path of CC coupling via an intramolecular dinuclear replacement reaction has been found.

Acknowledgment. We acknowledge Prof. K. Isobe for valuable discussions. *All* the calculations were carried out at the Computer Center of IMS.

Appendix

Electronic Structure of CpRh(PH3). The ground state of CpML with the formal electron count of d⁸ has so far been discussed by the extended Hückel method, 28a,b the ab initio SCF method, 28b and the density functional. 28c Its d levels are schematically shown in Figure 11. Since 3a" and 5a' are close in energy, one anticipates three lowdying electronic states: a closed shell singlet $(3a'')^2$, an open-shell singlet, and a triplet $(3a'')^1(5a')^1$. We optimized the structure of $CpRh(PH_3)$ with the RHF and the singlet and triplet UHF methods, as shown in Figure 12, under the constraint of C_s symmetry with the nine valence electron ECP and the DZ basis functions for Rh^{14a} and the 3-21G for Cp and PH_3 .^{15b,29}

In the RHF-optimized structure, two C^2-C^3 bonds of the Cp ring are much shorter than the other C-C bonds. In

(29) Gordon, M. **S.;** Binkley, J. S.; Pople, J. A.; Pietro, W. J.; Hehre, W. J. J. *Am. Chem. SOC.* **1982,104, 2797.**

the closed-shell singlet **state,** the antibonding **3a"** is doubly occupied and thus the Cp π_A orbital does not contribute to the RhCp bonding interaction. Only the electron donation from π_S to d_{xy} is responsible for the RhCp bonding interaction. Therefore, representing the bond order in π_{S} , the C^2-C^3 bonds are shorter than the C^1-C^2 and C^3-C^3 bonds.

In the open-shell states, on the other hand, 3a" and 5a' are singly occupied, and π_A and π_S interact with d_{xz} and d_{xy} equivalently. Therefore, the five CC distances in the Cp ring are close to each other.

In Table IV we show the relative energies calculated at the several levels with a larger basis set: $[2s2p3d]/(3s3p4d)$ for Rh, [4s3p]/(lls8p) for P, [3s2p]/(8s5p) for C, and [2s]/(4s) for **H.1*30*31** At **all** the levels of calculation, the triplet is the ground state of CpRh(PH₃). At the highest level of calculation, MP4SDTQ, the closed-shell singlet is 8 kcal/mol higher in energy than the triplet. The openshell singlet is the most unstable. These results are different from the density functional calculations,^{28c} which gives the closed-shell singlet of CpML ($M = Ir$, Rh; $L =$ CO, PH_3) as being more stable, than the triplet by $1-6$ kcal/ mol.

Synthesis and Photochemical Reactivity of Transition-Metal-Disubstituted Disllanes LMSiMe,SiMe,ML (LM = $(\eta^5$ -C₅H₅)Fe(CO), and $(\eta^5$ -C₅H₅)Fe(η^5 -C₅H₄))¹

Keith H. Pannell' -and Hemant Sharma

Department of *Chemistty, The University of Texas at El Paso, El Paso, Texas 79968-0513*

Received June 27, 1990

Three transition-metal-disubstituted disilanes, $[(\eta^5-C_6H_6)Fe(CO)_2]_2SiMe_2SiMe_2SiMe_2SiMe_2SiMe_2Fp, I),$
 $[(\eta^5-C_6H_6)Fe(\eta^5-C_6H_4)]_2SiMe_2SiMe_2SiMe_2SiMe_2SiMe_2Fc, II),$ and $FpSiMe_2SiMe_2SiMe_2Fc (III),$ have been synthesized, characterized, and studied photochemically. Complex I undergoes rearrangement to $(\eta^5$ -C₅H₅)₂Fe₂-
(CO)₂(μ -CO)(μ -SiMeSiMe₃) (IV) as well as smaller amounts of FpSiMe₃. Complex II is photochemically $(CO)_2(\mu\text{-}CO)(\mu\text{-}SiMe3)$ (IV) as well as smaller amounts of FpSiMe₃. Complex II is photochemically inert in nonpolar solvents but undergoes an oxidative methanolysis reaction in MeOH in the presence of **O2** to form FcSiMe20Me **(V)** as the only product. Complex **111,** which contains the activating Fp group and the deactivating Fc group, reacts photochemically to form FpSiMe₂Fc (VI) and FpSiMe₃ in the ratio 3:1. Photolysis of FpSiMe₂SiMe₂Cl was also performed and produced FpSiMe₂Cl and FpSiMe₃ in the ratio 4:1. The various results illustrate that loss of SiMe₂ is much favored compared to loss of SiMeR, $R = Ph$, Cl, and Fc, where competition is possible. The various ferrocenylsilanes were prepared from the appropriate chlorosilanes and Fc⁻Li⁺ prepared from the transmetalation reaction between (chloromercurio)ferrocene and n-butyllithium. The yields, in the *70%* range, were far superior to published values of approximately 10% obtained by using Fc-Li+ prepared directly from ferrocene.

Introduction

The photochemical properties of oligo- and polysilanes have been well studied, and in particular the photochemistry of aryldisilanes and related compounds has been an area of active research.2 In general, such photolyses are

thought to involve an excited state that leads to cleavage of the Si-Si bond to form the corresponding silyl radicals, which may either recombine or be trapped by appropriate agents. We have an ongoing interest in the chemical and

^{(28) (}a) Hofmann, P.; Radmanabhan, M. *Organometallics* 1983, 2,
1273. (b) Veillard, A.; Dedieu, A. *Theor. Chim. Acta* 1980, 63, 339. (c)
Ziegler, T.; Tschinke, V.; Fan, L.; Becke, A. D. J. *Am. Chem. Soc.* 1989,
111, 9

⁽³⁰⁾ Huzinaga, S:; Audzelm, J.; Klobukowski, M.; **Radzio-Andzelm,** E.; Saka, Y.; Tatewaki, **H.** *Gausstan basts sets for molecular calculations;* Elsevier: Amsterdam, **1984.**

⁽³¹⁾ Dunning, T. H. J. *Chem.* Phys. **1970,53,2823.**

⁽³²⁾ Yamaguchi, K.; Takahara, Y.; Fueno, T.; **Houk,** K. **N.** *Theor. Chim. Acta* **1988, 73, 337.**

⁽³³⁾ Schlegel, **H.** B. *J. Chem.* Phys. **1986,84,4530.**

⁽¹⁾ Organometalloidal Derivatives of **the** Transition Metals. **26.** Part **25** Pannell, **K.** H.; Lin, **H.-S.;** Kapoor, R. N.; Cervantes-Lee, F.; Pinon, M.; Parkanyi, L. *Organometallics* **1990, 9, 2454.**

^{(2) (}a) For a review of the area, see: Ishikawa, M.; Kumada, M. Advances In Organometallic Chemistry; Ed. F. G. A., Stone, R., West, Eds.; Academic Press: New York, 1981; Vol. 19, p 51. (b) For a recent article concerning related photochemical studies, see: Hu, **S-S.;** Weber, **W.** F. *J. Organomet. Chem.* **1989,369, 155.**

Transition-Metal-Disubstituted Disilanes Organometallics, Vol. 10, NO. 4, 1991 955

photochemical properties of transition-metal-substituted $oligo-$ and polysilanes.^{3,4} Previous studies in this arena have shown that the substituent $(\eta^5$ -C₅H₅)Fe(CO)₂ (Fp) has a dramatic activating effect upon oligosilanes when directly bound to the silicon chain via a Fe-Si σ bond. Thus, in a series of Fp-oligosilane complexes, oligosilane isomerization and/or \sinh^2 elimination reactions occur via the intermediacy of silylsilyleneiron complexes.³ Furthermore, we have observed that when ferrocenyl (Fc) substituents are placed upon the silicon chain in high molecular weight polysilanes, a significant photochemical stability is imparted to the polymer.^{4b} In order to better understand the different effects of these two distinct transition-metal substituents upon the photochemistry of oligo- and polysilanes, we are investigating the properties of disilanes, trisilanes, tetrasilanes, etc. containing the two metal substituents Fp and Fc. We now report the results of such an initial investigation on the disilane system
FpSiMe₂SiMe₂Fp, FpSiMe₂SiMe₂Fc, and $FpSime_2Sime_2Fp$, $FpSinMe_2Sime_2Fc$, and FcSiMe₂SiMe₂Fc.

Results and Discussion

The starting complexes $LMSiMe₂SiMe₂ML$, $LM =$ $(\eta^5$ -C₅H₅)Fe(CO)₂ (Fp) and $(\eta^5$ -C₅H₅)Fe(η^5 -C₅H₄) (Fc), are readily synthesized by the reactions outlined in eqs 1- **4.5-7,108 Results and Discussion**
The starting complexes LMSiMe₂SiMe₂ML, LM = $(\eta^5$ -C₅H₅)Fe(CO)₂ (Fp) and $(\eta^5$ -C₅H₅)Fe(η^5 -C₅H₄) (Fc), are readily synthesized by the reactions outlined in eqs 1–4.^{5-7,10a}

readily synthesized by the reactions outlined in eqs 1-4.^{5-7,10a}
\n
$$
Fp^-Na^+ + ClSiMe_2SiMe_2Cl \xrightarrow{C_6H_{12}} FpSiMe_2SiMe_2Cl
$$
\n
$$
2Fp^-Na^+ + ClSiMe_2SiMe_2Cl \xrightarrow{THF} FpSiMe_2SiMe_2Fp
$$
\n
$$
Pf^2
$$
\n(2)

$$
2Fp^-Na^+ + ClSiMe_2SiMe_2Cl \xrightarrow{\text{THF}} FpSiMe_2SiMe_2Fp
$$

\n
$$
Fc^-Li^+ + FpSiMe_2SiMe_2Cl \xrightarrow{\text{THF}} FcSiMe_2SiMe_2Fp
$$

\n
$$
III
$$

\n
$$
III
$$

$$
I
$$
\n
$$
Fc^{-}Li^{+} + FpSiMe_{2}SiMe_{2}Cl \xrightarrow{\text{THF}} FcSiMe_{2}SiMe_{2}Fp
$$
\n
$$
2Fc^{-}Li^{+} + CISiMe_{2}SiMe_{2}Cl \xrightarrow{\text{THF}} FcSiMe_{2}SiMe_{2}Fc
$$
\n
$$
I_{I}^{II}
$$

$$
2Fc^TLi^+ + CISiMe_2SiMe_2Cl \xrightarrow{\text{THF}} FcSiMe_2SiMe_2Fc \quad (4)
$$

All the complexes are crystalline materials that may be handled in the air for short periods. Spectroscopic properties recorded in Table I are unexceptional, but as is usual with transition-metal-substituted silanes, 29Si NMR spectroscopy is useful for characterization. Complex I should exhibit a single ²⁹Si resonance that is both α and

ganometallics **1990, 9, 859. (9)** Rausch, M. D.; Schloemer, G. C. *Org. Prep. Proc.* **1969, 1, 131. (10)** (a) Kumada, M.; Kondo, T.; Mimura, K.; Ishikawa, M.; Yamamoto, K.; Ikeda, S.; Kondo, M. *J. Organomet. Chem.* 1972, 43, 293. (b)
Kumada, M.; Kondo, T.; Mimura, K.; Yamamoto, K.; Ishikawa, M. *J.*
Organomet. Chem. 1972, 43, 307. (c) Kondo, T.; Yamamoto, K.; Kumada, M. *J. Organomet. Chem.* **1972, 43, 315.**

Table I. Spectral Data for the Complexes^{*a,b*}

were recorded in $\mathrm{C}_6\mathrm{D}_6$ except V and IX, were in CDCl₃. Values are in ppm. IR spectra were recorded in hexane. Values are in cm⁻¹. b IR spectrum recorded in methanol. c29Si NMR spectrum was recorded in **1:l** mixture by volume of C_6D_6 and CH₃OH.

 β to the Fp group. From our previous studies this should exhibit a single resonance approximately 50 ppm downfield of Me₃SiSiMe₃, i.e. due to the sum of the α -effect of the Fp group (38 ppm) and the β -effect (12 ppm).⁸ The observed resonance at 29.2 ppm indeed represents a shift $(\Delta \delta)$ of 49 ppm. Similarly, the $\Delta\delta$ values observed for FcSiMe₂SiMe₂Fc, -3 ppm, and FpSiMe₂SiMe₂Fc, 35.8 ppm

⁽³⁾ (a) Pannell, K. H.; Rice, J. R. *J. Organomet. Chem.* **1974, 78, C35.** (b) Pannell, K. H.; Cervantes, J.; Hernandez, C.; Cassias, J.; Vincenti, S. P. *Organometallics* 1986, 5, 1056. (c) Pannell, K. H.; Rozell, J. M.;
Hernandez, C. *J. Am. Chem. Soc.* 1989, *111*, 4482. (d) Pannell, K. H.;
Wang, L.-J., Rozell, J. M. *Organometallics* 1989, 8, 550. (e) Tobita, H.; Ueno, K.; Ógino, H. *Chem. Lett.* 1986, 1777. (ŕ) Úeno, K.; Tobita, H.;
Simoi, M.; Ogino, H. *J. Am. Chem. Soc.* 1988, *110, 4092. (g) Pannell, K.*
H.; Rozell, J. M.; Vincenti, S. P. In *Silicon-Based Polymer Science: A Comprehensiue Resource;* Zeigler, J. M., Fearon, G. W., Eds.; Advances in Chemistry Series No. **224;** American Chemical Society: Washington, DC, **1990.**

^{(4) (}a) Lin, J.; Wen, X.; Du, Z. Shandong Daxue Xuebao, Ziran
Kexueban 1987, 22, 115; Chem. Abstr. 1988, 108, 56695w. (b) Pannell,
K. H.; Rozell, J. M.; Zeigler, J. M. Macromolecules 1988, 21, 276.
(5) King, R. B.; Pannell

⁽⁶⁾ Pannell, K. H.; Bassindale, A. R. J. *Organomet. Chem.* **1982,229, 1.**

⁽⁷⁾ Malisch, W. **J.** *Organomet. Chem.* **1974,** *82,* **185. (8)** Pannell, K. H.; Cervantes, J.; Parkanyi, L.; Cervantes-Lee, F. *Or-*

(Fp-Si) and **4.6** ppm (SiFc), are in the expected ranges. In general, the reactions of Fc^-Li^+ with the chlorosilanes discussed in this paper are modifications of literature procedures. $9,10a$ In our hands the published procedures, although entirely reproducible, provided very low yield reactions (10%). This is almost certainly associated with the formation of the Fc^{-Li+} directly from FcH, under which conditions it is not possible to obtain only the monolithiated species, the dilithiated species Fc^2-2Li^+ being an important side product. The transmetalation reaction involving the use of (chloromercurio)ferrocene and n-butyllithium is far superior and resulted in yields **of 6O-70%,** a most significant improvement."

All three disubstituted complexes exhibit distinctive photochemical activity. In general ferrocene acts **as** a quencher of triplet states in many diverse systems.12 With respect to the photochemistry of organosilicon compounds, we have previously established that the Fc group inhibits the photochemical reactivity of both polysilanes and acylsilanes. $4b,13$ In keeping with these observations, II is photoinert in hydrocarbon solvents under a N₂ atmosphere. Thus, irradiation of a benzene solution of II for 25 h resulted in no apparent change when monitored by NMR spectroscopy. However, addition of methanol, e.g. **50%** by volume, resulted in very slow loss of starting material and, as monitored by ²⁹Si NMR spectroscopy, the formation of a single product that exhibits a resonance at 12.4 ppm. No other material was observed. By independent synthesis (eq **5)** this photoproduct was identified as FcSiMe₂OMe. by volume, resulted in very slow loss of starting mate
and, as monitored by ²⁹Si NMR spectroscopy, the form
tion of a single product that exhibits a resonance at 1
ppm. No other material was observed. By independ
synthe

$$
\text{Fc-Li}^+ + \text{Me}_2\text{SiCl}_2 \xrightarrow{\text{THF}} \text{FcSiMe}_2\text{Cl} \xrightarrow{\text{MeOH}} \text{FcSiMe}_2\text{OMe} \tag{5}
$$

Intensive study of the system showed that trace **amounts** of *O2* were responsible for the slow photochemical reaction. If *0,* was deliberately added to the system, the photochemical transformation occurred rapidly, <15 h, whereas extremely rigorous exclusion of **02,** and use of **Ar** as the inert atmosphere, resulted in the total absence of photochemical Si-Si bond cleavage. Such chemistry is reminiscent of the acid-catalyzed alcoholysis and oxidative alcoholysis of disilylferrocenes reported by Kumada et al.^{10b,c} This group showed that ferrocene complexes containing a Si-Si bond are very prone to methanolysis in the presence of FeCl_3 and/or O_2 /HCl. The requirement for both *0,* and HCl was suggested to be due to the formation of a ferrocenium ion intermediate that could activate the Si-Si bond with respect to methanolysis. No methanolysis occurred in the presence of only O_2 , or only HCl, which is similar to our observation that both photolysis and O_2 are required for the formation of FcSiMe₂OMe. In our initial experiments with trace O_2 present we did not observe any coloration due to ferrocenium ion species; however, upon deliberate addition of $O₂$ pale green coloration was indeed observed during the photolysis. Complex I1 **is** stable in the dark under the conditions of the photolysis reactions, even with adition of O_2 ; however, extremely rapid methanolysis, **<5** min, occurs when catalytic amounts of $FeCl₃$ are added to a methanol/benzene solution of II. It is clear therefore that the chemistry we observe is an oxidative methanolysis occurring under photolytic conditions.

$$
\text{FcSiMe}_{2}\text{SiMe}_{2}\text{Fc}\xrightarrow{\mathbf{0}_{2}/h\nu}\text{2}\text{FcSiMe}_{2}\text{OMe}\tag{6}
$$

Hu and Weber have observed that methnol reacts with **1,2-bis(2-thienyl)-l,1,2,2-tetramethyldisilane** primarily via the photoexcited Si-Si bond to form the corresponding 2-thienyldimethylmethoxysilane and 2-thienyldimethylsilane, along with significant amounts of bis(2-thieny1) dimethylsilane (eq 7).²

$$
\frac{1000 \text{ SiM} \text{e}_2 \text{SiM} \text{e}_2 \text{OM} \text{
$$

We therefore anticipated formation of the related silane FcSiMe₂H as a coproduct from our photochemical reaction; however, no such product was obtained. In a separate experiment, photolysis of $FcSiMe₂H$ under the same reaction conditions used for II, i.e. presence of O_2 , caused its transformation to FcSiMe₂OMe at a rate faster than the formation of $FcSiMe₂OMe$ from II. We observed no evidence for the formation of $FcSiMe₂Fc$ (VII), the complex that would be formed via the loss of SiMe₂, and in a separate experiment showed that this complex is stable under the photochemical conditions used. Since the photochemistry of **1,Z-diphenyltetramethyldisilane** and **1,2-bis(2-thienyl)tetramethyldisilane** is both reported to yield R_2 SiMe₂, $R = Ph$ and 2-thienyl, our results represent a significant distinction between the two aromatic substituents, phenyl and thienyl, and the ferrocene substituent used in our study.

Overall the results observed for the 1,2-bis(ferroce**nyl)-1,1,2,2-tetramethyldisilane** system may be understood in terms of the reaction of methanol with the excited state of a ferroceniumyldisilane to form $FcSiMe₂OMe$.

By way of contrast the photolysis of complex I in hydrocarbon solvents, e.g. *C6D6,* proceeded smoothly and after **3.5** h greater than 80% of I had been transformed. The reaction is quite clean; only two major complexes were observed along with starting material. Via 29Si NMR monitoring we noted a resonance at 41.2 ppm due to FpSiMe, and a series of resonances at -4.5, *-5.5,* 45,229.5, 239.6, and 242.4 ppm due to the presence of the major product from this reaction, $(\eta^5$ -C₅H₅)₂Fe₂(CO)₂(μ -CO)(μ - $\text{SiMe}\{-\text{SiMe}_3\}$. This latter complex can exist as a pair of isomers, cis and trans, with respect to the orientation of the two cyclopentadienyl groups, with a further possible pair of isomers due to the orientation of the Me₃Si group, toward or away from the cis-cyclopentadienyl groups. Indeed, the spectral data indicate three isomers present. In an accompanying article Ogino and co-workers have determined the crystal structure of one of these isomers and examined the further photochemistry of the new complex.¹⁴

The formation of the μ -SiMeSiMe₃ complex agrees with the general mechanism we have proposed for the.photochemical expulsion of SiR_2 groups from Fp-disilane complexes and, with reference to the present system, is outlined in Scheme I. The results **also** demonstrate the lability of the Si-Si bond in I suggested by the recent structural analysis, which exhibited a long Si-Si bond in this complex.8 We **also** observe significant but minor production of FpSiMe, upon photolysis, an observation not made by the Ogino group. We are unable to resolve this distinction at the present time, but it may be due to the

⁽¹¹⁾ Seyferth, D.; Hofmann, H. P.; Burton, R.; Helling, J. F. Inorg.
Chem. 1962, 1, 227.
(12) (a) Kikuchi, M.; Kikuchi, K.; Kokubun, H. Bull. Chem. Soc. Jpn.
1974, 47, 1331. (b) Karmilo, A.; Wilkinson, F. Chem. Phys. Lett.

^{34, 575.}

⁽¹³⁾ Sharma, H. K.; Vincenti, S. P.; Vicari, R.; **Cervantes-Lee, F.; Pannell, K. H.** *Organometallics* **1990, 9, 2109.**

⁽¹⁴⁾ Ueno, K.; Hamashima, N.; Shimoi, M.; **Ogino, H.** *Organo- metallics,* **following paper in this issue.**

wavelength distribution of our respective photolytic equipment. We are attempting to study this matter in more detail.

The formation of the μ -silyl complex is in accord with several previous studies by the Malisch¹⁵ and Curtis¹⁶ groups. Both have observed the formation of cis- and $trans-mono(\mu-silyl)(germyl)$ complexes upon photochemical treatment of complexes of the type $LM-ER_2-ML$, $LM =$ $(\eta^5$ -C₅H₅)Fe(CO)₂, Mn(CO)₅, etc., and E = Si and Ge. Furthermore, there are many examples of bis $(\mu\text{-silyl})$ -(germyl) complexes of tungsten, rhenium, and ruthenium in the literature.¹⁷

From Scheme I one may see that the recombination of the Si-Si bond from the intermediate silyl-silylene complex $FpMeSi=Fe(CO)(SiMe₃)(\eta^5-C_5H_5)$ is the most favored reaction, with only minor products derived from loss of the coordinated silylene species, i.e. $FpSiMe₃$. No loss of $SiMe₂$ seems to occur from the isomeric intermediate $Me₂Si=$ $Fe(CO)(SiMe₂Fp)(\eta^5-C_5H_5)$. This is reminiscent of the chemistry of the systems $(\eta^5$ -C₅H₅)Fe(CO)(=SiMeR')SiR₃, where $R' = Me_3Si$ and Me_5Si_2 , which we have recently reported lead to isomerized Fp-oligosilanes, e.g. eqs 8a,b.^{3d}

$$
FpSiMe2SiMe2SiMe3 \xrightarrow{h\nu} FpSiMe(SiMe3)2 (8a)
$$

$$
FpSiMe2SiMe2SiMe2SiMe3 \xrightarrow{h\nu} FpSi(SiMe3)3 (8b)
$$

The re-formation of the Si-Si bond reported herein **for** complex I is the first example of such a re-formation for an Fp-disilane. Other studies in our laboratory have shown that changing the η^5 -C₅H₅ ligand for the η^5 -C₉H₇, π -indenyl, ligand results in a similar recombination in $(\eta^5$ -C₉H₇)Fe(CO)₂-disilanes leading to isomerization reactions. These results, illustrated in eq 9, will be the focus

of a future publication.
\n
$$
(\eta^5-C_9H_7)Fe(CO)_2SiMePhSiMe_3 \rightarrow
$$
\n
$$
(\eta^5-C_9H_7)Fe(CO)_2SiMe_2SiMe_2Ph
$$
\n(9)

The photochemistry of the mixed-metal-substituted disilane III, $FpSiMe₂SiMe₂Fc$, is dominated by the capacity of the Fp system to photoeject a CO ligand, thereby activating the disilane ligand. Two major products are observed from photochemical treatment of III, $\rm{FpSiMe_{2}Fc},$ VI, and $FpSiMe₃$ (eq 10). Both complexes are stable activating the disilane lige
observed from photochemic
VI, and FpSiMe₃ (eq 10).
FpSiMe₂SiMe₂Fc $\stackrel{h\nu}{\longrightarrow}$ FpSiMe₂Fc (

$$
\text{FpSiMe}_2\text{SiMe}_2\text{Fc} \xrightarrow{h\nu} \text{FpSiMe}_2\text{Fc} (75\%) + \text{FpSiMe}_3 (25\%) \quad (10)
$$

under the reaction conditions, i.e. photochemical treatment for **2-4** h, but prolonged irradiation leads to Fe-Si bond cleavage as determined by the formation of $[(\eta^5-C_5H_5) Fe(\text{CO})_2$ ₂. No stabilization of the Si-Si bond is imparted by the Fc group in this system. The fate of the silicontime.

containing portion of the complexes is unknown at this

time.

The mixed-metal silane VI was conveniently synthesized

by a more direct method for further proof of structure (eq

11).

FcSiMe₂Cl + Fp⁻Na⁺ $\frac{THF}{m}$ The mixed-metal silane VI was conveniently synthesized by a more direct method for further proof of structure (eq 11).

$$
\text{FcSiMe}_2\text{Cl} + \text{Fp}^-\text{Na}^+ \xrightarrow{\text{THF}} \text{FpSiMe}_2\text{Fc} + \text{NaCl} \qquad (11)
$$

Photolysis of FpSiMe₂SiMe₂Cl in inert solvents is also a facile process and would be expected to lead to two major Fp products, FpSiMe₃ and FpSiMe₂Cl. As monitored by 29Si , 13C , and 1H NMR spectroscopy, these two products are obtained in the ratio **1:4.** Trace amounts of *(q5-* C_5H_5)Fe(CO)₂Cl are also observed via infrared monitoring $[\nu(CO)$ (THF) 2045, 1980 cm⁻¹]; however, we made no attempt to isolate this complex.

It is becoming clear that the photochemistry of disilane groups bonded to the Fp system exhibit a range of chemistry dependent upon the nature of the other groups attached to the disilane. This is partially understandable in the light of recent observations by the Turner group that suggest the loss of SiMe_2 from the intermediate silyl-silylene complex $(\eta^5$ -C₅H₅) Fe(CO) (=SiMe₂)SiMe₃ is a photochemical event; i.e., in the dark it is a stable species in the presence of both excess CO and PPh_3 .¹⁸

From the various results obtained above, and also from the results previously published using the general system $(\eta^5$ -C₅H₅)Fe(CO)₂Si₂Ph_nMe_{5-n}^{3b} it seems that when FpSiMe₃ is one of the expected products from SiR_2 expulsion from Fp-disilane complexes, the yield obtained is generally lower than the alternative $FpSiR₃$ complexes.

⁽¹⁵⁾ Malisch, W.; Ries, W. Angew. Chem., Int. Ed. Engl. 1978, 17, 120.
(16) Job, R. C.; Curtis, M. D. Inorg. Chem. 1973, 12, 2514.
(17) (a) Henken, G.; Weiss, E. Chem. Ber. 1973, 106, 1747. (b) Cowie,
M.; Bennett, M. J. I **Elder, M.** *Inorg. Chem.* **1970, 9, 762.**

⁽¹⁸⁾ Haynes, A. Ph.D. Thesis, University of **Nottingham. We wish to thank Dr. Jim Turner for a copy of this Thesis prior to publication.**

This suggests that when the various silyl-silylene intermediate complexes involve an equilibrium between **Fe==** SiMe₂ and Fe=SiMeR, $R = Ph$, Fc, and Cl, it is the SiMe₂ group that is preferentially lost upon recoordination of the CO ligand, although that is clearly not true for the system studied here where $R = Fp$. This observation may be of use in devising strategies for the isolation of pure silylene complexes of the type LM=SiR₂.

Experimental Section

All reactions were performed in dry, oxygen-free solvents in atmospheres of N2 or Ar. Synthesis of (qs-C H5)Fe(C0)z-Na+,'g (q5-Cas)Fe(\$-CsH4)Zi,11 C1SiMe&3iMe2C1, **28** FpSiMe&3iMezC1,' and FpSiMe₂SiMe₂Fp⁵ were performed by using literature procedures. Starting silicon compounds Me₂SiCl₂ and Me₂SiHCl were purchased from Petrarch Systems, Inc. Transition-metal complexes $[(\eta^5-C_5H_5)Fe(CO)_2]_2$ and *(chloromercurio)ferrocene* were purchased from Strem Chemicals.

NMR spectra were recorded on a Bruker NR **200** MHz spectrometer, and IR spectra were recorded on a Perkin-Elmer **1600** FT IR spectrophotometer. Elemental analyses were performed by Galbraith Laboratories, Knoxville, TN.

Synthesis of FcSiMe₂SiMe₂Fc (II). To a stirred solution of **1,2-dichlorotetramethyldisilane (1.4** g, **7.5** mmol) in **25** mL of THF at -25 °C was added slowly a 60-mL solution of ferrocenyllithium obtained from 6.3 g (15 mmol) of (chloromercurio)ferrocene. The reaction mixture was stirred at this temperature for 30 min and then brought to room temperature and stirred for **20** h. The solvent was removed, the orange residue was extracted with **50** mL of hexane, and the mixture was filtered. The filtrate was concentrated, and vacuum sublimation of the residue at **50** ^oC (0.2 mmHg) removed the impurity of Bu₂Hg. The residue was recrystallized from hexane to yield orange crystals of 11, **1.05** g (29%), mp **124-125** °C. Anal. Calcd for C₂₄H₃₀Fe₂Si₂: C, 59.21; H, 6.16. **Found:** C, 59.58; H, 6.32.

Synthesis of FpSiMezSiMe2Fc **(111).** To **60** mL of a cooled (0 "C) THF solution of ferrocenyllithium, obtained from **2.0** g **(4.75** mmol) of **(chloromercurio)ferrocene,** was added dropwise **1.56** g **(4.75** mmol) of FpSiMezSiMezCl in **15** mL of THF. The solution was stirred at 0 "C for **1** h, permitted to warm to room temperature, and stirred for **20** h. The solvent was removed under vacuum, the residue was extracted with 50 mL of hexane, and the mixture was filtered. The filtrate, after concentration to 10 mL, was placed upon silica gel column, 2.5×25 cm. Elution with hexane yielded an orange yellow band, which was collected. After removal of the solvent, an orange liquid was obtained, which also had an impurity of $Bu₂Hg$ that was removed by vacuum sublimation at 50 °C (0.2 mmHg). The residue was recrystallized from 80:20 hexane/methylene chloride solvent mixture to give or-**80:20** hexane/methylene chloride solvent mixture to give or- ange-yellow crystah of III,O.86 g **(38%),** mp **104** "C. Anal. Calcd for C21H28Fe20&3i2: C, **52.72;** H. **5.44.** Found: C, **53.09;** H, **5.68.**

Synthesis of FpSiMe2Fc **(VI).** To **60** mL of a THF solution of $[\eta^5$ -C₅H₅Fe(CO)₂]⁻Na⁺ obtained from 1.0 g (2.82 mmol) of $[\eta^5-C_5H_5Fe(CO)_2]_2$ was added dropwise 1.65 g (5.92 mmol) of FcSiMezCl (VIII) in **10** mL of THF at **-25** "C. After **30** min the temperature was raised to room temperature and the reaction mixture was stirred for an additional **18** h. The solvent was removed under vacuum, and the residue was extracted with **50** mL of hexane. Salts were filtered off, and the filtrate was concentrated to **10** mL and chromatographed on a silica gel column **(2.6 X** *20* cm). Elution with hexane produced a yellow band, which gave **0.12** g of ferrocene. The second fraction produced an orange-yellow band, which after removal of solvent gave an orange-yellow solid that was recrystallized from 90:10 hexane/ methylene chloride solvent mixture to yield orange crystals of VI, 1.38 g (58%), mp 101-102 °C. Anal. Calcd for $C_{19}H_{20}Fe_2O_2Si$: **1.38 8, 1.48** Found: C, 54.20; H, 4.72.
 Synthesis of FcSiMe₂Cl (VIII). Ferrocenyllithium, prepared

from 6.3 g (15 mmol) of **(chloromercurio)ferrocene** and 31.0 mmol of n-butyllithium in *60* mL THF, was added slowly and dropwise

at **-25** "C to **7.8** g **(60.5** "01) of Me@iClz in **20 mL** of THF. The mixture was stirred for **30** min and then allowed to stir at room temperature for 20 h. Excess of Me₂SiCl₂ and solvent were removed under vacuum, the orange slurry was extracted with hexane (50 mL), and the mixture was filtered. The solvent was evaporated from the filtrate, and the resulting red oil was distilled through a small column. A trace amount of ferrocene that had sublimed into the distillation head was removed. Two fractions were collected, the first of which was light orange in color composed of di-n-butylmercury together with traces of ferrocene, bp **61-62** "C/0.5 mmHg. The second fraction produced VI11 as a dark red oil, bp 98-100 °C/0.5 mmHg (3.25 g, 78%) [lit.⁹ bp 135-138 °C/1.5 mmHg (yield **lo%)].**

Synthesis of FcSiMe2Fc **(VII).** To **10** mL of a THF solution of VI11 **(1.5** g, **5.4** mmol) at **-25** "C was added slowly, with vigorous stirring, **40** mL of ferrocenyllithium, prepared from **2.26** g **(5.4** mmol) of (chloromercurio)ferrocene and 11.0 mmol of *n*-butyllithium. The addition was conducted over a period of **45** min. The mixture was stirred for **30** min and then allowed to warm to room temperature. After the mixture was stirred for an ad-
ditional 20 h, the solvent was evaporated and the resulting orange slurry was extracted with 40 mL of hexane. Lithium chloride was filtered off and the filtrate concentrated to **10** mL. Chromatography of resulting orange oil on silica gel column, 2×10 cm, with hexane produced first a small amount of ferrocene and a second band that produced an orange solid, which after recrystallization from hexane gave **1.10** g **(48%** yield) of the desired compound, mp 76 °C. Anal. Calcd for C₂₂H₂₄Fe₂Si: C, 61.68; H, **5.60.** Found: C, **61.45;** H, **5.53.**

Synthesis of FcSiMe₂H (IX). Ferrocenyllithium prepared from **6.3** g **(15** mmol) of **(chloromercurio)ferrocene** and **31.0** mmol of n-butyllithium in **60** mL of THF was added dropwise to **2.01** g **(21.3** mmol) of dimethylchlorosilane in **15** mL of THF at **-25** and stirred for 20 h. Workup as described above produced 2.4 g **(66%)** of the dark red liquid **ferrocenyldimethylsilane** (IX), bp **65-66** "C/0.5 mmHg [lit.9 bp **160 "C/19** mmHg (yield **11%)].**

Synthesis of FcSiMezOMe **(V).** At 0 "C, a solution **0.74** g **(23** mmol) of methanol in **10** mL THF was added over a period of **40** min with stirring to a solution of **2.06** g **(7.4** mmol) of FcSiMezCl (VIII) and **0.75** g **(7.4** mmol) of triethylamine dissolved in **40** mL of THF. A white precipitate of triethylamine hydrochloride started separating immediately. After the mixture was stirred for **2** h at room temperature, the solvent was evaporated and **20** mL of hexane was added to complete precipitation of triethylamine hydrochloride. After filtration the solvent was evaporated and the resulting oil was distilled through a small column to produce **ferrocenyldimethylmethoxysilane** (X), bp **(5.4%** yield)]. **104-106 °C/2 mmHg (1.12 g, 55%) [lit.^{10a} bp 102-105 °C/2 mmHg**

Photochemical Treatment of Complexes. Photolyses were performed by using a **450-W** Hanovia medium-pressure mercury lamp on degassed solutions in hexane, C_6D_6 , or mixtures of MeOH and C_6D_6 solutions, either in Pyrex NMR tubes or in quartz test tubes. Argon atmospheres were used in preference to N_2 .

Photolysis of I. In a typical reaction $FpSiMe₂SiMe₂Fp$ (I) $(0.3 \text{ g}, 0.64 \text{ mmol})$ in 2 mL of C_6D_6 was irradiated and the reaction monitored by ²⁹Si NMR spectroscopy, and after 4 **h** all the starting material was consumed. The solvent was removed under vacuum, the residue was extracted in hexane, and the mixture was placed upon a silica gel column $(1 \times 5 \text{ cm})$. Elution with hexane produced first a yellow band, which on collection yielded FpSiMe₃, 35 mg (22%), and a second yellow band that was eluted with $50:50$ mixture of hexane/methylene chloride and produced traces of an unidentified yellow **oil** [IR v(C0) (hexane) **1988** cm-'1. Finally, **a** red band was eluted with pure methylene chloride, which on evaporation yielded 120 mg (43%) of $(\eta^5-C_5H_5)_2Fe_2(CO)_2(\mu-CO)(\mu-SiMeSiMe_3)$, mp 140 °C. Anal. Calcd for C₁₇H₂₂Fe₂O₃Si₂: C, **46.2;** H, **5.02.** Found: C, **46.8;** H, **5.45.**

Photolysis of FpSiMe₂SiMe₂Fc and FpSiMe₂SiMe₂Cl. A 0.1-0.15-g sample in 1 mL of C_6D_6 was irradiated for 1 h in a Pyrex NMR tube. The reaction was monitored by ²⁹Si NMR spectroscopy. The **spectral data** of various monody1 complexes formed were compared with authentic complexes.

Photolysis of **11.** A solution of 11, **0.22** g **(0.45** mmol), was dissolved in $2 \text{ mL of } C_6D_6$ in a quartz tube and irradiated over

⁽¹⁹⁾ King, R. B.; Bisnette, M. B. *J. Orgonomet. Chem.* **1964, 2, 15. (20) Sakurai, H.; Tominaga, K.; Watanabe, T.; Kumada, M.** *Tetrahedron Lett.* **1966,5493.**

a period of **25** h. No reaction was observed.

In a second experiment, **0.31** g **(0.64** mmol) of I1 was dissolved in a mixture of **2** mL of **C6D6** and **2** mL of MeOH in a quartz tube and the solution photolyzed under an argon atmosphere. The reaction was monitored by ²⁹Si NMR and IR spectroscopy. After **54** h no new products were observed. When the reaction was repeated under an O_2 atmosphere with O_2 -saturated solvents, all spectrum exhibited a single new resonance at **12.4** ppm assipable to FcSiMe₂OMe (V). the starting material had disappeared after 15 h and the ²⁹Si NMR

Photolysis of IX. A 0.12-g (0.49-mmol) sample of IX in a mixture of 1 mL **of** CsDs and **1** mL of MeOH in a quartz tube was photolyzed over a period of 32 h under scrupulously O₂-free conditions. IR and 29Si NMR monitoring of the reaction showed that no reaction occurred. When the reaction was repeated in an $O₂$ atmosphere complete conversion to V was observed.

Acknowledgment. Support of this research by the **88-02973),** via establishment of a Minority Research Center of Excellence in Materials Science, is gratefully acknowledged. K.H.P. thanks Professor M. Kumada for enjoyable and valuable discussions and suggestions.

Photochemical Conversion of a Disilanylene-Bridged Iron Dimer to Silylene-Bridged Iron Dimers

Keiji Ueno, Nagato Hamashima, Mamoru Shimoi, and Hiroshi Ogino"

Department of *Chemistry, Faculty of Science, Tohoku University, Aoba-ku, Sendai 980, Japan*

Received June 27, 1990

Photolysis of FpSiMe₂SiMe₂Fp (Fp = CpFe(CO)₂; Cp = η -C₅H₅) in C₆D₆ afforded, in the early stages of photolysis, a mixture of the geometric isomers $[CpFe(CO)]_2(\mu$ -CO){ μ -SiMe(SiMe₃)} and $[CpFe(CO)]_2$ - $(\mu\text{-}Sim\text{e}_2)_2$ (a small amount). Prolonged photolysis gave *cis-* and *trans*-[CpFe(CO)]₂($\mu\text{-}Sim\text{e}_2)_2$ almost quantitatively. The structure of a geometric isomer of $[CpFe(CO)]_2(\mu\text{-}CO)(\mu\text{-}Sime(SiMe_3))$ was determined by X-ray crystallography. Crystal data: $C_{17}H_{22}Fe_2O_3Si_2$, triclinic in the space group $P1$, $a = 9.555$ (3) Å, $b = 14.031$ (3) Å, $c = 7.986$ (2) Å, $\alpha = 91.18$ (3)°, $\beta = 113.56$ (3)°, $\gamma = 101.72$ (3)°, $V = 955.5$ (4) Å³, $Z = 2$, and $R(F_o) = 0.040$ for 3792 reflections with $|F_o| > 3\sigma(F_o)$.

Introduction

Photolytic rearrangement of disilanyliron complexes $FpSi₂R₅$ (Fp = CpFe(CO)₂; Cp = η -C₅H₅; R = alkyl, aryl) has been proposed to proceed via a mechanism containing silyl(silylene)iron complexes $CpFe(CO)(SiR₃)$ $(\equiv$ Si $R₂)$ as key intermediates.^{1,2} Rapid alkyl or aryl scrambling (1,3-alkyl or -aryl migration) occurs in the silyl(silylene)iron intermediates. The proposed mechanism has been strongly supported by the observation that isomeric $FpSi₂R₅$ compounds produce the same relative proportions of $FpSiR₃$ ^{1d,e} and also our recent study on the photolysis of alkoxysubstituted disilanyliron complexes $FpSi₂R_{5-m}(OR)_m$, which leads to the formation of the alkoxy-bridged bis(sily1 ene)iron complexes.³ This paper describes the photolysis of FpSiMe₂SiMe₂Fp (1).⁴ Judging from the findings accumulated for the photolysis of disilanyliron complexes, several products had been expected to be formed as follows: FpSiMe₃, FpSiMe₂Fp, and/or $[CpFe(CO)]_2(\mu CO$)(μ -SiMe₂). However, actual photolysis did *not* give these products *at all* but $[CpFe(CO)]_2(\mu$ -CO) μ -SiMe- $(SiMe₃)|$ **(2)** and $[CpFe(CO)]_2(\mu-SiMe₂)_2$ **(3).**

Results and Discussion

A C_6D_6 solution of 1 in a flame-sealed Pyrex NMR tube was irradiated by using a 450-W medium-pressure Hg lamp. The 'H NMR spectral change upon the irradiation is shown in Figure **1.** The spectrum obtained after **2** h irradiation (Figure lb) shows that 1 disappears almost completely. In turn, all possible geometrical isomers for **2 (2a-c)** are formed. Figure lb also shows the formation

of small amounts of **3a** and **3b.** Further irradiation results

^{(1) (}a) Pannell, K. H.; Rice, J. R. J. Organomet. Chem. 1974, 78, C35.
(b) Pannell, K. H.; Cervantes, J.; Hernandez, C.; Cassias, J.; Vincenti, S.
Organometallics 1986, 5, 1056. (c) Tobita, H.; Ueno, K.; Ogino, H. Chem.
L

Ado. Chem. **Ser. 1990,** *No.* **224,329. (2) Pannell, K. H.; Wang, L.-J.; Rozell, J. M.** *Organometallics* **1989,** *8,* **550.**

^{(3) (}a) Ueno, K.; Tobita, H.; Shimoi, M.; Ogino, H. *J. Am. Chem. Soc.*
1988, *110, 4092.* (b) Tobita, H.; Ueno, K.; Shimoi, M.; Ogino, H. *J. Am.
Chem. Soc.* 1990, *112*, 3415.

⁽⁴⁾ Pannell and Sharma also report the photolysis of FpSiMe2SiMePFp: Pannell, K. H.; Sharma, H. *Organometallics,* **pre- ceding paper in this issue.**