signals that partially overlap the signals of IIIa with a free hydrogen bond.

Synthesis **of IIb. Oxidation of 2.3 g (5.0 mmol) of Ib and chromatographic separation of the reactant lb monoaldehyde and the mixture of dialdehydes were carried out as in ref 4. The mixture of dialdehydes was separated analogously** to **the mixture of the Ru analogues; yield of 1% 0.1 g (0.21 mmol, 4%). 'H NMR:** δ 2.07 (s, 6 H, α -Me), 1.82 (s, 3 H, β -Me), 1.76 (s, 15 H, γ -Me), **9.94** *(8,* **2 H, CHO). Anal. Found: C, 49.27; H, 5.23; Os, 38.99. Calcd for C&126020s: C, 49.16; H, 5.36; Os, 38.92.**

Synthesis of IIIb. **The reduction of 0.24 g (0.5 mmol) of IIb by the action of LiAlH(t-OBu),, analogous** to **the reduction of the monoaldehyde,' leads to 0.22 g (0.45 mmol, 90%) of IIIb. 'H** **NMR**: δ 1.79 (s, 6 H, α-Me), 1.71 (s, 3 H, β-Me), 1.78 (s, 15 H, **NMR:** δ 1.79 (s, 6 H, α -Me), 1.71 (s, 3 H, β -Me), 1.78 (s, 15 H, γ -Me), 4.02 and 4.04 (AB q, $\lambda J_{HH} \le 7$ Hz, 4 H, 2 CH₂). Anal.
 Found: C, 48.32: H, 6.16: Os, 38.28. Caled for C, H, O, Os: C **Found: C, 48.32; H, 6.16; Os, 38.28.** Calcd for C₂₀H₃₀O₂Os: C, **48.75; H, 6.14; Os, 38.60.**

Synthesis **of** Dications **and Recording** of **'H and '9c NMR** Spectra. To a solution of IIIa (or IIIb) in CD_3NO_2 or CH_3NO_2 under an Ar atmosphere was added a small excess of CF₃SO₃H. This **was transferred in an ampule** to **the** *NMR* **spectrometer. The results are given in Tables** I **and 11.**

Acknowledgment. We are grateful to the National Science Foundation for ita support of this research through Grant CHE8912070.

Heteroaromatic Nitrogen Ligand Studies with the $(n^5$ -Pentamethylcyclopentadienyl)ruthenium Cation: $\eta^1(N)$ and $\eta^6(\pi)$ Bonding Modes and Factors That Influence a Nitrogen to π **Rearrangement**

Richard **H.** Fish," Raymond H. Fong, Anh Tran, and Eduardo Baralt Lawrence Berkeley Laboratory, University of California, Berkeley, California 94720 *Received August 20, 1990*

Summary: The reactions of the $(n^5$ -pentamethylcyclopentadienyl)ruthenium tris(acetonitrile) cationic complex $[Cp^*Ru(CH_3CN)_3](\text{OTf})$ with pyridine **(1), 2-methylpyridine (2),** and quinoline **(3)** were studied to ascertain bonding modes as a function of heteroaromatic nitrogen ligand structure. Ligand 1 bonds $\eta^1(N)$ and forms mono- or tris(pyridine) complexes with $[Cp*Ru(CH_3CN)_3]+$ depending on ligand concentration. Ligand 2 only forms an η^6 complex with $[CP*Ru(CH₃CN)₃]$ ⁺, while ligand **3** also forms an *q6* complex, but with the benzo ring not the nitrogen ring. In the presence of excess pyridine, the complexed CH₃CN ligands are fully displaced to form $[Cp^*Ru(\eta^1(N)-pyridine)_3]^+$, while in the presence of excess 2 or 3 only the $[Cp^*Ru(\eta^1(N) - I_{\text{I}}\text{Gand})(CH_{3}CN)_{2}]^+$ complexes are formed. The latter $[Cp^*Ru(\eta^1(N)-H)]$ and)(CH,CN),]+ complexes with ligands 2 and **3** were not isolated; rather, they undergo a rapid nitrogen (N) to π rearrangement to the corresponding η^6 complexes, **[Cp*Ru(~e-2-methylpyridine** *or* quinoline)]+. The isolation of **[Cp*Ru(q'(N)-pyridine)(CH,CN),]+** and its conversion to $[Cp^*Ru(n^6-pyridine)]^+$ clearly demonstrates the pathway to the η^6 complexes. Ligand-exchange reactions of $[Cp*Ru(n^6-pyridine)]^+$ with CD₃CN and pyridine- d_5 show facile replacement of the η^6 -bonded pyridine, while the former result with CD₃CN ligand exchange proves that the N to π rearrangement is not reversible. Factors such as ligand steric effects and the propensity of the Cp*Ru⁺ group to act as an arenophile will also be discussed.

In the course of our bonding studies of mono- and polynuclear heteroaromatic nitrogen ligands with the **(q5-pentamethylcyclopentadienyl)rhodium** dication $(Cp^*Rh^{2+})^{\text{la}}$ and the $(\eta^5$ -cyclopentadienyl)ruthenium cation

(CpRu+),lb Chaudret and co-workers recently published some results on the bonding mode of pyridine, several methyl-substituted pyridine ligands, and quinoline with the $(\eta^5$ -pentamethylcyclopentadienyl)ruthenium cation (Cp*Ru⁺).² In all cases, they isolated $\eta^6(\pi)$ -bonded In all cases, they isolated $\eta^6(\pi)$ -bonded Cp*Ru+ complexes, while observing a pronounced solvent effect in acetone that provided a pyridine N-bonded complex $(py₆Ru²⁺)$, with a concomitant loss of Cp^{*}.

Since our bonding results with $[Cp*Rh(CH_3CN)_3]^2$ ⁺ and [CpRu(CH,CN),]+ **as** starting complexes were dramatically different for similar mono- and polynuclear heteroaromatic nitrogen ligands, i.e., $\eta^1(N)$ - not η^6 -bonding, ^{1a,b} we decided to examine the reactions of $[Cp*Ru(CH_3CN)_3](\text{OTf})$, a conveniently prepared starting material? with pyridine **(I),** 2-methylpyridine **(2),** and quinoline **(3)** to ascertain bonding modes as a function of heteroaromatic nitrogen ligand structure. We **also** wanted to determine whether any *q6* complexes that formed with **1-3** and [Cp*Ru- $(CH_3CN)_3$ ⁺ emanated from our recently reported N to π rearrangement that appears to be general for complexes that have a $[CpRu(\eta^1(\overline{N})-ligand)(CH_3CN)_2]^+$ structure.^{1b,4}

Results and Discussion

The reaction of excess pyridine **(1)** and [Cp*Ru- $(CH_3CN)_3(CTf)$ in CH_2Cl_2 at ambient temperature provided only $[Cp*Ru(\eta^1(N)\text{-}pyridine)_3]^+$ **(4)** in 87% yield; no corresponding η^6 complex was observed. The 500-MHz ¹H NMR spectrum (CD_2Cl_2) of 4 provided clear evidence for the $\eta^1(N)$ -bonding mode with signals at 8.3, 7.73, and 7.34 ppm that were shifted downfield from free pyridine,^{1b,4} while the Cp* resonance **was** found at 1.29 ppm. **A similar** product was also observed when $(CH_3)_2CO$ was substituted for CH_2Cl_2 as the solvent. This latter result is in contrast

⁽¹⁾ (a) Fish, R. H.; Kim, H.-S.; Babin, J. E.; Adams, R. D. *Organo- metallics* **1988,** *7,* **2250. (b) Fish, R. H.; Kim, H.-S.; Fong, R. H.** *Organometallics* **1989,8, 1375.**

^{(2) (}a) Chaudret, B.; Jalon, F. A. J. *Chem.* **Soc.,** *Chem. Commun.* **1988,**

^{711. (}b) Chaudret, B.; Jalon, F. A.; Perez-Manrique, M.; Lohoz, F.; Plou,
F. J.; Sanchez-Delgado, R. *New J. Chem.* 1990, *14*, 331.
(3) Fagan, P. J.; Ward, M. D.; Calabrese, J. C. *J. Am. Chem. Soc.* 1989,
111, 1698.

⁽⁴⁾ Fish, R. H.; Kim, **HA; Fong, R H.** *Organometallics* **1991,10,770.**

to the reported results of Chaudret and co-workers using $[CP^*RuCl]_n$ in $(CH_3)_2CO$; loss of the Cp* ligand was observed.² Attempts to prepare $[Cp*Ru(\eta^1(\bar{N})$ -pyridine)- $(CH_3CN)_2]^+$ (5) were successful when 1 equiv of pyridine was utilized, but only in the presence of small amounts of CH3CN and with short reaction times *(5* **min)** and cooling. The purified product, **6** (>95%, NMR, Cp* at **1.48** ppm) still contained <5% of $[Cp*Ru(r^1(N)\text{-}pyridine)_2(CH_3CN)]^+$ **(6)** (Cp* at **1.41** ppm), which was difficult to separate.

Previously, we reported on a facile N to π rearrangement for complexes with the structure $[CpRu(\eta^1(N)-\text{ligand}) (CH_3CN)_2$ ^{+ 1b,4} In order to verify a similar mechanism for the Cp*Ru analogue, 5, we carried out the following experiments. Thus, solid complex **5** (contaminated with \leq 5% of 6) was heated at 80 °C under vacuum for 12 h to provide only $[Cp*Ru(\eta^6-pyridine)]^+$ (7)² (eq 1). The

structure of complex 7 was verified by 500-MHz¹H NMR spectroscopy (CD_2Cl_2) with signals at 6.83, 6.26, and 6.19 ppm for the #-bound pyridine protons and **2.04** ppm for the Cp^{*} signal. The N to π rearrangement was more conveniently followed by NMR spectroscopy. **Thus, 5** in CH_2Cl_2 was followed by NMR spectroscopy (CD_2Cl_2) for 11 days or, more preferably, in $(CH₃)₂CO$ over a 48-h period $(NMR, (CD₃)₂CO)$ of time at ambient temperature to be totally converted to 7.

The mechanism of the N to π rearrangement, an irreversible process, was extensively studied in the CpRu+ system4 and **was** thought to **occur** by an initial dissociation of a CH₃CN ligand followed by an $n^1 - n^4 - n^6$ slip-fold process; the driving force being the formation of the thermodynamically more stable $n^6(\pi)$ -bonded complex (eq 2). The irreversible nature of the rearrangement lies in the fact that the η^6 ligand displacement reaction, i.e., reaction of CH3CN with 7, is concentration dependent but does not directly form the $\eta^1(N)$ -bonded starting complex. At the low concentrations of $CH₃CN$ that are formed in the rearrangement, no displacement reaction *occurs,* **as** observed by NMR spectroscopy.⁴ One can displace the η^6 -bonded pyridine ligand in complex 7, presumably via $n^6 - n^4 - n^2$ pyridine coordination (associative process), by conducting the reaction (NMR analysis) using CD₃CN as the solvent. After 1 h, we observe a 1:1 ratio of $[Cp*Ru(CD_3CN)_3](\text{OTf})$ to 7 along with free pyridine; however, complex $5-d_6$, as stated above, is not directly formed in this process. 4

Complex $5-d_6$ was the only complex evident (NMR analysis) after **24** h, when free pyridine **(1** equiv) reacted with $[Cp*Ru(CD_3CN)_3](OTf)$ (eq 3).

The reaction of complex 7 with pyridine- d_5 (1- d_5) as the solvent was **also** studied by NMR spectroscopy. It **was** observed that 7- d_5 was rapidly formed with 4- d_{15} in a \sim 1:1 ratio $(1 h)$ along with free 1, while after 24 h only $4-d_{15}$ was present (eq **4).**

Apparently, the η^6 -bonded pyridine ligand, 7, can readily exchange with free 1- d_5 to give the η^6 -bonded pyridine- d_{5} , $7-d_5$, as was previously shown for the CpRu analogue.⁴ However, it can **also,** in a slower process, react to provide the tris N-bonded complex, $4-d_{15}$. The mechanism of the η^6 to η^6 ligand exchange (7 to \tilde{T} -d₅) with free 1 -d₅ is not totally evident, but might occur via a η^1, η^4 intermediate. Thus, free pyridine- d_5 initially bonds η^1 to Ru, while η^6 complexed pyridine becomes η^4 . The process then reverses by a facile N to π rearrangement to give pyridine- d_5 as η^4 and, by loss of n^2 -bound pyridine, the n^6 -bonded pyridine- d_5 (eq 5).

The dramatic effect on the bonding mode of placing a methyl group at the 2-position of pyridine was studied by reaction of ligand 2 with $[Cp*Ru(CH_3CN)_3](\text{OTf})$. The only product isolated (84%) was $Cp*Ru(\eta^6-2\text{-methyl-}$ pyridine) $+$ (8), with no observation of its precursor, $[\text{CpRu}(\eta^1(N)-2\text{-methylpyridine})(CH_3CN)_2]^+$ **(9).**

Clearly, the steric effect of the methyl group weakened the Ru-N bond in **9** and provides one driving force for the facile N to π rearrangement to form 8. The steric effect of the methyl group cannot be the sole determining factor for the ready conversion of **9** to 8, since kinetic products in the CpRu⁺ series with the general formula $[ChRu(\eta^1-$ (N) -ligand)(CH₃CN)₂]⁺ were readily isolated. It appears that the Cp^{*} ligand must also influence the N to π rearrangement due to its powerful electron-donating ability, which makes the soft \overline{R} u metal center a better π donor and thus able to stabilize the n^6 -bonded complex by backbonding from filled metal orbitals to π^* orbitals of the nitrogen ligand.

The reaction of a polynuclear heteroaromatic nitrogen ligand, 3, with $[Cp*Ru(CH_3CN)_3](OTT)$ provided $[Cp*Ru(\eta^6\text{-quinoline})]^+$ (10), with no observation of its q'(N)-bonded precursor.2b The structure of **10** was established by 'H and 13C NMR spectroscopy and was consistent with the fully characterized CpRu analogue.^{1b,4}

Conclusions

The dramatic differences between our pyridine results and those of Chaudret and co-workers² must arise from the starting Cp*Ru+ derivatives. In our case, Cp*Ru+ *can* back-bond from filled metal orbitals to π^* orbitals of the CH,CN ligand, making it less labile, while they appear to form a $[Cp*Ru(THF)₃]$ ⁺ complex in situ; THF is not able to back-bond and is sterically more demanding than CH₃CN, allowing it to dissociate more rapidly. Therefore, with the THF derivative, the N to π rearrangement is perhaps faster than further THF displacement from the Ru metal center with pyridine. The opposite conclusion appears true when the $CH₃CN$ derivative is used: displacement faster than rearrangement. In fact, we have observed a dramatic solvent effect on the rate of the N to π rearrangement with the $[CPRu(\eta^1(N)-\text{ligand})(CH_3CN)_2]^+$ complexes4 as well **as** the present conversion of **5** to **7** in $(CH₃)₂CO$; there is a substantial rate increase presumably by replacement of complexed CH_3CN with $(CH_3)_2CO$, which is a better leaving group.

The steric effect of a methyl group, ligand **2,** or a benzo group, ligand 3, and the arenophilicity of Cp*Ru+ favors the formation of the η^6 - over the $\eta^1(N)$ -bonded complex; however, when the steric effect is absent, i.e., ligand 1, $\eta^1(N)$ -bonding is favored with $[Cp*Ru(CH_3CN)_3](\tilde{O}Tf)$ as the starting material. The π -bonded pyridine ligand replacement with excess CD3CN was **also** shown to presumably occur by an associative $\eta^6 - \eta^4 - \eta^2$ -pyridine mechanism followed by formation of $[Cp*Ru(CD_3CN)_3](\text{OTf})$ and free pyridine; this result proves the irreversible nature of the N to π rearrangement. The π -bonded pyridine ligand exchange with excess free pyridine- d_5 provided both η^6 - d_5 and tris $\eta^1(N)-d_{15}$ complexes.

We are continuing our Cp*Ru⁺ bonding studies with other heteroaromatic nitrogen compounds and **also** initiating reactivity studies. For example, [Cp*Ru- $(CH₃CN)₃ (OTf)$ was found to be a rather poor catalyst precursor for the selective hydrogenation of 3 to **1,2,3,4** tetrahydroquinoline because of the facile formation of **10;** initial $\eta^1(N)$ -bonding is critical for selective nitrogen ring reduction.^{1a,5}

⁽⁵⁾ **Fish, R. H.; Baralt, E.; Smith, S. J.** *Organometallic8* **1991,10,54.**

Experimental Section

Instrumentation and Mat8rials. 'H and 'Bc *NMR* analyses were performed on either a Bruker AM **400-** or *500-MHz* instrument located in the Department of Chemistry, University of *Califomia,* **Berkeley,** CA. *All* the **reactiom were** done under **argon** in a Vacuum Atmospheres glovebox equipped with a -30 °C laboratory located in the Department of Chemistry, University of **California, Berkeley,** CA. *All* nitrogen heterocyclic ligands were purchaeed from Aldrich Chemical *Co.* and redistilled before **use.** Anhydrous methylene chloride, acetone, and acetonitrile were purchased from Aldrich Chemical Co., while diethyl ether was distilled from Na/benzophenone ketyl. [Cp*Ru(CH₃CN)₃](OTY) was prepared according to the literature procedure. freezer. Elemental analyses were performed by the microanalytical

Synthesis of $[Cp^*Ru(\eta^1(N)-pyridine)](OTf)$ (4). A 100.0-mg (0.197 mmol) sample of $[Cp*Ru(CH_3CN)_3](OTT)$ was dissolved in 5 mL of CH₂Cl₂, and the solution was stirred at room temperature. An excess of pyridine was added (0.24 mL, 2.95 mmol), and the resulting mixture was stirred for *60* min. Then, 20 mL of diethyl ether was added and the solution cooled to -30 °C. The orange solid was filtered off, washed with diethyl ether, and vacuum-dried to give 107 mg of the complex (87% yield). ¹H *NMR* (400 *MHz*, CD₂Cl₂, ppm): 1.29 (8, Me_e), 7.34 (t, br, H(4), J = 6.9 Hz), 7.78 (t, br, H(3,5), J = 7.6 Hz), 8.30 (d, br, H(2,4), $J = 5.0$ *Hz*), ratio 15:1:2:2. ¹³C^{[1}H] NMR (400 MHz, CD₂Cl₂, ppm): 154.92 *(8,* C(2,4)), 137.50 *(8,* C(3,5)), 126.46 **(s,** C(4)), 77.72 *(8,* C_5Me_6 , 8.71 *(s,* C_5Me_6 *), 122.44 (q,* CF_3 *, J = 322 Hz).* Anal. Calc for $C_{20}H_{30}F_8N_3O_8RuS$: C, 50.15; H, 4.86; N, 6.75. Found: C, 50.07; H, 4.59; N, 6.62.

Synthesis of $[Cp*Ru(\eta^1(N)-pyridine)(CH_3CN)_2](OTT)$ (5). A 100.0-mg (0.197 mmol) sample of $[CP*Ru(CH_3CN)_3](OTT)$ was dissolved in 5 mL of CH_2Cl_2 with 200 µL of CH_3CN added, and then the reaction flask was cooled to -30 °C. Pyridine (1 equiv) was then added, **and** the reaction was **stirred** at room temperature for 5 min. A 30-mL aliquot of diethyl ether was added, and the solution was placed in a freezer at -30 °C overnight. The resulting yellow-orange crystals were filtered off, washed with hexane, and then vacuumdried to *give* **96** *mg* of product (81% yield). 'H *NMR* (400 MHz, CD₂Cl₂, ppm): 1.48 (s, Me₅), 2.45 (s, br, CH₃), 7.35 (t, br, H(3,5), J = 7.0 Hz), 7.77, (tt, H(4), J = 1.6, 6.0 Hz); 8.56 (dd, H(2,6), J ⁼1.6,6.5 *Hz),* ratio 1562k2. *Analytical* **data** could not be obtained due to complex instability **(also** contaminated with 5% of $Cp*Ru(\eta^1(N)-pyridine)_{2}(CH_{3}CN)^{+}$ (6), $Cp*$ at 1.41 ppm).

Synthesis of $[Cp*Ru(\eta^6-pyridine)](OTf)$ **(7).** An 80.0-mg (0.12 mmol) sample of $[Cp*Ru(\eta^1(N)\text{-}pyridine)(CH_3CN)_2](\text{OTf})$ **(6)** was dissolved in 10 mL of (CHJ2C0, and the solution **was** stirred at room temperature for 48 h and vacuum-dried for 4 h **to give** *56 mg* of product (100% yield). 'H *NMR* ofthe dark green solid indicated complete conversion to 7. Alternatively, the complex can be formed by heating **5 as** a solid under vacuum at 80 °C for 12 h. ¹H NMR (400 MHz, CD₂Cl₂, ppm): 2.04 (s, Me₅), 6.45 (t, H(4), $J = 5.3$ Hz), 6.81 (t, H(2,6), $J = 3.60$ Hz), 6.34 (t, H(3,5), *J* = 5.59 Hz), ratio 15:2:1:2. Anal. Calc for

 $C_{16}H_{20}F_3NO_3RuS$: C, 41.36; H, 4.34; N, 3.01. Found: C, 41.46; H, 4.79; N, 2.93.

Synthesis of $[Cp*Ru(\eta^2-2-methylpyridine)](OTT)$ (8). A 100-mg (0.197 mmol) sample of $[CP*Ru(CH_3CN)_3](OTT)$ was dissolved in 5 mL of CH₂Cl₂, and the solution was stirred at room temperature. **An** *exceas* of 2-methylpyridine was added (0.05 **mL,** 0.59 mol), and the resulting **mixture was stirred** for **30 min.** The reaction was evaporated to **dryness,** and the resulting white solid was washed with n-hexane, fiitered off, and vacuum-dried. Recrystallization from CH_2Cl_2/n -hexane (1/0.5 mL) at -30 °C gave 80.0 mg of the product (84% yield). ¹H NMR (400 MHz, CD₂Cl₂, ppm): 1.98 *(s, Me₅), 2.00 (s, CH₃), 6.78 (d, br, H(6), J = 3.7 Hz),* 6.21 (dt, H(5), J = 1.4,6.1 *Hz),* 6.11 (m, H(4,3)), ratio 1531:1:2. ¹³C[¹H] NMR (400 MHz, CD₂Cl₂, ppm): 119.74 (s, C(2)), 106.41 *(8,* C(6)), 91.45 **(e,** C(4)), 86.98 **(e,** C(3)), 86.81 **(E,** C(5)), 20.80 **(e,** CH₃), 98.90 *(s, C₅Me₅)*, 10.33 *(s, C₅Me₅)*, 122.35 *(q, CF₃, J = 322 Hz).* Anal. Calc for $C_{17}H_{22}F_3N_3O_3R_3S$: C, 42.55; H, 4.63; N, 2.93. Found: C, 42.55; H, 4.42; N, 2.89.

Syntheah of [Cp*Ru(\$-quinoline)](OTt) (IO). A 100.0-mg (0.197 mmol) sample of $[\text{Cp*Ru(CH₃CN)₃](OTT)$ was dissolved in 5 **mL** of CHzC12. An excess of quinoline was added (0.07 mL, 0.59 mmol), and the solution was **stirred** for 30 min. Then **40 mL** of ether was added to the resulting paIe yellow solution, and the solution was cooled to -30 °C overnight. The light yellow solid was fiitered off, washed with diethyl ether, and vacuum-dried to give 85 mg of 10 (84% yield). ¹H NMR (400 MHz, CD₂Cl₂, ppm): 1.69 (s, Me₅), 6.09 (m, br, H(8)), 6.63 (m, br, H(6)), 6.67 (m, br, H(7)), **7.60** (dd, H(4), *J* = 3.8,8.8 *Hz),* 8.11 (d, H(3), J = 8.8 *Hz),* 9.15 (dd, H(2), $J = 1.7$, 3.8 Hz), ratio 15:1:1:1:1:1:1:1;¹³C[¹H] NMR $(400 \text{ MHz}, \text{CD}_2\text{Cl}_2, \text{ ppm})$: 9.66 (s, Me₆), 122.44 (q, CF₃, $J = 322.0$ Hz), 160.01 *(8,* C(2)), 139.13 *(8,* C(4)), 126.02 *(8,* C(3)), 113.16 *(8,* C(lO)), 95.49 *(8,* C(9)), 91.13 **(4** C(5)), **90.03** *(8,* C(8)), 88.21 **(e,** C(6)), 86.64 (s, C(7)), 93.87 (s, Me₅C_g). Anal. Calc for C₂₀H₂₂F₃NORuS: C, 46.69; H, 4.31; N, 2.72. Found: C, 45.90; H, 4.04; N, 2.60.

Reaction of Complex 7 with CD&N: *NMB* **Study.** A *5mg* (0.01 mmol) sample of 7 was dissolved in 0.6 mL of CD_sCN, and the reaction was monitored by 'H NMR spectroecopy, After 1 h, a 1:1 ratio of 7 and $[Cp*Ru(CD_3CN)_3]^+$ was observed at 2.04 and 1.57 ppm, respectively, with the appearance of free pyridine. After 24 h, complex 7 and $[Cp*Ru(\bar{CD}_3CN)_3]^+$ are not evident and $5-d_6$ (1.48 ppm) is the only complex in solution.

Reaction of **Complex 7 with Pyridine&: NMR Study.** A 3.9-mg (0.008 mm) sample of 7 was dissolved in 0.6 mL of pyridine- d_5 . ¹H NMR spectroscopy indicated that after 1 h a 2:1:1 ratio of complex $4-d_{16}$ at 1.15 ppm, complex $7-d_6$ at 1.88 ppm, and unreacted complex **7** (1.78 ppm) was observed. After 24 h, only complex $4-d_{15}$ was observed in solution.

Acknowledgment. The studiea at **LBL** were supported by the Director, Office of Energy Research, Office of Basic Energy Sciences, Chemical Sciences Division of the **U.S.** Department of Energy under Contract **No.** DE-ACOB-**76SF00098.** The RuCi, **was** kindly provided **by** the **Johnson** Matthey Metal **Loan** Program.