Reaction of 1 with $CNC(CH_3)_2CH_2C(CH_3)_3$ **.** To a suspension of 0.52 g (1.03 mmol) of **1** in 30 mL of toluene was added 0.38 mL (2.16 mmol) of $1,1,3,3$ -tetramethylbutyl isocyanide $(2c)$ at room temperature with stirring. After 1 h, a clear yellow solution was obtained, which was concentrated to 15 mL and cooled to -30 °C to give 0.65 g (82%) of 3c as slightly yellow needles, mp 160 °C (DTA) dec. Anal. Calcd for $C_{40}H_{58}N_2O_2Zr_2$ (781.4): C, 61.49; H, 7.48; N, 3.59. Found: C, 61.78; H, 7.56; N, 3.60. IR (KBr): ν (C=N) 1621 cm⁻¹. MS (70 eV, EI): $m/z = 778$ (1%, M'), 500 (3), 470 (35), 390 (15), 220 (16), 57 (100). 'H NMR **(benzene-d₆, 200 MHz):** δ 5.86 (s, 20 H, Cp), 5.02 (s, 4 H, ZrOCH₂), $C(CH_3)$. ¹³C NMR (benzene-d₆, 50 MHz): δ 215.9 (C=N), 110.3 *('J_{CH}* = 172 Hz, Cp), 85.1 *('J_{CH}* = 139 Hz, ZrOCH₂), 64.2 (NCMe₂), 57.8 *('J_{CH}* = 124 Hz, CCH₂C), 32.4 *(CMe₃)*, 32.4 *('J_{CH}* = 125 Hz, 1.83 (s, 4 H, CCH₂C), 1.29 (s, 12 H, C(CH₃)₂), 1.26 (s, 18 H, $C(CH_3)_2$, 30.2 (${}^1J_{CH}$ = 124 Hz, $C(CH_3)_3$).

Acknowledgment. Financial support from the Fonds der Chemischen Industrie and the Alfried Krupp von Bohlen und Halbach-Stiftung is gratefully acknowledged. M.M. thanks the Ministerio de Educacion y Ciencia, Madrid, and the Alexander von Humboldt-Stiftung for a fellowship.

Registry **No. 1,** 88385-20-0; 2a, 30718-17-3; 2b, 72443-18-6; 2c, 14542-93-9; 3a, 132776-60-4; 3b, 132776-62-6; **3c,** 132776-61-5.

Supplementary Material Available: For **3a,** tables of detailed information on the crystal structure determination, final atomic position parameters, final thermal parameters, and interatomic distances and **angles** (7 pages); a **listing** of **observed** and calculated structure factors (16 pages). Ordering information is given on any current masthead page.

Synthesis of Alkoxymethyl Complexes from Metal Formyls

Dorothy H. Gibson,' Kathryn Owens, Santosh K. Mandal, William E. Sattich, and Jaime 0. Franco

> *Department of Chemistty, University of Louisville, Louisville, Kentucky 40292 Received July 23, 1990*

Summary: **Syntheses of seven alkoxymethyl complexes, M-CH,OR (R** = **Me, Et), from the corresponding metal formyls are described; the metals are manganese (compounds la-b, 2, and 3), rhenium (compounds 4 and 5), or molybdenum (compound 6). Four of these (lb and 3-5) are new compounds; the details of** the **syntheses of the other three have not been reported previously. Examples are given of three distinct synthetic routes; all routes requlre initiation by** the **action of an electrophile on the metal formyl complex. Variations in the procedures are dictated by the reactivity of the formyl complex and that of its protonated or alkylated form.**

Alkoxymethyl complexes are useful precursors to carbene complexes¹ and several other types of C_1 ligands to transition metals.2 A variety of methods have been re**ported** for their synthesis: (1) by reaction of a metal anion with a halomethyl ether,³ (2) by nucleophilic substitution on a halomethyl complex by an alcohol or an alkoxide, 4 (3) by reduction of a secondary alkoxycarbene complex, 5 (4) by alkylation of a cationic η^2 -formaldehyde complex,⁶ *(5)* by oxidative addition of a halomethyl ether to a coordinatively unsaturated complex,⁷ (6) by hydride abstraction from a methyl complex followed by alkoxide addition,⁸ (7) by decarbonylation of an alkoxyacetyl complex. $9(8)$ by reduction of a metal carbonyl cation in the

- [~]**(1) Ekmkhert, M.; Studabaker, W. B. Chem. Reu. 1987,87, 411. (2) (a) Cutler, A. R.** *J. Am.* **Chem. SOC. 1979,101,604. (b) Markham, J.;** Tolman, **W.; Menard, K.; Cutler, A.** *J.* **Organomet. Chem. 1985,294, 45.**
- (3) (a) Jolly, P. W.; Pettit, R. J. Am. Chem. Soc. 1966, 88, 5044. (b) Green, M. L. H.; Ishaq, M.; Whiteley, R. N. J. Chem. Soc. A 1967, 1508. (4) Davison, A.; Krusell, W. C.; Michaelson, R. C. J. Organomet. Chem. 1974, 72
-
- (5) (a) Bodnar, T.; LaCroce, S. J.; Cutler, A. J. Am. Chem. Soc. 1980,
102, 3292. (b) Wong, W.-K.; Tam, W.; Gladysz, J. A. J. Am. Chem. Soc.
1979, 101, 5440.
-
- 1979, 101, 3440.

(6) Brown, K. L.; Clark, G. R.; Headford, C. E. L.; Marsden, K.; Roper, W. R. J. Am. Chem. Soc. 1979, 101, 503.

(7) Thorn, D. L.; Tulip, T. H. J. Am. Chem. Soc. 1981, 103, 5984.

(8) Tam, W.; Lin, G. Y.; Gladysz, J. A. J. Am. Chem. Soc. 1982, 104, 141.

Table I. Summary of Synthetic Methods for Alkoxymethyl Com~lexes

compd	synth method	prod yield, $%$ ² /reacn time
$cis\text{-}Mn(CO)_{4}PPh_{3}(CH_{2}OCH_{3})$ (1a) cis-Mn(CO) ₄ PPh ₃ (CH ₂ OCH ₂ CH ₃) (1b) $mer, trans\text{-}Mn$ (CO) ₃ (PPh ₃) ₂ (CH ₂ OCH ₃) (2) same	A A в с в	84/15 min $68/15$ min 78/14 h $86^o/10$ min 80/3 h
$mer, trans\text{-}Mn(CO)_{3}[\text{P(OPh)}_{3}]_{2}(CH_{2}OCH_{3})$ (3) mer,trans- $\text{Re(CO)}_3(\text{PPh}_3)_2(\text{CH}_2\text{OCH}_3)$ (4) same $mer, trans\text{-}Re(CO)_{3}[P(OPh)_{3}]_{2}(CH_{2}OCH_{3})$	c с в	89/20 min $86^{\circ}/15$ min $61/30$ min
(5) <i>cis-</i> and trans- $\text{CpMo}(\text{CO})_2[\text{P}(\text{OPh}_3)]\text{CH}_2\text{OCH}_3$ (6)	A	63/5 min

^{*a*} Product yields are based on reaction stoichiometry. ^{*b*} The isolated **carbene complex was used; the overall time and yield from the formyl complex are reported.**

presence of an alcohol,¹⁰ and (9) by reaction of a hydroxymethyl complex with an alcohol.¹¹ In addition to method 1, several others depend, indirectly, on the availability of a metal anion. Methods 1 and 2 are the ones which have been most commonly used. Although effective, method **1** is objectionable because of the toxicity of halomethyl ethers.

The present work includes method **3** but details examples of three distinct routes to alkoxymethyl complexes from neutral metal formyl complexes. All three routes utilize an electrophile to initiate further transformation of the formyl complex;12 the choice of method is dictated by the reactivity of the substrate and that of its protonated

⁽⁹⁾ Sisak, A.; Sampar-Szerencses, E.; Galamb, V.; Nemeth, L.; Ungvary, F.; Palyi, G. Organometallics 1989, 8, 1096.
(10) Bodnar, T.; Coman, E.; Menard, K.; Cutler, A. *Inorg. Chem.* 1982,

^{21, 1275.}

^{(11) (}a) Lin, Y. C.; Milstein, D.; Wreford, S. S. Organometallics 1983, 2,1461. (b) Nelson, G. 0. Organometallics 1983,2,1474. (c) Nelson, G.

^{0.;} Sumner, C. E. *Organometallics* 1986, 5, 1983. *(12)* For the preparations of the formyl complexes used in this work, **(12) For the preparations of the formyl complexes used in this work, see Gibson, D. H.; Owens, K.; Mandal, S. K.; Sattich, W. E.; Franco, J. 0. Organometallics 1989, 8, 498.**

or **alkylated** form. The **three routes utilizing** reactions of formyl complexes are identified **as**

method A:

M

$$
-CHO \xrightarrow[ROM]{H^*} M^* \equiv C \begin{cases} \nOR & M-CHO \\ \nH & M-CH_2OR \n\end{cases} \quad (1)
$$

method B:

, ОСН₃ <u>м - сно</u> CH₃SO₃CF₃ $M - CHO$ $M - CH₂OCH₃$ (2) $M^+ = C$ 'n,

method C:

M-ChIO
$$
\xrightarrow{CH_3SO_3CF_3}
$$
 M⁺=C \leftarrow H⁺ $\xrightarrow{OCH_3}$ $\xrightarrow{hydride}$ M-Ch₂OCH₃ (3)

involves reaction with a protonic acid in the presence of an alcohol, method B involves reaction with an alkylating agent, and method C involves reaction with **an** alkylating agent followed by an independent reducing agent. Seven alkoxymethyl complexes have been prepared and are identified in Table I, which **also summarizeg** the synthetic procedures.

The intermediacy of a carbene complex in each case is supported by the isolation of several of the hydroxy- or methoxycarbene complexes from related reactions¹³ and by the previous observations of others.¹⁴ It appears that the electrophilic characteristics of the intermediate carbene complex in reactions of this type **will** determine whether excess formyl complex will suffice **as** the hydride donor or whether a more active reagent will be required to accomplish the last step. Comparison of the syntheses of compounds la and **2** (by the first procedure) is useful in this regard. In both cases the formyl complex is used **as** the hydride donor, but the syntheais of la is complete after **15** min while the preparation of **2** requires **14** h. For electronic reasons, the **bis(phosphine)-substituted** formyl complex should be the better hydride donor; **also,** the steric environment for hydride donation should be little worse than in the bis(phosphite) analogue. Yet, compound 3 **was** formed much more readily than **2** by the same synthetic method.

Four of the complexes (lb and **3-5)** are new; the other three have been reported previously, but the full details of their syntheses were not described. **Thus,** la and **2** were made previously by ligand substitution¹⁵ of $Mn(CO)₅(C H₂OCH₃$, but the procedure for the synthesis of this parent compound was not reported. Ligand substitution leading to la gave a **74%** yield from the parent compound, but the bis(phosphine) complex **2** was obtained in only **26%** yield by this method. The spectral characteristics of **6** have been reported, but the details of its synthesis have not.¹⁶

The spectral properties of la, **2,** and **6** are in agreement with those reported previously. The other compounds have been characterized by elemental analyses and by IR and by 'H and **'9c** NMR spectral data. Compound lb shows the same four-band pattern in the carbonyl stretching region of its IR spectrum **as** la; this pattern is characteristic of cis-disubstituted octahedral complexes. 17 Also, the 13C NMR spectrum of each compound shows

three doublets for the carbonyl **carbons, as** expected The carbonyl stretching frequencies of **3-5** show the same three-band pattern (weak, *strong,* and medium intensities) **as** compound **2** and that is characteristic of mer,transtrisubstituted octahedral complexes.¹⁸ Furthermore, the **'9c** NMR **spectrum** of each compound shows the terminal carbonyl resonances **as** two triplets (with intensity ratios of **2:1), as** expected.

In the cases where the formyl complex **has** been used **as** the hydride donor, the corresponding metal carbonyl cation is the other reaction product. This product *can* be easily recovered and reused in the synthesis of additional formyl complex.

For the reactions which **are** initiated by a protonic acid, **as** outlined in **eq 1,** there are **two stagea** at which the **initial** electrophile might be replaced by an alkyl group from an alcohol: (a) with M (=CHOH)⁺ or (b) with M (CH₂-OH). There are several instances in which a hydroxymethyl complex has been converted to an alkoxymethyl complex by the action of an alcohol,^{10,11} but we can find no previous report of a similar reaction with a hydroxycarbene com-
plex. However, treatment of $Mn(CO)_{3}(PPh_{3})$ (= However, treatment of $Mn(\overline{CO})_3(PPh_3)$ (= $CHOH$ ⁺CH₃C₆H₄SO₃⁻ with methanol does convert it to the known^{13b} methoxycarbene complex: thus solvolysis of an intermediate carbene cation represents a viable step on the path to the final alkoxymethyl complex.

Experimental Section

General Data. All reactions were carried out under an atmosphere of prepurified nitrogen. Reagent grade dichland anhydrous ether were used **as** received. methanol, ethanol, and 2-propanol were dried over 3-Å molecular sieves and distilled. Reagent grade hexane and benzene were dried over concentrated sulfuric acid and fractionally distilled. **Spec**sieves and distilled. Reagent grade hexane and benzene were dried
over concentrated sulfuric acid and fractionally distilled. Spec-
troscopic measurements were obtained on the following instrumenta: 'H **NMR, Varian** XL-300, **EM-390,** and **T-60;** *'8c NMR,* Varian **XL-300,** IR, Perkin-Elmer **599B. NMR** chemical **shifts** are referenced to TMS. Melting points were obtained on **a** Thomas-Hoover capillary melting point apparatus and are **un**corrected. Elemental analysee were **performed** by Galbraith Laboratories, Knoxville, **TN.** Methyl triflate (Aldrich), *p*toluenesulfonic acid monohydrate (Aldrich), and sodium borohydride (Aldrich) were ueed **aa** received. The formyl complexes, cis-Mn(CO)₄(PPh₃)CHO, mer,trans-Mn(CO)₃(PPh₃)₂CHO, **mer,trans-Mn(CO)s[P(OPh)s]zCHO,** mer,trans-Re(CO)s- $(PPh₉)₂CHO, mer, trans-Re(CO)₃[P(OPh)₃]₂CHO, and CpMo (CO)_2$ [P(OPh)₃]CHO were synthesized from previously published methode,12 **aa** were the carbene complexes1s mer,trans-Mn- $\rm (CO)_3(PPh_3)_2(CHOCH_3)^+CF_3SO_3^-$, mer,trans- $\rm Re(CO)_3(PPh_3)_2^ (\text{CHOCH}_2)^{\text{+}}\text{CF}_3\text{SO}_3$ ⁻, and *mer,trans*- $\text{Mn}(\text{CO})_3(\text{PPh}_3)_2(\text{CHOH})^{\text{+}}$ nt under an at-
ichloromethane
Reagent grade
r 3-A molecular
zene were dried $CH_3C_6H_4SO_3$.

Preparation of cis **-Mn(CO)₄(PPh₃)(CH₂OCH₃) (la). To** 20 mL of methanol containing p-toluenesulfonic acid monohydrate $(0.322 \text{ g}, 1.69 \text{ mmol})$ and chilled to 0 °C was added cis-Mn**the** solvent was removed on a rotary evaporator. The pale yellow residue was triturated with 3×10 mL of hexane; the combined hexane extracts were filtered, and the Titrate **was** concentrated and then chilled to -20 °C. The resulting precipitate was collected to give **0.19** g **(84%)** of **la as** pale yellow microcrystals. IR (hexane): *uCo* **2060** (m), **1987 (a), 1960** (vs) **1937** *(8) cm-'* [lit." IR (CHzCl& *vw* **2062** (m), **1982** (ah), **1967 (m), 1936 (e)** an-']. 'H **NMR** (acetone-da): *6* **7.60** (m), **3.66** (d, *JPH* = **7.0** *Hz),* **3.06** $(CO)_{4}$ (PPh₃)CHO (0.46 g, 0.84 mmol) with stirring. After 15 min, (8). ¹³C[¹H] **NMR** (CD₂Cl₂): δ 218.9 (d, $J_{PC} = 6.8$ Hz), 218.5 (d, *Jpc* = **220** *Hz),* **215.9** (d, *Jpc* = **15.0** *HZ),* **133.9 (d,** *Jpc* = **40.1** HZ), **133.5** (d, *Jpc* = **10.0** Hz), **130.7 (s), 128.9** (d, *Jpc* **9.5** Hz), **71.2** $(d, J_{PC} = 11.5 \text{ Hz})$, 63.6 (8) $[$ **lit.**^{15a} ¹H **NMR** (CD_2Cl_2) : δ 7.45 (m), 3.43 $(d, J_{PH} = 6.8 \text{ Hz})$, 3.07 (s)]. The insoluble residue was dissolved in CH_2Cl_2 (10 mL) and extracted with 3×10 mL of water; the CH2C12 layer was dried over *MgSO, and* mixed with

^{(13) (}a) Gibeon, D. H.; Maadd, 5. K.; **OWOM, K.;** Richardson, J. **F.** *Organometallics* **1987,6,28u.** (b) **Gikon, D. H.;** Mandal, **S.** K.; *Oarens,* K.; Richudson, J. **F.** *Organometallics* **1990,9, 1936. (14)** Ghdyw, J. A. *Adu. Organomet. Chem.* **1982,20,1.**

^{(15) (}a) Pelling, S.; Botha, C.; Moss, J. R. J. Chem. Soc., Dalton Trans.
1983, 1495. (b) Cawse, J. N.; Fiato, R. A.; Pruett, R. L. J. Organomet.
Chem. 1979, 172, 405.

Chem. 1975, 172, 400.
(16) Faller, J. W.; Anderson, A. S. J. Am. Chem. Soc. 1970, 92, 5852.
(17) (a) Beach, D. L.; Barnett, K. W. J. Organomet. Chem. 1975, 97,
C27. (b) Alway, D. G.; Barnett, K. W. *Inorg. Chem.* 1980, *19*

⁽¹⁸⁾ Bond, A. **M.;** Colton, **R; McDonald,** *M.* **E.** *Inorg. Chem.* **1978,17, 2842.**

ether **(10** mL), and the mixture was cooled to **-20** "C to effect crystallization. The **off-white** solid was collected by fitration and dried, giving **0.260** g **(82%)** of Mn(CO)s(PPh3)+OTs- **as** an offwhite powder. IR (CH2C12): **YCO 2140** (m), **2070** (sh), **2050** (vs) cm⁻¹ [lit.¹² for $Mn(CO)_{5}(PPh_{3})+BF_{4}$: same].

Preparation of cis -Mn(CO)₄(PPh₃)(CH₂OCH₂CH₃) (1b). To **20** mL of ethanol containing p-toluenesulfonic acid monohydrate **(0.415** g, **2.18** mmol) and maintained at 0 "C was added $cis-Mn(CO)_{4}(P\tilde{P}h_{3})CHO (0.500 g, 1.09 mmol)$ with stirring. After **15 min,** the solvent **was** removed on a **rotary** evaporator. The pale yellow residue was triturated with **3 X 10** mL of hexane; the combined extracts were washed with **3 X 30** mL of water, dried over anhydrous MgSO₄, and filtered. The filtrate was concentrated under reduced pressure and then chilled to **-20** "C to precipitate **0.185** g **(68%** yield) of **lb as** pale yellow microcrystals; mp 78–79 °C. Anal. Calcd for $C_{25}H_{22}O_5PMn$: C, 61.35; H, 4.53; P, **6.33.** Found C, **61.51;** H, **4.68;** P, **6.52.** IR (hexane): *YCO* **2060** (m), **1987** (s), **1960** (vs), **1936 (8)** cm-'. 'H NMR (acetone-d&: **⁶ 7.40** (m), **3.65** (d, **JpH** = **7.0** Hz), **3.12 (9, JHH** = **7.0** Hz), **1.02** (t, *J*_{HH} = 7.0 Hz), ¹³C{¹H} NMR (C₆D₆): δ 218.6 (d, *J_{PC}* = 9.8 Hz), 218.4 (d, *J_{PC}* = 22.0 Hz), 215.6 (d, *J_{PC}* = 15.6 Hz), 133.0 (d, *J_{PC}* = **9.5** Hz), **132.8** (d, *Jpc* = **40.5** Hz), **130.0 (81,128.3** (d, *Jpc* = **9.8 7.0 Hz**). ¹³C{¹H} NMR (C₆D₆): δ 218.6 (d, J_{PC} = Hz), **71.1 (e), 67.9** (d, **JPc** = **11.5** Hz), **15.0 (8).** The insoluble portion was dissolved in CH_2Cl_2 (10 mL), extracted with 3×10 mL of water, dried over anhydrous MgSO₄, and filtered. Ether **(10** mL) was added to the filtrate and the mixture cooled to **-20** OC to precipitate Mn(C0)&PPh3)+OTs- **(0.277** g, **81%** yield); the product had the same IR spectral properties reported above.

Preparation of *mer,trans*-Mn(CO)₃(PPh₃)₂(CH₂OCH₃) (2). Method 1. By Reaction of *mer, trans* $\text{Mn(CO)}_3(\text{PPh}_3)_2\text{CHO}$ with CH3S03CF3. To a CH2C12 solution **(20** mL) containing CH3S03CF3 **(0.118** g, **0.72** mmol) at **-78** "C was added mer, $trans\text{-}Mn(CO)_{3}(PPh_{3})_{2}CHO$ (0.500 g, 0.72 mmol) with stirring; the reaction was complete in **5** min. Then mer,trans-Mn- (C0)3(PPh3)2CH0 **(0.500** g, **0.72** mmol) was added, and this mixture was allowed to warm slowly to room temperature and stirred overnight **(14** h). Solvent was removed under reduced pressure, and the residue was triturated with benzene **(20** mL); the benzene extract was filtered and then concentrated to **10** mL. After mixing with hexane **(10** mL), it was cooled to **-5** "C to give the pale yellow needle-shaped crystals of 2 **(0.40** g, **78%** yield). IR (CH₂Cl₂): ν_{CO} 2004 (w), 1915 (s), 1879 (m) cm⁻¹ [lit.^{15a} IR (CH2C12): **YCO 2010** (w), **1921 (s), 1885** (m) cm-'1. 'H NMR (CD2Cl2): **S 7.47** (m), **3.05** (t, **JPH** = **7.5** Hz), **2.43** *(8)* [lit.'& 'H **NMR** (CDCl₃): δ 7.52 (m), 3.13 **(t,** J_{PH} **= 7.5 Hz), 2.52 (s)**]. ¹³C¹H₃ **136.5** (m), **133.6** (t, **Jpc** = **4.8** Hz), **129.7 (a), 128.3** (t, **JPc** = **5.1** Hz), **75.3** (t, **JPc** = **13.6** Hz), **63.5** (9). The benzene-insoluble residue from above was dissolved in CH₂Cl₂ (5 mL), the solution was mixed with hexane **(10** mL), and the resulting mixture was chilled at -20 °C to precipitate *trans*-Mn(CO)₄(PPh₃)₂+CF₃SO₃ **(0.453** g, **75** %) as a yellow powder. IR (CH2C12): *YCO* **2040** (w), **2000** (vs) cm⁻¹ [lit.¹² for *trans*-Mn(CO)₄(PPh₃)₂⁺BF₄⁻ IR (CH₂Cl₂): *uc0* **2090 (vw), 2040** (w), **1996** (vs) cm-'I. NMR (C_6D_6) : δ 224.0 (t, $J_{PC} = 21.8$ Hz), 222.5 (t, $J_{PC} = 18.0$ Hz),

Method 2. By Reaction of *mer, trans* - $Mn({\rm CO})_3({\rm PPh}_3)_2$ - $(CHOCH₃)$ ⁺ $CF₃SO₃$ ⁻ with Sodium Borohydride. To a $CH₂Cl₂$ solution (25 mL) containing *mer,trans-Mn(CO)*₃(PPh₃)₂⁻ (CHOCH3)+CF3S03- **(0.500** g, **0.58** mmol) at **0** "C were added NaBH, (0.044 g, **1.16** mmol) and methanol **(10** mL) with stirring. After **5** min, the mixture was warmed to room temperature and the solvent was removed under reduced pressure giving a pale yellow residue. The residue was dissolved in benzene **(15** mL) and extracted with water. The benzene solution was dried over anhydrous MgSO, and filtered, the filtrate was mixed with hexane **(15** mL), and the mixture was cooled to **-5** "C. Yellow crystals were formed **(0.316 g, 88%** yield): the spectral characteristics of this product were the same **as** those described above.

Preparation of *mer*,trans- $Mn(CO)_3[P(OPh)_3]_2(CH_2OCH_3)$ In a 50-mL Schlenk vessel, mer, trans-Mn(CO)₃[P-(OPh)3]2CH0 **(1.00** g, **1.3** mmol) was stirred at 0 "C in **15** mL of CH2C1,. CF3S03CH3 (0.090 mL, **0.79** mmol) in **3** mL of CH2C12 was added dropwise over the course of **2** h. The mixture was allowed to stir for **1 h;** then the mixture was allowed to warm to room temperature and filtered through a glass pad. Solvent was removed from the filtrate under vacuum, and the residue was triturated with 3×15 mL of ether. The ether extracts were

evaporated to dryness, and the residue was recrystallized from CH2Clz/pentane to give pale yellow needles **(0.40** g, 80% yield); mp 112-114 °C. Anal. Calcd for $C_{41}H_{35}O_{10}P_2Mn$: C, 61.20; **H**, 2040 (vw), 1958 (vs), 1935 (s) cm^{-1} . ¹H NMR (CD₂CI₂): δ 7.24 (m) , **4.01** (t, $J_{PH} = 8.1$ Hz), 3.16 (s). ¹³C(¹H) NMR (CD₂Cl₂): δ 64.1 (s). The ether-insoluble portion of the reaction was recrystallized in $CH₂Cl₂$ to yield white needles of trans-Mn-(CO)4[P(OPh)3]2+CF3S03- **(0.54** g, **92%** yield). IR (CH2ClJ: *vc0* **2115 (vw), 2070** (w), **2040** *(8)* cm-I [lit.12 for trans-Mn(CO),[P- $(OPh)_3]_2$ ⁺BF₄⁻: same]. **4.38; P, 7.70. Found: C, 60.87; H, 4.50; P, 7.56. IR (CH₂Cl₂):** ν_{CO} **218.0** (t, *Jpc* = **33.3** Hz), **215.5** (t, *Jpc* = **21.0** Hz), **152.0** (t, *Jpc* = **5.1** Hz), **129.9 (s), 125.0 (s), 121.4 (s), 68.5** (t, *Jpc* = **20.8** Hz),

Preparation of *mer,trans*-Re(CO)₃(PPh₃)₂(CH₂OCH₃) (4). Method 1. From *mer,trans*- $\text{Re}(\overrightarrow{CO})_3(\overrightarrow{PPh}_3)_2(\overrightarrow{CHOCH}_3)^+$ $CF₃SO₃$ ⁻. mer,trans-Re(CO)₃(PPh₃)₂(CHOCH₃)⁺CF₃SO₃⁻ (0.20 g, **0.20** mmol) was stirred in **6** mL of CH2C12 at 0 "C in a Schlenk flask. A slurry of NaBH, **(0.015** g, **0.40** mmol) in **10** mL of methanol was added. The yellow solution immediately became colorless, and a white precipitate began to form. After the evolution of gas had ceased $(\sim 10 \text{ min})$, the reaction mixture was filtered to collect the product. This was recrystallized in CH_2Cl_2 **(4** mL) and pentane **(6** mL) to give white crystals of **4 (0.15** g, 90% yield); mp 169 °C dec. Anal. Calcd for $C_{41}H_{35}O_4P_2$ Re: \tilde{C} (vw), 1920 (s), 1880 (m) cm⁻¹. ¹H NMR (CD₂Cl₂): δ 7.51 (m), 3.23
(t, J_{PH} = 6.8 Hz), 2.50 (s). ¹³C{¹H} NMR (CD₂Cl₂): δ 197.7 (t, J_{PC} 58.63 ; **H**, **4.20. Found: C, 58.37; H**, **4.21. IR** ($\overrightarrow{CH_2Cl_2}$): $\overrightarrow{v_{CO}}$ **2030** = **9.6** Hz), **196.4** (t, **Jpc** = **6.3** Hz), **136.0** (t, *Jpc* = **23.3** Hz), **133.7** (t, **Jpc** = **5.5** Hz), **129.9 (s), 128.3** (t, *Jpc* = **4.8** Hz), **64.8 (s), 62.0** $(t, J_{PC} = 7.1 \text{ Hz}).$

Method 2. From mer,trans-Re(CO)₃(PPh₃)₂CHO. To a stirred solution of CF3S03CH3 **(0.027** mL, **0.24** mmol) in **12** mL of CH_2Cl_2 maintained at 0 °C was added mer,trans-Re(CO)₃-(PPh3)2CH0 **(0.20** g, **0.24** mmol) in several additions over the course of **2** min. After an additional **5** min, a slurry of NaBH4 **(0.18** g, **0.48** mmol) in **10** mL of CH30H was added. The yellow reaction solution immediately became colorless, and a white precipitate began to form. After the evolution of gas had ceased $(\sim 10 \text{ min})$, the reaction mixture was filtered and the product rinsed with **15** mL of CH30H. The product was dried in vacuo to give **0.18** g **(89%** yield).

 $Preparation of mer, trans-Re(CO)_{3}[P(OPh)_{3}]_{2}(CH_{2}OCH_{3})$ **(5).** The following procedure was performed in a nitrogen-filled glovebox. $CF_3SO_3CH_3$ (19.5 μ L, 0.172 mmol) was dissolved in 5 mL of CH_2Cl_2 (distilled from P_2O_5), and the mixture was chilled to **-20** "C. **mer,tr~ns-Re(CO)~[P(OPh)~J~CH0 (0.311** g, **0.338** mmol) was added, and the mixture was stirred at **-20** "C for **30** min. The solution was concentrated under vacuum, to **2** mL, hexane **(10** mL) was added, and the mixture was stirred at **-20** "C for an additional **30** min. The mixture was filtered through Celite, and the precipitate was saved. Solvent was removed from the filtrate under vacuum at ambient temperature, the residue was dissolved in **1 mL** of CH2C12, and hexane **(10 mL)** was added. The flask was stoppered, sealed with Parafilm, and then removed from the glovebox and chilled to -30 °C. All further manipulations were performed outside the glovebox. White crystals formed over a 3-day period, were collected by filtration, and dried, in vacuo **(0.097** g, **61%** yield); mp **124-126 "C** dec. Anal. Calcd for CIlHB01,,P2Re: C, **52.62;** H, **3.77.** Found: C, **52.34;** H, **3.77.** IR (CH2C12): **YCO 2060** (w), **1965 (s), 1930** (m) cm-'. 'H NMR (CD2C12): **6 7.24** (m), **3.93** (t, **JpH** = **7.9** Hz), **3.15** (9). '%('HI **NMR** J_{PC} = 10.7 Hz). The precipitate saved from above was dissolved in CH_2Cl_2 , the solution was filtered through Celite and then concentrated to **2** mL. Anhydrous ether **(20 mL)** was added, and the solution was chilled to **-30** "C for **3** days to give trans-Re- $(CO)_4[POPh]_3]_2^{\bullet}CF_3SO_3^{\bullet}$ as white crystals $(0.115 \text{ g}, 64\text{ W})$ yield). The spectral properties were identical with those reported for the BF_4 salt.¹² (CD2C12): **S 191.9** (t, *Jpc* **14.0** Hz), **189.0** (t, *Jpc=* **8.7** Hz), **151.8** (t, **Jpc** = **3.6** Hz), **130.0 (s), 125.2 (s), 121.6 (s), 65.2 (s), 54.6** (t,

Preparation of $\text{CpMo}(\text{CO})_2[\text{P}(\text{OPh})_3](\text{CH}_2\text{OCH}_3)$ (6). A **0.126-g** sample **(0.660** mmol) of p-toluenesulfonic acid monohydrate was dissolved in **15 mL** of methanol/CH2Clz **(1.58.5)** and then chilled to $-40 °C$. CpMo(CO)₂[P(OPh)₃]CHO (0.370 g, 0.660 mmol) Was then added in portions during **1** min. Solvent was then removed under vacuum, and the residue was extracted with

4xlOmLdhexane. Thecombinedertractewerefilteredthrough **@lite;** the iaeoluble reddue **waa a~ved.** Concsntrating the filtrate to about **10 mL** and *chilling* to 0 "C for **several** hours yielded **0.157** g of a yellow-orange solid. The 'H **NMR** of the solid (CDCls) indicated the presence of **6**, CpMo(CO)₂[P(OPh)₃]CH₃,¹⁶ and the metallacycle CpMo(CO)₂[P(OPh)₂(o-OC₆H₄CH₂)]¹⁹ at about a **3291** (Cp) **integral** ratio, reapedvely. The mixture was **separated** on a Florosil column, eluting with hexane, $1:10 \text{ CH}_2\text{Cl}_2/\text{hexane}$, and finally CH_2Cl_2 . The latter fractions were evaporated to dryness, and the residue was dissolved in **10** mL of hexane. Chilling to **-30 OC** gave **0.120** g **(63%)** of yellow **6.** IR (hexane): *ucO* **1967** (m), **1890 (vs)** cm-l. 'H **NMR** (CDCla): trans **6 7.30** (m), (m) , 4.85 (s) , $CH₂$ signal not distinct, 3.35 (s) . The cistrans ratio is 1:9, respectively [lit.^{16 1}H NMR (CDCl₃): trans δ 4.62 (d, $J_{\rm PH}$ CH₂ signal not distinct]. ¹³C^{[1}H] NMR (CDCl₃): trans δ 232.6 **4.66** (d, **JpH** = **1.1** *Hz),* **4.58** (d, **JpH** = **3.8** *Hz),* **3.30** *(8);* cis **6 7.30 1.2 Hz**), **4.60** (d, J_{PH} = 3.6 **Hz**), 3.31 (s); cis δ 4.78 (s), 3.56 (s), (d, *Jpc* **34.6** Hz), **151.2** (d, **Jpc 7.3** Hz), **129.6 (e), 125.0 (a), 121.8** (d, *Jpc* = **4.4** Hz), **91.7 (s),** 64.0 (d, **Jpc 13.2** Hz), **63.4** *(8); cis* **6 124.8 (e), 121.6** (d, *Jpc* = **4.7** Hz), **91.5 (s), 63.6** (d, *Jpc* = **31.4** Hz), other signals for this isomer not visible. After determination of the yield of **6,** the yields of the methyl complex and the metallacycle were calculated on the basis of the ¹H NMR ratio as 27% and 2%, respectively. The hexane-insoluble residue from **Acknowledgment**. Support of this work by the Na-
above was dissolved in CH₂Cl₂, extracted with 2×20 mL of water, tional Science Foundation (Grant RII-86

(19) The structure of this compound has been confirmed by X-ray crystallography; the details of its characterization will be reported else-
where (D. H. Gibson, J. O. Franco, and J. F. Richardson, unpublished results).

evaporated to **dryneae and dried** under vacuum to **give a yellowieh** red oily material (0.158 g, 61%), whose IR and NMR spectra were consistent with its formulation as $CpMo(CO)_{8}[P(OPh)_{8}]^{+}OTs^{-}$. IR (CH&l,): vco **2071 (s), 2010** (m, *sh),* **1984 (VS,** br) cm-'. 'H **NMR** (CDCl_a): δ **7.38** (m), 5.61 (s), 2.29 (s). ¹³C^{[1}H] NMR (CDCl₃): *(8).* The phenyl **carbons** are omitted. The epectral properties were similar to those of $\text{CpMo(CO)}_3[\text{P(OPh)}_3]^+BF_4^{-12}$ *^b***222.4** (d, *Jpc* = **40.8** *Hz),* **221.0** (d, **Jpc 3.1** *Hz),* **94.4 (e), 21.22**

Reaction of *mer, trans* $\textbf{Mn}(\text{CO})_3(\textbf{P}\textbf{P}\textbf{h}_3)_2(\textbf{CHOH})^+$ CH₂Cl₂ and CH₃OH at room temperature was added mer,**trans-Mn(CO)s(PPhJ2(CHOH)+CH&&SO~** (0.20 g, **0.23** mol) with stirring. The yellow solution was stirred for **3** h, at which time the solvent was removed under vacuum. **The** yellow residue was recrystallized from CH&la/pentane **to** give yellow cryetale of mer,trans-Mn(CO)₃(PPh₃)₂(CHOCH₃)⁺CH₃C₆H₄SO₃⁻ contaminated with a small amount of trans- $\text{Mn}(\text{CO})_{4}(\text{PPh}_{3})_{2}$ +- $CH_3C_6H_4SO_3$; the yield was 0.10 g (50%). **IR** (CH_2Cl_2) : ν_{CD} 2050 (w), **1965** *(8,* br) cm-'. lH **NMR** (CD,Cq: 6 **11.8** (e), **7.4** (m), **3.5** $\mathbf{F}(\mathbf{s})$, **2.4** (s). ¹³C(¹H) NMR (CD_2Cl_2) : **6** 338.2 (br s), 220.0 (t), 216.8 (t), **77.5 (s), 21.4** *(8).* The phenyl **peaks are omitted.** The **spectral** properties are comparable to those reported for *mer,trans-Mn-***(CO)s(PPhS)2(CHOCHs)+CFsSOs-.1sb** $CH_3C_6H_4SO_3$ with CH_3OH . To 20 mL of a 1:1 mixture of

and then dried over MgSO₄. After filtration, the filtrate was
Commonwealth of Kentucky (EPSCoR Program) is
gratefully acknowledged. Partial support of this work by the Department of Energy, Division of Chemical Sciences (Office of Basic Energy Sciences), is also gratefully acknowledged.

Synthesis, NMR Spectra, and Molecular Orbital Calculations of Ruthenium and Osmium Dications of the Type $[C_{s}M\mathbf{e}_{s}MC_{s}M\mathbf{e}_{s}(CH_{2})_{2}]^{2+}$

A. 2. Kreindlin, E. I. Fedin, P. V. Petrovskii, and M. I. Rybinskaya' *"eyenov Insmute of Oflnuebmnt Chemistry, USSR Academy of* **Sckwces,** *Moscow,* **USSR**

R. M. Minyaev and R. Hoffmann'

D6partment of Chemistry, Come11 University, Ithaca, New York 14853 Received April 20, 1990

Summary: Starting from decamethylated metallocenes, $(Me₅C₅)₂M$ (M = Ru, Os), we generated a mixture of al**dehydes,** from which the **dislldehydes were** separated **and reduced to dicarbinols. These were used to obtain a** mixture of dications, consisting primarily of the 1,2-iso $mers$ $[C_6Me_6MC_6Me_3(CH_2)_3]$ ²⁺ (M = Ru, Os), as well as **Os). 'H and 13C NMR spectra support the assigned structures. Molecular orbital calculations on** the **predominant 1,2-dication indicate substantial bending of the CH₂⁺** pups *out* **of the** plane **of the Cp ring, canting of the ring,** and off-center slipping, deformations comparable to those **occurring in** the **parent dlcation. their 1,1'-isomers,** $[(C_5\text{Me}_4\text{CH}_2)\text{Me}_4\text{CH}_2)]^{2+}$ **(M = Ru,**

We have previously synthesized and studied stable Ruand Os-containing monocations of the type $[C_5M\varepsilon_5MC_5M\varepsilon_4CH_2]^2$ (M = Ru, Os).^{1,2} It was thus established experimentally that the donor-acceptor interaction between a primary α -carbocation center and an

unshared electron pair on the metal in a metallocene may be sufficiently strong to form a true $M-C \sigma$ bond (2.24 A, $M = Os$; 2.27 Å, $M = Ru$; typical literature values for such σ bonds are \sim 2.22 Å).³

In these cations the CH₂ group is strongly bent toward the metal, moving out of the plane *of* the cyclopentadienyl ring by 41.8° (M = Os) and 40.3° (M = Ru) and essentially losing its carbocation character. At the same time the metallocene structure *of* these cations is relatively little distorted (some detailed geometrical parameters will be presented below).

⁽¹⁾ Ryb-, M. I.; Kreindlin, A. 2.; Fadeeva, S. S. *J. Organomet. Chem.* **1988,368,363.**

⁽²⁾ Yanovsky, A. I.; Struchkov, Yu. T.; Kreindlii, A. 2.; Rybmkaya, M. I. *J.* **Organomet.** *Chem.* **1989,369,125.**

⁽³⁾ Lin, Y. C.; Calabrese, J. C.; Wreford, S. S. *J. Am. Chem. Soc.* **1988,** *105,1679.*