \rightarrow$ -RR'Si-RR'Si-RR'Si- + :SiRR'

(C) chain scission with formation of a silylene on the polysilane chain⁹

 $-RR'Si-RR'Si-RR'Si-RR'Si- \rightarrow$ -RR'Si-RR'SiR + :Si(R')-RR'Si-

 $-RR'Si-RR'Si-RR'Si-RR'Si- \rightarrow$ -RR'Si-RR'SiR' + :Si(R)-RR'Si-

Processes B and C occur by reductive elimination. It has been proposed that the silvlenes formed in process C readily isomerize to disilenes, e.g. $:SiR'-RR'Si-RR'Si-\rightarrow$ RR'Si-SiR'=SiRR', and that these disilenes can then add to polysilyl radicals generated by process A to form new radicals.⁹ It has been established¹⁰ that photochemically produced silvl radicals abstract hydrogen originally attached to the α - position of alkyl chains in the polysilane material (presumably in a radical disproportionation process), rather than from the solvent or from silvlene traps such as Et₃SiH or Et₃SiD.

Our experiments were carried out in rigorously purified *n*-hexane solution with concentrations of oligosilanes in the range of 0.02-0.05 mol dm⁻³; most irradiations were carried out with a low-pressure mercury lamp at 254 nm, but some were with a cadmium lamp at 228 nm. Products were separated and identified by GC/mass spectrometry. Information about the nature of the intermediates produced was obtained by irradiating solutions of oligosilane in 1:1 n-hexane-triethylsilane; silylenes insert into the Si-H bond in Et₃SiH to form photochemically stable hydridodisilanes, while characteristic products are also

[†]University of Leicester.

[‡]The University of Texas at Austin.

⁽⁵⁾ Ishikawa, M.; Kumada, M. J. Organomet. Chem. 1972, 42, 325.
(6) West, R.; Fink, M. J.; Michl, J. Science 1981, 214, 1343.

⁽⁷⁾ Wilking, J.; Gaspar, P. P. Presented at the Ninth International Symposium of Organosilicon Chemistry, Edinburgh, U.K., 1990.

⁽⁸⁾ Trefonas, P.; West, R.; Miller, R. D. J. Am. Chem. Soc. 1985, 107, 2737.

⁽⁹⁾ McKinley, A. J.; Karatsu, T.; Wallraff, G. M.; Miller, R. D.; Soo-riyakumaran, R.; Michl, J. Organometallics 1988, 7, 2567. McKinley, A. J.; Karatsu, T.; Wallraff, G. M.; Thompson, D. P.; Miller, R. D.; Michl, J. J. Am. Chem. Soc., in pres

⁽¹⁰⁾ Karatsu, T.; Miller, R. D.; Sooriyakumaran, R.; Michl, J. J. Am. Chem. Soc. 1989, 111, 1140.