

Subscriber access provided by American Chemical Society

A (.eta.1-iminoacyl)zirconocene complex formed by alkyl isocyanide insertion into the metal-to-carbon bond of (.eta.2-formaldehyde)zirconocene

Gerhard. Erker, Miguel. Mena, Carl. Krueger, and Ralf. Noe

Organometallics, **1991**, 10 (4), 1201-1203• DOI: 10.1021/om00050a064 • Publication Date (Web): 01 May 2002 **Downloaded from http://pubs.acs.org on March 8, 2009**

More About This Article

The permalink<http://dx.doi.org/10.1021/om00050a064>provides access to:

- Links to articles and content related to this article
- Copyright permission to reproduce figures and/or text from this article

A *(9'-* **I minoacyi)zirconocene Complex Formed by Aikyi Isocyanide Insertion into the Metal to Carbon Bond of** (**q2-Formaidehyde)zirconocene**

Gerhard Erker^{*} and Miguel Mena^t

Institut für Organische Chemie der Universität Münster, Orléans-Ring 23, D-4400 Münster, FRG

Carl Kruger and **Ralf Noe**

Received May 24, 1990 Max-Planck-Institut fur Kohlenforschung, Kaiser- Wilhelm-Platz 1, 04330 Mulheim a. d. Ruhr, FRG

Summary: The $(\eta^2$ -formaldehyde)zirconocene complex $(Cp₂ZroCH₂)₂$ (1) reacts with alkyl isocyanides CN-R $(2a-c)$ $(R = -CH₂SiMe₃, -CH₂CMe₃, -CMe₂CH₂CMe₃)$ to give the insertion products $[CD_2ZrOCH_2C(=NR)]_2$ (3a-c). The doubly oxygen bridged C_{2h} -symmetric metallatricyclic complexes **3** contain **(7l-iminoacyl)zirconocene** moieties. The (trimethylsilyl)methyl isocyanide insertion product 3a was characterized by X-ray diffraction. It crystallizes in space group \overrightarrow{PI} with cell parameters $a = 7.977$ (1) \overrightarrow{A} , *b* $= 10.162$ (1) Å, $c = 11.753$ (1) Å, $\alpha = 64.53$ (1)^o, $\beta =$ 85.27 (1)^o, γ = 79.89 (1)^o, $Z = 1$, $R = 0.024$, and R_w = **0.035. The** C=N bond length in **3a** is **1.274 (2)** A; the Zr-C distance of the **(7'-iminoacy1)zirconocene** moiety is **2.374** (I) A.

Group **4** metallocene complexes of the general type $\mathbf{Cp}_2\mathbf{M}(\mathbf{X})$ (-CR_nY) with Y having *n*-donor properties [e.g. $-\overline{CR}_n$ Y being acyl ($-CR=O$), iminoacyl ($-CR=NR'$), phosphinomethyl ($-CH_2PR_2$), or alkoxymethyl ($-CH_2OR$)] are known to adopt either one of two possible n^2 -bonding modes ("Y-outside" A, "Y-inside" B) or a "n¹-Y-outside"

 η^2 -N-outside (A) η^2 -N-inside (B) η^1 -N-outside (C)

type structure (C). Calculations have shown that for most ligand types $-CR_nY$ the structural situations A-C correspond to local minima on the hypersurface;¹ η^2 -type structures have been verified by experiment to be the global minima for numerous examples of acyl- or iminoacyl-Cp₂M and related complexes.² We have now found a stable $(n^1$ -iminoacyl)zirconocene complex, for which the η^1 - to η^2 -R'N=CR[Zr] rearrangement is precluded by incorporation of the functional group into a small metallacyclic ring system. 3

Starting material for our synthesis is $(\eta^2$ -forma1dehyde)zirconocene **(l),** prepared by hydrozirconation of carbon monoxide followed by removal of Cp_2ZrCl_2 by means of treatment with **2** equiv of methyllithium, as previously described.⁴ The complex $(\eta^2$ -CH₂O)ZrCp₂ is

Figure **1. Two** projections of the molecular structure of the **(7'-iminoacy1)zirconocene** complex **38.**

isolated as a doubly 0-Zr bridged dimer **1** ['H NMR (benzene-d₆): δ 2.42. ¹³C NMR (benzene-d₆): δ 64.0 (¹J_{CH} = 153 Hz, CH₂)]. According to the X-ray crystal structure analysis, the ZrOCH_2 moiety in 1 has a pronounced metallaoxirane character $[d(C(1)-Zr) = 2.243 \text{ (3) Å}, d(C(1)-O) = 1.395 \text{ (4) Å}.$ ⁴

The **(q2-f0rmaldehyde)zirconocene** dimer **1** reacts with alkyl isocyanides CN-R $(2a-c)$ $(R = CH_2SiMe_3, CH_2CMe_3,$ $\text{CMe}_2\text{CH}_2\text{CMe}_3$) at room temperature to give the C_{2h} -
symmetric insertion products $3a-c$. Complex $3a$ (R = $CH₂SiMe₃$) exhibits an IR ν (C=N) band at 1596 cm⁻¹ and a 13 C NMR (CDCl₃, 50 MHz) imino carbon resonance at

0276-7333/91/2310-1201\$02.50/0 1991 American Chemical Society

⁺Present address: Departamento de Quimica Inorganica, Alcala de Henares, Madrid, Spain.

⁽¹⁾ Tatsumi, K.; Nakamura, A.; Hofmann, P.; Stauffert, P.; Hoffmann, R. J. Am. Chem. Soc. 1985, 107, 4440. Hofmann, P.; Stauffert, P.; Tatsumi, K.; Nakamura, A.; Hoffmann, R. Organometailics 1985, 4, 404.
(2) Durfee, L. D

⁽⁴⁾ Erker, G.; Hoffmann, U.; Zwettler, R.; Betz, P.; Kniger, C. *Angew. Chem.* 1989,101,644; *Angew. Chem., Znt. Ed. Engl.* 1989,28,630. Erker, G. *Angew. Chem.* 1989,101,411; *Angew. Chem., Int. Ed. Engl.* 1989,28, 397. Erker, G.; Hoffmann, U.; Zwettler, R.; Krüger, C. J. Organomet. *Chem.* 1989, 367, C15.

R = -CHl-SiMe, *(o),* -CHl-CMea **(b),** -CMO~-CH~-CMO~ *(C)*

 δ 220.2. Both values are probably typical of $(\eta^1$ -iminoacy1)zirconocene complexes but are only slightly out of the range of δ (C=N) and ν (C=N) values as reported for many $(\eta^2$ -iminoacyl)zirconium complexes.² The ring CH₂ group in **3a** shows NMR signals at δ 88.3 (¹³C, ¹J_{CH} = 140 Hz) and δ 4.67 (¹H). Remarkably, the latter resonance exhibits a rather strong coupling with the nitrogen-bound $-CH_2\sin Me_3$ protons at δ 2.99 ($^5J_{HH}$ = 1.6 Hz). Complexes **3b,c** show similar spectroscopic features.

Complex **3a** was characterized by an X-ray crystal structure analysis. It has revealed that both metallacyclic Zr-C bonds of the binuclear **(f0rmaldehyde)zirconocene** starting material have undergone insertion of the CN-CH2SiMeg reagent and the dimeric metallatricyclic structure has been retained. Ring enlargement of the ZrOCH₂ three-membered rings has led to the formation of two symmetry-equivalent planar four-membered mecomplexance to the same of δ (C=N) and ν (C
range of δ (C=N) and ν (C
 η ²-iminoacyl)zirconium
in 3a shows NMR signa
and δ 4.67 (¹H). Remarks
a rather strong coupl
CH₂SiMe₃ protons at δ
Bb,c show si

tallacycles [the sum of the bonding angles $O-Zr-C(12)$] $(59.9 (1)°), Zr-C(12)-C(11) (93.6 (1)°), C(12)-C(11)-O$ $(102.1 \ (1)$ ^o), and C (11) -O-Zr $(104.4 \ (1)$ ^o) is 360.0°].

The iminoacyl functional group is clearly η^1 -bonded to zirconium [angle $C(12)-N-C(13)$ 117.9 (1)^o, bond distances Zr-C(12) 2.374 (1) **A,** C(12)-N 1.274 (2) A]. While the metal to carbon bond in $(\eta^1$ -iminoacyl)zirconocene **3a** is longer than typically found in **(q2-iminoacyl)zirconocene** complexes (range 2.21-2.25 **A),2** there seems to be no differentiation in the $C=N$ distances between the two isomeric iminoacyl coordination modes $[$C=N$ bond$ lengths in $(\eta^2$ -iminoacyl)zirconium complexes have been reported to range from 1.26 to 1.29 A].2 mplexes.² The ring CH₂ group (26)

at δ 88.3 (¹²_{CH2} = 140 Hz) (26)

by, the latter resonance exhibits (2010)

g with the nitrogen-bound (2011)

g with the nitrogen-bound (2011)

g with the nitrogen-bound (2012)

The four-membered $\rm Cp_2ZrOCH_2C(=NR)$ metallacycles are coupled via bridging O-Zr bonds. The central Zr_2O_2 ring of $3a$ is planar [angles $O-Zr-O^* 64.8 (1)^\circ$, Zr- $O-Zr^*$ 115.2 (1) $^{\circ}$]. The sum of bonding angles around the tricoordinate oxygens is 360° [Zr-O-Zr* 115.2 (1)°, Zr-O-C(11) 104.4 (1)^o, Zr*-O-C(11) 140.4 (1)^o]. Thus, the central framework of complex **3a** is oriented coplanar. Actually, coplanarity extends as far **as** to the peripheral N and C(13) (and their symmetry equivalents). Only the Cp ring systems, the $-SiMe₃$ substituents at C(13), and hydrogen atoms at C(11) are oriented away from the central major plane of complex **3a.** The angle between the normals to the η -cyclopentadienyl rings at Zr is 126.2°. Distances to the midpoints amount to 2.24 and 2.25 A, respectively.

It is interesting to note that the zirconium to oxygen bonds in **3a** connecting the four-membered metallacyclic mononuclear subunits are markedly shorter at $d(Zr-O^*)$
= 2.175 (1) Å than the Zr-O bonds (2.194 (1) Å) inside the lateral metallacycles. This is contrary to what is usually observed for many similar types of oxygen-bridged Cp_2MOX dimers.⁵ Probably, the electron-withdrawing properties of the η ¹-iminoacyl functionality leads to an increased electrophilicity of the zirconium center in the metallaoxetane unit of **3a.**

Table 11. Atomic Coordinates of **3a**

atom	x	y	z
Zr	0.0387(1)	0.0599 (1)	0.1217(1)
Si	$-0.4497(1)$	0.3400(1)	0.3330(1)
0	$-0.1465(1)$	0.0151(1)	0.0202(1)
N	$-0.3709(2)$	0.1189 (2)	0.2438(1)
C(1)	-0.0087 (3)	0.3248(2)	$-0.0447(2)$
C(2)	$-0.0569(3)$	0.3317(2)	0.0679 (2)
C(3)	0.0871(3)	0.2869(2)	0.1419(2)
C(4)	0.2254(2)	0.2535(2)	0.0722(3)
C(5)	0.1620(3)	0.2788(2)	$-0.0433(2)$
C(6)	0.0625(4)	$-0.2042(2)$	0.2896(2)
C(7)	0.0051(3)	$-0.1173(2)$	0.3520 (2)
C(8)	0.1294(3)	$-0.0400(2)$	0.3485 (2)
C(9)	0.2701(3)	$-0.0776(3)$	0.2847(2)
C(10)	0.2272(4)	$-0.1819(3)$	0.2483(2)
C(11)	$-0.3067(2)$	0.0469(2)	0.0733(2)
C(12)	$-0.2555(2)$	0.0895(2)	0.1729 (1)
C(13)	$-0.3198(2)$	0.1633(2)	0.3381(2)
C(14)	$-0.5176(3)$	0.4706(2)	0.1693(2)
C(15)	$-0.6421(3)$	0.2931(3)	0.4351(2)
C(16)	$-0.3151(3)$	0.4288(3)	0.3930 (2)

Experimental Section

All reactions were carried out under argon by using Schlenktype glassware. Solvents were dried and distilled under argon prior to use. For additional general information, including a list of spectrometers used, see ref 6. The $(\eta^2$ -formaldehyde)of spectrometers used, see ref 6. zirconocene dimer **1** was prepared **as** previously described.'

Reaction of 1 with $\text{CN--CH}_2\text{SiMe}_3$. To a suspension of 410 mg (0.82 mmol) of 1 in 20 mL of toluene was added with stirring 0.23 mL (1.63 mmol) of (trimethylsily1)methyl isocyanide (2a) at ambient temperature. The resulting orange suspension was stirred overnight at 40 **"C.** From the reaction mixture a colorless solid precipitated at room temperature, which was collected by filtration. Cooling of the filtrate to -30 °C gave additional product. The combined precipitates were washed with pentane and dried in vacuo. Total yield of 3a: 0.50 g *(84%).* Mp: 233 **"C** (DTA) dec. Anal. Calcd for C₃₂H₄₆N₂O₂Si₂Zr₂ (729.3): C, 52.70; H, 6.36; N, 3.84. Found: C, 52.55; H, 6.66; N, 3.81. IR (KBr): ν (C=N) 1596 cm-'. MS (70 eV, EI): *m/z* = 726 (l%, M+), 613 *(5,* M+ $-CNCH₂SiMe₃$), 583 (2), 500 (28), 470 (40), 390 (19), 220 (43), $NCH₂$), 0.16 (s, 18 H, Si(CH₃)₃). ¹³C NMR (CDCl₃, 50 MHz): δ $ZrOCH₂$), 51.0 (¹J_{CH} = 123 Hz, NCH₂Si), -1.9 (¹J_{CH} = 119 Hz, $Si(CH_3)_3$. X-ray crystal structure analysis of 3a: $C_{32}H_{46}N_2O_2$ - $Si₂Zr₂$, MW = 729.3, space group PI, $a = 7.977$ (1) $A, b = 10.162$ (1) \AA , *c* = 11.753 (1) \AA , α = 64.53 (1)^o, β = 85.27 (1)^o, γ = 79.89 (1)^o, $V = 846.8 \text{ Å}^3$, $d_{\text{calc}} = 1.43 \text{ g cm}^{-3}$, $\mu = 7.03 \text{ cm}^{-1}$, $Z = 1$, $\lambda =$ 0.71069 Å, measured reflections 4930 (±h, ±k, +l), (sin θ)/λ_{max} = 0.70, 4727 observed reflections (I > 2σ(I)), 181 refined parameters, $R = 0.024$, $R_w = 0.035$, $\rho_{max} = 0.55$ e/ \AA^3 . The structure was solved by the heavy-atom method, and hydrogen atom positions were calculated and kept fixed in the final refinement. 73 (100). 'H NMR (CDCl3, 200 MHz): *6* 6.01 *(8,* 20 H, Cp), 4.67 $(t, {}^{5}J_{\text{HH}} = 1.6 \text{ Hz}, 4 \text{ H}, ZrOCH_2), 2.99$ (t, ${}^{5}J_{\text{HH}} = 1.6 \text{ Hz}, 4 \text{ H},$ 220.2 (C=N), 108.8 (${}^{1}J_{CH} = 172$ Hz, Cp), 88.3 (${}^{1}J_{CH} = 140$ Hz,

Reaction of **1** with **CN4H&(CH3),** Complex **1** *(0.50* g, 0.99 mmol) was suspended in 40 mL of toluene. Neopentyl isocyanide (2b) (0.19 **g,** 1.99 mmol) was added at room temperature with stirring. After 20 min, an orange solution was obtained. The reaction mixture was heated at 50 °C overnight with stirring. Cooling to room temperature gave **3b as** a white solid. A second product fraction was obtained from the filtrate at -30 °C. Combined yield of **3b:** 0.60 g (86%). Mp: 248 **"C** dec. Anal. Calcd for C₃₄H₄₈N₂O₂Z_{r₂ (697.2): C, 58.57; H, 6.65; N, 4.02. Found:} C, 58.48; H, 6.92; N, 4.13. IR (KBr): ν (C=N) 1620, 1608 cm⁻¹.
MS (70 eV, EI): $m/z = 694$ (0.1%, M⁺), 597 (2, M⁺) $CNCH₂CMe₃$, 567 (3), 500 (19), 470 (63), 390 (26), 220 (43), 57 (100). **'H** NMR (CDCl,, 200 MHz): *6* 6.08 **(a, 20** H, Cp), 4.78 (t, *5JHH* = 1.6 **Hz,** ZrOCHa), 3.07 (t, *'Jm* = 1.6 Hz, **NCHJ,** 1.13 *(8,* **18 H, C(CH₃)₃**. ¹³C NMR (CDCl₃, 50 MHz): *δ* 223.8 (C==N), 108.8

⁽⁶⁾ Erker, G.; Dorf, U.; **Cziech,** P.; Petersen, J. L. *Organometallics*

Reaction of 1 with $CNC(CH_3)_2CH_2C(CH_3)_3$ **.** To a suspension of 0.52 g (1.03 mmol) of **1** in 30 mL of toluene was added 0.38 mL (2.16 mmol) of $1,1,3,3$ -tetramethylbutyl isocyanide $(2c)$ at room temperature with stirring. After 1 h, a clear yellow solution was obtained, which was concentrated to 15 mL and cooled to -30 °C to give 0.65 g (82%) of 3c as slightly yellow needles, mp 160 °C (DTA) dec. Anal. Calcd for $C_{40}H_{58}N_2O_2Zr_2$ (781.4): C, 61.49; H, 7.48; N, 3.59. Found: C, 61.78; H, 7.56; N, 3.60. IR (KBr): ν (C=N) 1621 cm⁻¹. MS (70 eV, EI): $m/z = 778$ (1%, M'), 500 (3), 470 (35), 390 (15), 220 (16), 57 (100). 'H NMR **(benzene-d6,** 200 MHz): **6** 5.86 (s,20 H, Cp), 5.02 (s,4 H, ZrOCH2), $C(CH_3)$. ¹³C NMR (benzene-d₆, 50 MHz): δ 215.9 (C=N), 110.3 *('J_{CH}* = 172 Hz, Cp), 85.1 *('J_{CH}* = 139 Hz, ZrOCH₂), 64.2 (NCMe₂), 57.8 *('J_{CH}* = 124 Hz, CCH₂C), 32.4 (CMe₃), 32.4 *('J_{CH}* = 125 Hz, 1.83 (s, 4 H, CCH₂C), 1.29 (s, 12 H, C(CH₃)₂), 1.26 (s, 18 H, $C(CH_3)_2$, 30.2 (${}^1J_{CH}$ = 124 Hz, $C(CH_3)_3$).

Acknowledgment. Financial support from the Fonds der Chemischen Industrie and the Alfried Krupp von Bohlen und Halbach-Stiftung is gratefully acknowledged. M.M. thanks the Ministerio de Educacion y Ciencia, Madrid, and the Alexander von Humboldt-Stiftung for a fellowship.

Registry **No. 1,** 88385-20-0; 2a, 30718-17-3; 2b, 72443-18-6; 2c, 14542-93-9; 3a, 132776-60-4; 3b, 132776-62-6; **3c,** 132776-61-5.

Supplementary Material Available: For **3a,** tables of detailed information on the crystal structure determination, final atomic position parameters, final thermal parameters, and interatomic distances and **angles** (7 pages); a **listing** of **observed** and calculated structure factors (16 pages). Ordering information is given on any current masthead page.

Synthesis of Alkoxymethyl Complexes from Metal Formyls

Dorothy H. Gibson,' Kathryn Owens, Santosh K. Mandal, William E. Sattich, and Jaime 0. Franco

> *Department of Chemistty, University of Louisville, Louisville, Kentucky 40292 Received July 23, 1990*

Summary: **Syntheses of seven alkoxymethyl complexes, M-CH,OR (R** = **Me, Et), from the corresponding metal formyls are described; the metals are manganese (compounds la-b, 2, and 3), rhenium (compounds 4 and 5), or molybdenum (compound 6). Four of these (lb and 3-5) are new compounds; the details of** the **syntheses of the other three have not been reported previously. Examples are given of three distinct synthetic routes; all routes requlre initiation by** the **action of an electrophile on the metal formyl complex. Variations in the procedures are dictated by the reactivity of the formyl complex and that of its protonated or alkylated form.**

Alkoxymethyl complexes are useful precursors to carbene complexes¹ and several other types of C_1 ligands to transition metals.2 A variety of methods have been re**ported** for their synthesis: (1) by reaction of a metal anion with a halomethyl ether? **(2)** by nucleophilic substitution on a halomethyl complex by an alcohol or an alkoxide, 4 (3) by reduction of a secondary alkoxycarbene complex, 5 (4) by alkylation of a cationic η^2 -formaldehyde complex,⁶ *(5)* by oxidative addition of a halomethyl ether to a coordinatively unsaturated complex,' (6) by hydride abstraction from a methyl complex followed by alkoxide addition,⁸ (7) by decarbonylation of an alkoxyacetyl complex. $9(8)$ by reduction of a metal carbonyl cation in the

(1) Brookhart, M.; Studabaker, W. B. Chem. Rev. 1987, 87, 411.

(2) (a) Cutler, A. R. *J. Am.* **Chem. SOC. 1979,101,604. (b) Markham,**

- **J.;** Tolman, **W.; Menard, K.; Cutler, A.** *J.* **Organomet. Chem. 1985,294,**
- 45.

(3) (a) Jolly, P. W.; Pettit, R. J. Am. Chem. Soc. 1966, 88, 5044. (b)
Green, M. L. H.; Ishaq, M.; Whiteley, R. N. J. Chem. Soc. A 1967, 1508.

(4) Davison, A.; Krusell, W. C.; Michaelson, R. C. J. Organomet.
Chem. 19
- (5) (a) Bodnar, T.; LaCroce, S. J.; Cutler, A. J. Am. Chem. Soc. 1980,
102, 3292. (b) Wong, W.-K.; Tam, W.; Gladysz, J. A. J. Am. Chem. Soc.
1979, 101, 5440.
- . **R.; Headford, C. E. L.; Marsden, K.; Roper,**
- (7) Thorn, D. L.; Tulip, T. H. J. Am. Chem. Soc. 1981, 103, 5984.

(8) Tam, W.; Lin, G.-Y.; Wong, W.-K.; Kiel, W. A.; Wong, V. K.; Gladysz, J. A. J. Am. Chem. Soc. 1982, 104, 141.

Table I. Summary of Synthetic Methods for Alkoxymethyl Com~lexes

compd	synth method	prod yield. $%$ ^{a} /reacn time
$cis\text{-}Mn(CO)$ ₄ $PPh_3(CH_2OCH_3)$ (1a) $cis\text{-}Mn(CO)$ ₄ PPh ₃ (CH ₂ OCH ₂ CH ₃) (1b) mer, trans- $Mn(CO)$ ₃ (PPh ₃) ₂ (CH ₂ OCH ₃) (2) same $mer, trans\text{-}Mn(CO)_{3} [P(OPh)_{3}]_{2} (CH_{2} OCH_{3})$ (3)	A A в с в	84/15 min 68/15 min 78/14 h $86^o/10$ min 80/3 h
mer, trans- $\text{Re(CO)}_3(\text{PPh}_3)_2(\text{CH}_2\text{OCH}_3)$ (4) same $mer, trans\text{-}Re(CO)_{3}[P(OPh)_{3}]_{2}(CH_{2}OCH_{3})$ (5)	с С в	$89/20$ min $86^{b}/15$ min $61/30$ min
cis- and trans-CpMo(CO) ₂ [P(OPh ₃)]CH ₂ OCH ₃ (6)	A	$63/5$ min

^a Product yields are based on reaction stoichiometry. ^b The isolated **carbene complex was used; the overall time and yield from the formyl complex are reported.**

presence of an alcohol,¹⁰ and (9) by reaction of a hydroxymethyl complex with an alcohol.¹¹ In addition to method 1, several others depend, indirectly, on the availability of a metal anion. Methods 1 and 2 are the ones which have been most commonly used. Although effective, method **1** is objectionable because of the toxicity of halomethyl ethers.

The present work includes method **3** but details examples of three distinct routes to alkoxymethyl complexes from neutral metal formyl complexes. All three routes utilize an electrophile to initiate further transformation of the formyl complex;12 the choice of method is dictated by the reactivity of the substrate and that of its protonated

⁽⁹⁾ Sisak, A.; Sampar-Szerencses, E.; Galamb, V.; Nemeth, L.; Ungvary, F.; Palyi, G. Organometallics 1989, 8, 1096.
(10) Bodnar, T.; Coman, E.; Menard, K.; Cutler, A. *Inorg. Chem.* 1982,

^{21, 1275.}

^{(11) (}a) Lin, Y. C.; Milstein, D.; Wreford, S. S. Organometallics 1983, 2,1461. (b) Nelson, G. 0. Organometallics 1983,2,1474. (c) Nelson, G.

^{0.;} Sumner, C. E. *Organometallics* 1986, 5, 1983. *(12)* For the preparations of the formyl complexes used in this work, **(12) For the preparations of the formyl complexes used in this work, see Gibson, D. H.; Owens, K.; Mandal, S. K.; Sattich, W. E.; Franco, J. 0. Organometallics 1989, 8, 498.**