75-05-8; Ru₃(CO)₁₀(MeCN)₂, 103257-53-0; [HRu₃(CO)₉(μ_3 - η^2 : σ : η^2 -C₆H₇)], 128363-70-2; [HRu₃(CO)₉(μ_3 - η^2 : η^2 : η^2 -C₆H₆)][BF₄], 128391-81-1; 1,3-cyclohexadiene, 592-57-4.

Supplementary Material Available: Complete listings of

positional and thermal parameters, atomic coordinates, and bond distances and bond angles for LTf and LTh (22 pages); listings of calculated and observed structure factors for LTf and LTh (49 pages). Ordering information is given on any current masthead

Synthesis and Chemistry of Cp₂Zr(Ph)(THF)⁺. Selectivity of Protolytic and Oxidative Zr-R Bond-Cleavage Reactions

Samuel L. Borkowsky, Richard F. Jordan,* and Garry D. Hinch

Department of Chemistry, University of Iowa, Iowa City, Iowa 52242

Received September 24, 1990

The neutral complexes $Cp_2Zr(R)_2$ ($R = CH_3$ (1), CH_2Ph (2)) react with $[Cp'_2Fe][BPh_4]$ in THF via oxidative Zr-R bond cleavage to yield $[Cp_2Zr(R)(THF)][BPh_4]$ ($R = CH_3$ (3), $R = CH_2Ph$ (4)). No reaction is observed with $Cp_2Zr(Ph)_2$ (5). The mixed phenyl-alkyl complexes $Cp_2Zr(Ph)(R)$ ($R = CH_3$ (9), CH_2Ph (10)) react with Cp'_2Fe^+ in THF to yield 3 and $Cp_2Zr(Ph)(THF)^+$ (6), respectively. The susceptibility of $Zr-CH_2Ph$ bonds to oxidative cleavage is ascribed to the low bond energy. Reaction of 5 with $[HN(CH_3)_2Ph][BPh_4]$ in THF also produces 6 in good yield. Complexes 1, 2, and 5 react with $[HN(CH_3)_3][BPh_4]$ to yield $[Cp_2Zr(R)(OCH_2CH_2CH_2CH_2N(CH_3)_3][BPh_4]$ ($R = CH_3$ (15), CH_2Ph (13), and Ph (12)) via Zr-R bond protonolysis and subsequent nucleophilic THF ring opening. Reactions of 10 and 9 with $[HN(CH_3)_3][BPh_4]$ yield 13 and 15 via initial selective Zr-Ph protonolysis. Complex 1 reacts with $[HN(^nBu)_3][BPh_4]$ in THF to yield 3 whereas neither 2 nor 5 react. The selectivity and qualitative rates of these reactions indicate that ease of Zr-R bond protonolysis varies in the order $Zr-Ph > Zr-CH_2 > Zr-CH_3 Ph$ and that steric effects that ease of Zr-R bond protonolysis varies in the order Zr-Ph > Zr-CH₃ > Zr-CH₂Ph and that steric effects also strongly influence reactivity. Complex 6 reacts rapidly with 2 equiv of PMe₃ in THF solvent to yield $\operatorname{Cp_2Zr}(\operatorname{Ph})(\operatorname{PMe_3})_2^+$ (16) and with 2-methylpyridine (α -picoline) in $\operatorname{CD_2Cl_2}$ solvent to yield $\operatorname{Cp_2Zr}(\eta^2(N, C)$ -picolyl)(THF)⁺ (17). Complex 6 initiates the ring-opening polymerization of THF and does not react with 2-butyne in CD₂Cl₂.

Current interest in the chemistry of $Cp_2M(R)(L)^+$ (M = Ti, Zr, Hf) complexes¹⁻³ is motivated by the proposed role of closely related 14-electron $Cp_2M(R)^+$ ions in Cp_2MX_2 -based Ziegler-Natta olefin polymerization catalyst systems4 and by the potential utility of these complexes in catalytic C-H activation/C-C coupling chemis-

(1) Ti complexes: (a) Bochmann, M.; Wilson, L. M.; Hursthouse, M. B.; Short, R. L. Organometallics 1987, 6, 2556. (b) Bochmann, M.; Wilson, L. M.; Hursthouse, M. B.; Motevalli, M. Organometallics 1988, 7, 1148. (c) Taube, R.; Krukowka, L. J. Organomet. Chem. 1988, 347, C9. (d) Bochmann, M.; Jagger, A. J.; Wilson, L. M.; Hursthouse, M. B.; Motevalli, M. Polyhedron 1989, 8, 1838. (e) Bochmann, M.; Jagger, A.

Motevalli, M. Polyhedron 1989, 8, 1838. (e) Bochmann, M.; Jagger, A. J.; Nicholls, J. C. Angew. Chem., Int. Ed. Engl. 1990, 29, 780. (2) Zr complexes: (a) Hlatky, G. G; Turner, H. W.; Eckman, R. R. J. Am. Chem. Soc. 1989, 111, 2728. (b) Jordan, R. F.; Dasher, W. E.; Echols, S. F. J. Am. Chem. Soc. 1986, 108, 1718. (c) Jordan, R. F.; Bagjur, C. S.; Willett, R.; Scott, B. J. Am. Chem. Soc. 1986, 108, 7410. (d) Jordan, R. F.; Echols, S. F. Inorg. Chem. 1987, 26, 383. (e) Jordan, R. F.; LaPointe, R. E.; Bajgur, C. S.; Echols, S. F.; Willett, R. J. Am. Chem. Soc. 1987, 109, 4111. (f) Jordan, R. F.; Bajgur, C. S.; Dasher, W. E.; Rheingold, A. L. Organometallics 1987, 6, 1041. (g) Jordan, R. F. J. Chem. Educ. 1988, 65, 285. (h) Jordan, R. F.; LaPointe, R. E.; Bradley, P. K.; Baenziger, N. C. Organometallics 1989, 8, 2892. (i) Jordan, R. F.; LaPointe, R. E.; Baenziger, N. C.; Hinch, G. D. Organometallics 1990, 9, 1539. (j) Jordan, R. F.; Bradley, P. K.; Baenziger, N. C.; LaPointe, R. E. J. Am. Chem. Soc. 1990, 112, 1289. (k) For a review, see: Jordan, R. F.; Bradley, P. K.; LaPointe, R. E.; Taylor, D. F. New J. Chem. 1990, 14, 505. (l) Turner, H. W.; Hlatky, G. G. European Patent Appl. 0 277 003, 1988. (m) Turner, H. W.; European Patent Appl. 0 277 004, 1988. (3) For related Th chemistry, see: Lin, Z.; LeMarechal, J.-F.; Sabat,

(3) For related Th chemistry, see: Lin, Z.; LeMarechal, J.-F.; Sabat,
M.; Marks, T. J. J. Am. Chem. Soc. 1987, 109, 4127.
(4) (a) Dyachkovskii, F. S.; Shilova, A. K.; Shilov, A. E. J. Polym. Sci. Part C 1967, 16, 2333. (b) Eisch, J. J.; Piotrowski, A. M.; Brownstein, S. K.; Gabe, E. J.; Lee, F. L. J. Am. Chem. Soc. 1985, 107, 7219. (c) Gassman, P. G.; Callstrom, M. R. J. Am. Chem. Soc. 1987, 109, 7875. (d) Gianetti, E.; Nicoletti, G. M.; Mazzocchi, R. J. Poly. Sci., Polym. Chem. Gianetti, E.; Nicoletti, G. M.; Mazzocchi, R. J. Poly. Sci., Polym. Chem. Educ. 1985, 23, 2117. (e) Ewen, J. A. J. Am. Chem. Soc. 1984, 106, 6355. (f) Toscano, P. J.; Marks, T. J. J. Am. Chem. Soc. 1985, 107, 653. (g) Hedden, D.; Marks, T. J. J. Am. Chem. Soc. 1988, 110, 1647. (h) Dahmen, K.-H.; Hedden, D.; Burwell, R. L., Jr.; Marks, T. J. Langmuir 1988, 4, 1212. (i) Zambelli, A.; Longo, P.; Grassi, A. Macromolecules 1989, 22, 2186. (j) Pino, P.; Cioni, P.; Wei, J. J. Am. Chem. Soc. 1987, 109, 6189. (k) Ewen, J. A.; Jones, R. L.; Razavi, A.; Ferrara, J. D. J. Am. Chem. Soc. 1988, 110, 6255 1988, 110, 6255.

try. 5 Cationic zirconium alkyl complexes of this type have been prepared by oxidative cleavage (with Ag+, Cp2Fe+, or $Cp'_{2}Fe^{+}$ ($Cp' = C_{5}H_{4}Me$)) or protonolysis (with HNR_{3}^{+}) of Zr-R bonds of neutral Cp₂ZrR₂ complexes.^{2,3} Related Ti cations have also been prepared by halide displacement reactions of Cp₂Ti(CH₃)X in coordinating solvents, protonolysis of Cp*2TiR2 and by one-electron oxidation of Cp*2Ti(R).1 In all these cases noncoordinating anions such as BPh₄ are required for the isolation of stable salts.⁶

This paper describes the reactions of several symmetric Cp₂ZrR₂ and mixed Cp₂Zr(R)(R') complexes with Cp₂Fe⁺ and HNR₃⁺ reagents. The principal objective of this study was to develop a simple synthesis of cationic phenyl complexes Cp₂Zr(Ph)(L)⁺, which are of interest for structural and reactivity comparisons to other Cp₂Zr(R)(L)⁺ complexes. Additionally, we were interested in elucidating the general reactivity and selectivity trends of these reactions with the ultimate objective of developing efficient methods for in situ generation of Cp₂Zr(R)(L)⁺ catalysts.^{5a} Several nucleophilic THF ring-opening reactions of Cp2Zr(R)-(THF)⁺ complexes that we discovered during the course of these studies are also described.

Results

Reaction of Cp₂Zr(Ph)(R) Complexes with Cp₂Fe⁺ Reagents. Synthesis of Cp₂Zr(Ph)(THF)⁺ from

^{(5) (}a) Jordan, R. F.; Taylor, D. F. J. Am. Chem. Soc. 1989, 111, 778. (b) Jordan, R. F.; Taylor, D. F.; Baenziger, N. C. Organometallics 1990, 9, 1546. (c) Jordan, R. F.; Guram, A. S. Organometallics 1990, 9, 2116. (d) Guram, A. S.; Jordan, R. F. Organometallics 1990, 9, 2190. (e) Guram, A. S.; Jordan, R. F. J. Am. Chem. Soc. 1990, 113, 1833. (6) Anions such as PF₆, BF₄, CF₃SO₃, etc. react with or coordinate strongly to Cp₂Zr(R)⁺ ions. See: (a) Jordan, R. F. J. Organomet. Chem. 1985, 294, 321. (b) Roddick, D. M.; Heyn, R. H.; Tilley, T. D. Organometallics 1989, 8, 324. (c) Martin, B. D.; Matchett, S. A.; Norton, J. Anderson, O. P. J. Am. Chem. Soc. 1985, 107, 7952. (d) Siedle, A. R.;

Anderson, O. P. J. Am. Chem. Soc. 1985, 107, 7952. (d) Siedle, A. R.; Newmaark, R. A.; Gleason, W. B.; Lammanna, W. M. Organometallics 1990, 9, 1290.

 $Cp_2Zr(Ph)(CH_2Ph)$. The neutral complexes $Cp_2Zr(CH_3)_2$ (1) and Cp₂Zr(CH₂Ph)₂ (2) react with [Cp'₂Fe][BPh₄] at room temperature in THF to yield Cp₂Zr(CH₃)(THF)⁺ (3) and Cp₂Zr(CH₂Ph)(THF)⁺ (4), respectively (eq 1).^{2e,k} The

latter reaction (minutes) is considerably faster than the former (hours). Analogous reactions occur with [Cp₂Fe][BPh₄] and Ag[BPh₄] in CH₃CN to yield Cp₂Zr-(R)(CH₃CN)_n⁺ complexes. However, the phenyl complex Cp₂Zr(Ph)₂ (5) is not converted to Cp₂Zr(Ph)(THF)⁺ (6) by analogous reactions in THF. In this solvent, neither [Cp₂Fe][BPh₄] nor Ag[BPh₄] induces Zr-Ph bond cleavage of 5, and the former salt decomposes. Also, no reaction is observed in THF between these reagents and Cp₂ZrPh₂, which should be more easily oxidized due to increased electron donation from the Cp' rings.7 In contrast, both Ag[BPh₄] and [Cp₂Fe][BPh₄] react rapidly with 5 in CH₃CN to yield Cp₂Zr(Ph)(CH₃CN)_n⁺ (7), but this species rapidly rearranges to the CH₃CN insertion product 8 (eq 2).8 It is not clear why 5 reacts with these reagents in

$$C_{P_2}Z_{r} = \begin{pmatrix} C_{P_2}F_{e^*} & C_{P_2}Z_{r} &$$

CH₃CN but not in THF. Note that both Ag[BPh₄] and [Cp₂Fe][BPh₄] are insoluble in both solvents. It is possible that CH₃CN promotes the reaction of 5 with the oxidant via weak coordination and/or that solvent polarity is im-

The reactions of a series of mixed alkyls $Cp_2Zr(Ph)(R)$ with Cp₂Fe⁺ oxidants in THF were explored with the expectation that the more weakly bonded R ligand would undergo oxidative cleavage yielding Cp₂Zr(Ph)(THF)⁺. On the basis of the Zr-R bond strength trend⁹ Zr-Ph > Zr- $CH_3 > Zr-CH_2Ph$, we anticipated that selective cleavage of the Me group of Cp₂Zr(Ph)(CH₃) (9) and the benzyl group of Cp₂Zr(Ph)(CH₂Ph) (10) would be favored. Surprisingly however, the reaction of 9 with [Cp₂Fe][BPh₄] in THF yields 3 as the major product (87% NMR yield); i.e., net cleavage of the Zr-Ph bond is favored (eq 3). A

(7) (a) Gassman, P.; Macomber, D. W.; Hershberger, J. W. Organometallics 1983, 2, 1470. (b) Gassman, P.; Campbell, W. H.; Macomber, D. W. Organometallics 1984, 3, 385. (c) Gassman, P.; Winter, C. H. J.

Am. Chem. Soc. 1988, 110, 6130.
 (8) Wang, Y.; Jordan, R. F.; Echols, S. E.; Borkowsky, S. L.; Bradley,

minor product (13% NMR yield, δ (Cp) = 6.09; vide infra) is also observed. Mixed phenyl benzyl complex 10 is prepared by the reaction of 4 with PhLi at -78 °C (eq 4).

On a 1-2-g scale in THF at -78 °C this reaction yields a mixture of 10 (ca. 80%), $Cp_2Zr(Ph)_2$ (5, 10%), and $Cp_2Zr(CH_2Ph)_2$ (2, 10%), from which 10 is isolated by crystallization. Increased amounts of the latter two products are obtained when the reaction is performed at higher temperatures or on a larger scale. However, this route is superior to others that we investigated.¹⁰ The reaction of 10 with excess [Cp'2Fe][BPh4] in THF yields selectively the cationic Ph complex 6 (36% isolated yield, eq 4). The low yield is due in part to decomposition of the oxidant under the reaction conditions and to decomposition of 6 to $Cp_2Zr(Ph)\{(-OCH_2CH_2CH_2CH_2-)_n\}$ (11; vide infra).11 There is no evidence for the formation of 4 via Zr-Ph bond cleavage under these conditions.

Synthesis of Cp₂Zr(Ph)(THF)+ by Protonolysis of $\mathbf{Cp}_{2}\mathbf{ZrPh}_{2}$. The reaction of 5 with [HNBu₃][BPh₄]^{1e,2a,1,m,3} in THF proceeds sluggishly at 50 °C (60% conversion after 14 h) to yield a complex mixture of products. In contrast, 5 reacts rapidly with the less crowded ammonium reagent [HNMe₃][BPh₄] at 23 °C (THF, 3 h) to yield [Cp₂Zr-(Ph)(OCH₂CH₂CH₂CH₂NMe₃)][BPh₄] (12) via Zr-Ph bond protonolysis followed by nucleophilic THF ring-opening (eq 5). This product is formed in 50% NMR yield along

$$\begin{array}{c|c} & & & \\ \hline Cp_2Zr & & \frac{HNMe_3}{THF} & \\ \hline & PhH & \\ \hline \end{array} \begin{array}{c} & & \\ \hline Cp_2Zr & \\ \hline \end{array} \begin{array}{c} & & \\ \hline NMe_3 & \\ \hline \end{array} \begin{array}{c} & \\ \hline Cp_2Zr & \\ \hline \end{array} \begin{array}{c} & \\ \hline NMe_3 & \\ \hline \end{array} \begin{array}{c} & \\ \hline \end{array} \begin{array}{c} & \\ \hline NMe_3 & \\ \hline \end{array} \begin{array}{c} & \\ \hline \end{array} \begin{array}{c} & \\ \hline NMe_3 & \\ \hline \end{array} \begin{array}{c} & \\ \hline \end{array} \begin{array}{c} & \\ \hline NMe_3 & \\ \hline \end{array} \begin{array}{c} & \\ \hline \end{array} \begin{array}{c} & \\ \hline NMe_3 & \\ \hline \end{array} \begin{array}{c} & \\ \hline \end{array} \begin{array}{c} & \\ \hline NMe_3 & \\ \hline \end{array} \begin{array}{c} & \\ \hline \end{array} \begin{array}{c} & \\ \hline NMe_3 & \\ \hline NMe_3 & \\ \hline \end{array} \begin{array}{c} & \\ \hline NMe_3 & \\ \hline NMe_3 & \\ \hline \end{array} \begin{array}{c} & \\ \hline NMe_3 & \\ \hline NMe_3 & \\ \hline \end{array} \begin{array}{c} & \\ \hline NMe_3 & \\ \hline NMe_3 & \\ \hline NMe_3 & \\ \hline NMe_3 & \\ \hline \end{array} \begin{array}{c} & \\ NMe_3 & \\ \hline NMe_3 & \\ \hline NMe_3 & \\ \hline NMe_3 & \\ \hline NMe_3 & \\ \end{array} \begin{array}{c} \\ NMe_3 & \\ \hline NMe_3 & \\ NMe_3 & \\$$

with several unidentified Cp₂Zr compounds, from which it could not be obtained analytically pure, and has been characterized by ¹H and ¹³C NMR spectroscopy only. In a control experiment, the reaction of 6 with 1.5 equiv of NMe₃ in THF-d₈ was monitored by ¹H NMR spectroscopy at 23 °C. Rapid conversion to $[\hat{C}p_2Zr(Ph)-(OCD_2CD_2CD_2CD_2NMe_3)][BPh_4]$ (12-d₈, 75% complete after 30 min) without detectable intermediates was observed. The THF ring-opening reaction is avoided by using the more acidic ammonium reagent HNMe₂Ph⁺, the conjugate base of which is less nucleophilic than NMe₃. The reaction of 5 with 2 equiv of [HNMe2Ph][BPh4] in THF proceeds rapidly (<10 min) to yield 6 cleanly (>90% NMR yield, 62% isolated; eq 6). This reaction provides the most

⁽⁸⁾ Wang, Y.; Jordan, R. F.; Echols, S. E.; Borkowsky, S. L.; Bradley, P. K. Organometallics, in press.
(9) Leading references: (a) Schock, L.; Marks, T. J. J. Am. Chem. Soc. 1988, 110, 7701. (b) Sonnenberger, D. D.; Morss, L. R.; Marks, T. J. Organometallics 1985, 4, 352. (c) Bruno, J. W.; Stecher, H. A.; Morss, L. R.; Sonnenberger, D. C.; Marks, T. J. J. Am. Chem. 1986, 108, 7275. (d) Buchanan, J. M.; Stryker, J. M.; Bergman, R. G. J. Am. Chem. Chem. 1986, 108, 1537. (e) Nolan, S. P.; Hoff, C. D.; Stoutland, P. O.; Newman, L. J.; Buchanan, J. M.; Bergman, R. G.; Yang, G. K.; Peters, K. S. J. Am. Chem. Soc. 1987, 109, 3143. (f) Lappert, M. F.; Patil, D. S.; Pedley, J. B. J. Chem. Soc., Chem. Commun. 1975, 830. (g) Stoutland, P. O.; Bergman, R. G.; Nolan, S. P.; Hoff, C. D. Polyhedron 1988, 7, 1429.

⁽¹⁰⁾ Reaction of Cp₂Zr(CH₂Ph)Cl (prepared by reaction of Cp₂Zr-(CH₂Ph)₂ with 1 equiv of HCl in THF at -78 °C; ¹H NMR (benzene- d_e) δ 5.63 Cp, 2.24 CH₂) with LiPh (Et₂O, -40 °C to room temperature) gave a 60:20:20 mixture of Cp₂Zr(CH₂Ph)(Ph), Cp₂Zr(Ph)₂, and Cp₂Zr-(CH₂Ph)(Ph), Cp₂Zr-(Ph)₂, and Cp₂Zr-(CH₂Ph)(Ph), Cp₂Zr-(CH $(CH_2Ph)_2$.

⁽¹¹⁾ An NMR scale reaction of Cp₂Zr(Ph)(CH₂Ph) with 3 equiv of Cp₂Fe][BPh₄] (THF-d₈, 23 °C, 1 h) yielded only Cp₂Zr(Ph)(THF)⁺ (48%) along with 52% unreacted Cp2Zr(CH2Ph)(Ph).

$$Cp_2Zr = \frac{HNMe_2Ph^*}{THF} Cp_2Zr$$

$$Cp_2Zr = \frac{1}{2}$$

convenient synthesis of 6. The excess [HNMe₂Ph][BPh₄] is required because this salt decomposes under the reaction conditions.

Reactions of Cp₂Zr(R)(R') Complexes with HNR₃⁺ **Reagents.** The reactions of several $Cp_2Zr(R)(R')$ complexes with HNR₃+ reagents were investigated to compare selectivity trends with those observed in the Cp₂Fe⁺ reactions described above. The reaction of phenyl benzyl complex 10 with [HNⁿBu₃][BPh₄] in THF proceeds sluggishly at 50 °C to yield a mixture of unidentified Cp₂Zr products.12 However, the reaction with [HNMe3][BPh4] proceeds at 23 °C to yield [Cp2Zr(CH2Ph)-(OCH₂CH₂CH₂CH₂NMe₃)][BPh₄] (13, 90% NMR yield) and 1 equiv of benzene in 24 h (eq 7). Complex 13 is

$$Cp_{2}Zr = \frac{HNMe_{3}^{+}}{THF} = Cp_{2}Zr = + NMe_{3}$$

$$R = CH_{3} = 9$$

$$R = CH_{2}Ph = 10$$

$$Cp_{2}Zr = NMe_{3}$$

$$Cp_{2}Zr = NMe_{3}$$

$$15$$

$$15$$

$$13$$

formed by selective Zr-Ph bond protonolysis to yield 4, followed by nucleophilic THF ring opening. A similar ring opening occurs at elevated temperature in the reaction of 4 with PMe₂Ph, which yields [Cp₂Zr(CH₂Ph)-(OCH₂CH₂CH₂CH₂PMe₂Ph)][BPh₄] (14, eq 8) as noted in

$$c_{p_2} z_r + p_{Me_2} p_h - c_{p_2} z_r + p_{Me_2} p_h$$
(8)

a preliminary communication.^{2e} The selectivity for Zr-Ph bond cleavage in the reaction of 10 with HNMe₃⁺ parallels the relative reactivities of Cp₂Zr(CH₂Ph)₂ (2) and Cp₂Zr-(Ph)₂ (5) with this reagent. The reaction of HNMe₃⁺ and 2 proceeds slowly in THF at 50 °C (ca. 60% complete by ¹H NMR after 13 h) to yield the ring-opened product 13; no reaction of 2 is observed at 23 °C. In contrast and as noted above, 5 reacts rapidly with HNMe₃⁺ at 23 °C.

The reaction of Cp₂Zr(Ph)(CH₃) (9) with HNMe₃⁺ also results in selective Zr-Ph bond protonolysis. This reaction proceeds at 23 °C to yield Cp2Zr(CH3)-(OCH₂CH₂CH₂CH₂NMe₃)+ (15) via nucleophilic THF ring opening of initially formed 3 (eq 7). When this reaction is monitored by ¹H NMR spectroscopy in THF-d₈, rapid formation of $Cp_2Zr(CH_3)(THF-d_8)^+$ (3- d_8 , 70%), benzene, and free NMe3 is observed, followed by slower conversion to Cp₂Zr(CH₃)(OCD₂CD₂CD₂CD₂NMe₃)⁺ (15-d₈). Small amounts of 12-d₈ (10%) derived from Zr-CH₃ protonolysis, Cp₂Zr(CH₃)₂ (1, 10%), and several unidentified Cp₂Zr products are also observed. Complex 15 is also formed by reaction of 1 and HNMe₃+ in THF (eq 9).

Several mechanisms are possible for these THF ringopening reactions. When the reaction of 3 and NMe₃ is monitored by ¹H NMR spectroscopy, transient Cp resonances for 1 and another Cp₂Zr compound (δ 6.37, Cp) in a 1:1 ratio are observed. Associated with the δ 6.37 resonance (10 H) is a resonance for coordinated NMe₃ at δ 2.08 (9 H).¹³ The resonances for both 1 and the unknown Cp_2Zr compound disappear by the end of the reaction, leaving only resonances for 15- d_8 . We propose that the new transient Cp₂Zr species is the dication Cp₂Zr(NMe₃)- $(THF)_n^{2+}$ (n = 1 or 2) formed by disproportionation of Cp₂Zr(CH₃)(NMe₃)⁺, which is in equilibrium with 3 and free NMe₃ (eq 10). Similar disproportionation reactions

are observed for $Cp_2Zr(X)(CH_3CN)_2^+$ (X = halide)^{2d} and $Cp_2Hf(CH_3)(CH_3CN)_2^+$.¹⁴ Complex 15 thus may be derived from direct reaction of 3 and NMe3 as in eq 9 or by intramolecular ring opening of Cp₂Zr(NMe₃)(THF)²⁺ followed by ligand redistribution.

The importance of steric effects in these protonolysis and ring-opening reactions is illustrated by the reactions of HNBu₃⁺. While this ammonium reagent does not react readily with 2 or 5, even at 50 °C, it reacts rapidly with 1 at 23 °C to yield 3. No subsequent THF ring opening to yield an N("Bu)3 analogue of 15 is observed. This is the most convenient synthesis of 3.

Characterization and Chemistry of Cp₂Zr(Ph)-(THF)+ (6). Cationic Zr-Ph complex 6 is characterized by NMR spectroscopy (Table I) and analysis. The lowtemperature ¹H NMR spectrum in CD₂Cl₂ (-90 °C) exhibits a single Cp resonance, resonances for coordinated THF shifted significantly upfield from those of free THF,15 and a single set of ortho, meta, and para H resonances for the Zr-Ph ligand. These results establish that the sides of the Ph group are equivalent, which is consistent with either (i) a static structure in which the phenyl group lies in a perpendicular orientation relative to the plane between the Cp ligands, or (ii) rapid rotation about the Zr-Ph bond. At higher temperatures (>10 °C) 6 decomposes

⁽¹²⁾ At 50 °C, ca 50% Cp₂Zr(Ph)(CH₂Ph) is converted to a mixture of products with Cp_2Zr resonances at δ 6.39 (10%), 6.25 (10%), 5.96 (10%), 5.94 (3%), and 5.92 (3%) and additional resonances in smaller

⁽¹³⁾ The transient δ 6.37 and 2.08 resonances are also observed when the reaction of 1 and HNMe₃⁺ is monitored by ¹H NMR spectroscopy. (14) R. F. Jordan and G. D. Hinch, unpublished results. (15) ¹H NMR of free THF (-90 °C, CD₂Cl₂): δ 3.62, 1.74.

	¹H NMR and ¹sC NMR Da		
¹H NMR	assgnt	¹³ C NMR	assgnt
710 () I 00 0 II)ha	[Cp ₂ Zr(Ph)(THF		
7.19 (t, $J = 6.8, 2 \text{ H})^{b,e}$	m-phenyl	184.9	i-phenyl
7.11 (t, $J = 6.6, 1 \text{ H})$	p-phenyl	133.7	o-phenyl
7.09 (d, J = 7.1, 2 H)	o-phenyl	128.2	m-phenyl
6.29 (s, 10 H) 3.27 (br m, 4 H)	$\mathrm{C_5}H_5$ THF	127.8 116.6	p -phenyl $C_5 oldsymbol{H}_5$
1.71 (br m, 4 H)	THF	110.0	C5115
1 (01 111))1(DDL 1 (a)	
7.30-1.18 (br m, 5 H) ^{cf}	[Cp ₂ Zr(Ph)(THF) aryl)][BPn4] (6)	
6.46 (s, 10 H)	C_5H_5		
0.10 (8, 10 11)		(DL) (10)	
711 /1 -6 1 7 - 70 10 017)	$Cp_2Zr(CH_2Ph)$		
7.11 (d, of d, $J = 7.8$, 1.3, 2 H)	- · · · · · · · · · · · · · · · · · · ·	183.3#	i-phenyl
7.03 (t, $J = 7.3, 2 \text{ H}$) 7.01 (t, $J = 7.3, 2 \text{ H}$)	m-benzyl	152.5	i-benzyl
6.90 (t of t, $J = 7.3$, 1.4, 1 H)	m-phenyl	136.0 128.3	aryl
6.86 (d of d, $J = 7.7$, 1.16, 2 H)	<i>p</i> -phenyl o-benzyl	127.0	aryl aryl
6.71 (t of t, $J = 7.3$, 1.2, 1 H)	p-benzyl	125.7	aryl
6.10 (s, 10 H)	C_5H_5	125.3	p-phenyl
2.11 (s, 2 H)	$\overset{\circ}{\mathrm{C}H_2}\overset{\circ}{\mathrm{Ph}}$	121.0	p-benzyl
(2,,	21-2	112.7	C_5 H ₅
		62.6	ZrCH ₂
	[Cn.Zr(Ph)(OCH CH CH CH		-
7.4-6.8 (m, obscured by BPh ₄ -)	[Cp ₂ Zr(Ph)(OCH ₂ CH ₂ CH ₂ CH ₂ C	$n_2 \text{NMe}_3$) [BPn ₄] (12) 179.4^h	i-phenyl
6.13 (s, 10 H) ^{c,h}	C_5H_5	139.7	o-phenyl
4.02 (t, $J = 6.1, 2 \text{ H}$)	ZrOCH ₂	127.4	m-phenyl
3.18-3.07 (m, 2 H)	NCH ₂	125.0	p-phenyl
2.89 (s, 9 H)	$N(CH_3)_3$	112.5	C_5 H ₅
1.75-1.60 (m, 2 H)	$\mathbf{Z_{rOCH_{2}C}}_{H_{2}}$	73.2	OCH₂
1.53-1.38 (m, 2 H)	NCH_2CH_2	67.6 (br s)	NCH_2
		$53.8 \text{ (t, } J_{\text{CN}} = 4)$	$N(C\tilde{H_3})_3$
		30.9	OCH_2CH_2
	[Cp ₂ Zr(CH ₂ Ph)(OCH ₂ CH ₂ CH	CHoNMeol[BPh] (13)	
$7.12 (t, J = 7.6, 2 H)^{b,h}$	m-phenyl	154.8 ^h	i-benzyl
6.86 (2 H, obscured by BPh ₄ -)	o-benzyl	128.4	aryl
6.76 (t, J = 7.3, 1 H)	<i>p</i> -benzyl	127.4	aryl
5.96 (s, 10 H)	C_5H_5	120.8	<i>p</i> -benzyl
3.90 (t, J = 6.1, 2 H)	OCH_2	73.1	OCH_2
3.14-3.09 (m, 2 H)	NCH_2	$67.4 \text{ (t, } J_{\text{CN}} = 5)$	NCH_2
2.92 (s, 9 H)	$N(CH_3)_3$	$53.8 \text{ (t, } J_{\text{CN}} = 4)$	NCH ₃
2.25 (s, 2 H)	CH_2Ph	46.5	CH₂Ph
1.68-1.59 (m, 2 H)	OCH_2CH_2	30.9	OCH ₂ CH ₂
1.44-1.36 (m, 2 H)	$\mathrm{NCH_2C}H_2$	20.4	NCH ₂ CH ₂
	$[Cp_2Zr(CH_2Ph)(OCH_2CH_2CH_2CH_2)]$		
$7.8-6.7 \text{ (m, 30 H)}^{a.g}$	aryl, BPh ₄	154.5/#	i-benzyl
5.83 (s, 10 H)	C_5H_5	135.3 (d, $J_{PC} = 4$)	p-PMe ₂ Ph
3.79 (t, J = 6.0, 2 H)	ZrOCH ₂	131.8 (d, $J_{PC} = 10$)	o-PMe ₂ Ph
2.16 (s, 2 H)	ZrCH ₂ Ph	$130.9 \text{ (d, } J_{PC} = 13)$	m-PMe ₂ Ph
1.6-1.0 (m, 6 H) 1.26 (d, $J_{PH} = 13, 6 H$)	$\begin{array}{c} \mathrm{PC}H_2\mathrm{C}H_2\mathrm{C}H_2 \\ \mathrm{P}(\mathrm{C}H_3)_2 \end{array}$	128.2 127.2	o- or m-benzyl o- or m-benzyl
1.20 (d, 9pg - 15, 0 11)	1 (0113/2	120.7	p-benzyl
		111.9	C_5 H ₅
		73.0	ZrOCH ₂
		46.8	ZrCH ₂ Ph
		24.3 (d, $J_{PC} = 51$)	ZrOCH ₂ CH ₂ CH ₂ CH ₂
		$23.3 (d, J_{PC} = 16)$	ZrOCH ₂ CH ₂ CH ₂
		19.1 (d, $J_{PC} = 4$)	$ZrOCH_2CH_2$
		$6.8 (d, J_{PC} = 55)$	$P(CH_3)_2Ph$
	[Cp ₂ Zr(CH ₃)(OCH ₂ CH ₂ CH ₂	CH _o NMe _o l[BPh _e] (15)	
6.06 (s, 10 H) ^{c,h}	C_5H_5	111.5 ^h	C_5 H $_5$
3.86 (t, J = 5.9, 2 H)	$O\check{C}\check{H}_2$	72.6	OCH_2
3.08-3.03 (m, 2 H)	NCH_2	67.4 (br s)	NCH_2
2.88 (s, 9 H)	$N(CH_3)_3$	53.7 (br s)	$N(CH_3)_3$
1.66-1.53 (m, 2 H)	OCH_2CH_2	31.1	$Zr(CH_3)$
1.41-1.28 (m, 2 H)	NCH_2CH_2	20.3	OCH ₂ CH ₂
-0.06 (s, 3 H)	$\mathbf{Zr}(\mathbf{C}H_3)$	18.2	NCH_2CH_2
	$[Cp_2Zr(Ph)(PMe_3)$	2][BPh4] (16)	
7.46-7.38 (m, 2 H) ^{cj}	m-phenyl	140.9 ^{j,k}	o-phenyl
7.02-6.95 (m, 3 H)	o- and p-phenyl	127.3	m- or p-phenyl
6.07 (t, J_{PH} = 1.9, 10 H)	C_5H_5	126.5	m- or p-phenyl
1.03 (d, $J_{PH} = 7.4$, 18 H)	$P(CH_3)_3$	108.6	C_5H_5
		15.5 (d, $J_{PC} = 20$)	$P(CH_3)_3$
			Lana 2000 - 1000 2000 - 1000 2000

^a Spectra of cationic complexes also contain normal BPh₄⁻ resonances; see ref 2. *J* values in Hz. ^b 360 MHz. ^c 300 MHz. ^d 200 MHz. ^e CD₂Cl₂, -90 °C. ^fTHF-d₈, ambient *T*. ^fCD₂Cl₂, ambient *T*. ^hCD₃CN, ambient *T*. ⁱ ipso-C of P-Ph ring not observed. ^jTHF-d₈, -43 °C. ^h ipso-C of Zr-Ph not observed.

after several hours in this solvent. 17

Complex 6 decomposes slowly in THF-d₈ solution (33% in 5 days at 23 °C) to yield a product with a Cp resonance at δ 6.09. When this reaction is performed in THF and the solvent removed under vacuum, and the residue subsequently dissolved in THF-d₈ and analyzed by ¹H NMR spectroscopy, resonances assignable to poly(tetrahydrofuran) (δ 3.37 br s, 1.58 br s) are observed. These results establish that 6 initiates the ring-opening polymerization of THF (eq 11). The resonance at δ 6.09 is identical with

$$c_{p_2} \vec{z}_r \xrightarrow{\text{THF}} c_{p_2} z_r \xrightarrow{n} (11)$$

that for Cp₂Zr(Ph)(OCH₂CH₂CH₂CH₃), generated in THF-d₈ by reaction of 2 with 1 equiv of ⁿBuOH, ¹⁹ and is assigned to zirconium alkoxy species 11 in eq 11. The Cp resonance for 12 also appears in this region. Associated with the Cp singlet at δ 6.09 is a triplet at δ 4.02 assigned to the $ZrOCH_2$ - group of 11. The minor Cp resonance at δ 6.09 in the NMR spectrum of the product mixture of the reaction in eq 3 is assigned to 11 and indicates that a small amount of Zr-CH₃ bond cleavage occurs in this reaction.

Complex 6 reacts with 2 equiv of PMe3 in THF or CH_2Cl_2 solvent to yield $Cp_2Zr(Ph)(PMe_3)_2^+$ (16, eq 12).

$$Cp_2 \vec{Z}r + 2 PMe_3 \frac{THF}{CH_2Cl_2} Cp_2 \vec{Z}r O$$

$$PMe_3$$

$$PMe_3$$

$$PMe_3$$

$$PMe_3$$

The ¹H NMR spectrum of 16 at room temperature in THF- d_8 contains a sharp Cp resonance at δ 6.02, which splits to a 1:2:1 triplet $(J_{H-P} = 1.7 \text{ Hz})$ at -43 °C. However, the Cp resonance of 16 shifts only slightly upon addition of excess (6 equiv total) PMe3 or upon lowering the temperature. These observations establish that 16 adopts a symmetric structure with the Zr-Ph ligand in the central coordination site at low temperature and undergoes rapid PMe₃ exchange at ambient temperature, though the extent of PMe₃ dissociation is minor. The analogous methyl complex, Cp₂Zr(CH₃)(PMe₃)₂+, exhibits similar properties.2f Interestingly, 6 does not form a mono(trimethylphosphine) complex. The ¹H NMR spectrum of a THF-d₈ solution of 6 containing 1 equiv of PMe3 exhibits a broad Cp resonance at δ 6.16 at ambient temperature characteristic of rapid exchange. Upon cooling of the solution to -43 °C, only resonances for 6 and 16 are observed.

Complex 6 reacts with 2-methylpyridine (α -picoline) in ${\rm CD_2Cl_2}$ to yield benzene and ${\rm Cp_2Zr}(\eta^2(N,C)\text{-picolyl})({\rm THF})^+$ (17) as a 1:1 mixture of isomers (eq 13). This reaction is rapid at room temperature ($t_{1/2} < 10$ min). The same

(16) Under these conditions exchange of free and coordinated THF is slow on the NMR time scale.

(19) ¹H NMR of Cp₂Zr(Ph)(OCH₂CH₂CH₂CH₃) (THF- d_8): δ 6.09 (s, 10 H), 4.00 (t, J = 6.0 Hz, 2 H), 1.50–1.34 (m, 4 H), 0.95 (t, J = 7.0 Hz, 3 H).

products are obtained from the reaction of 3 and α -picoline at a comparable rate $(t_{1/2} \text{ ca. 6 min}).^{5b}$

Complex 6 reacts rapidly in CH₃CN via ligand substitution and CH₃CN insertion (eq 2) to yield azomethine product 8.8 However this high insertion reactivity does not extend to hydrocarbon substrates. For example, the reaction of 6 with excess 2-butyne (>30 equiv) in CD₂Cl₂ yields only Cp₂Zr(Ph)(Cl) (derived from reaction with solvent)17 and several minor unidentified Cp products. In contrast 3 reacts rapidly with 2-butyne to yield the insertion product Cp₂Zr(CMe=CMe₂)(THF)+.20 Similarly, only traces of polyethylene are formed when a CD₂Cl₂ solution of 6 is charged with 1 atm of ethylene.

Discussion

Oxidation Chemistry. Neutral Cp2ZrR2 complexes react with Cp₂Fe⁺ or Cp'₂Fe⁺ in THF to yield the cationic complexes Cp₂Zr(R)(THF)+ via oxidative cleavage of a Zr-R bond. The qualitative rates of reactions of Cp₂ZrR₂ complexes, and the selectivity observed in reactions of mixed complexes $Cp_2Zr(R)(R')$, indicate that the ease of Zr-R bond oxidative cleavage varies in the order Zr-CH₂Ph > Zr-Ph, Zr-CH₃. Thus, Cp₂Zr(CH₂Ph)₂ (2) reacts with Cp'₂Fe⁺ rapidly at room temperature and below, Cp₂Zr-(CH₃)₂ (1) reacts slowly at room temperature, and Cp₂ZrPh₂ (5) and Cp'₂ZrPh₂ do not react. The mixed phenyl benzyl complex 10 reacts with Cp'2Fe+ via Zr-CH₂Ph cleavage. In contrast, the methyl phenyl complex 9 reacts with Cp'2Fe+ to yield principally 3 via Zr-Ph cleavage and only minor amounts of 11 derived from Zr-CH₃ cleavage. While the mechanistic details of these oxidative cleavages are not fully understood, available evidence suggests that these reactions proceed by initial one-electron oxidation from a Zr-R bonding orbital²¹ followed by R^{*} extrusion and trapping of the resulting Zr cation by solvent. 2e,22 The facile cleavages of weak Zr-CH₂Ph bonds,⁹ and the lack of reaction of Cp₂ZrPh₂, which contains strong Zr-Ph bonds and exhibits a relatively high (irreversible) $E_{1/2}(\text{oxid})$, 22 are consistent with this mechanism. At present we have no explanation for the selective cleavage of the Zr-Ph bond of 9 (which is presumably stronger than the Zr-CH₃ bond).

Protonolysis Chemistry. Neutral Cp₂ZrR₂ complexes react with HNR₃+ in THF via Zr-R bond protonolysis to yield Cp₂Zr(R)(THF)⁺ complexes as initial products. This general reaction has been developed by Hlatky and Turner^{2a,1,m} and by Marks³ for the synthesis of Cp*₂ZrCH₃⁺ and Cp*2ThCH3+ complexes. In the case of the HNMe3+, the unhindered amine NMe3 released in the protonolysis step undergoes nucleophilic THF ring-opening reactions $Cp_2Zr(R)(THF)^+$ with yielding $Cp_2Zr(R)$ -(OCH₂CH₂CH₂CH₂NMe₃)⁺ complexes as ultimate products. These Zr-promoted THF ring-opening reactions are

Chem. Soc. 1990, 112, 6133.

⁽¹⁷⁾ The initial Cp_2Zr decomposition product exhibits a ¹H NMR Cp resonance at δ 6.31, which is identical with that for $Cp_2Zr(Ph)(Cl)$ (generated independently via reaction of 6 and [(*Bu)_4N][Cl]. BPh₃ is also

^{(18) (}a) These resonances appear at δ 3.45 (br s), 1.62, (br s) in CD₃· NO₂, identical with the literature values for poly(tetrahydrofuran) in this solvent (b, c). (b) Matyjaszewski, K.; Penczek, S. J. Polym. Sci., Polym. Chem. Educ. 1974, 12, 1905. (c) Hrkach, J. S.; Matyjaszewski, K. Macromolecules 1990, 23, 4042. (d) Neither BPh₃ nor Na[BPh₄] polymerize THF under these conditions.

⁽²⁰⁾ Borkowsky, S. L.; Jordan, R. F., unpublished results. (21) (a) The HOMO of Cp₂ZrR₂ complexes contains Zr-R bonding character: Lauher, J. W.; Hoffmann, R. J. Am. Chem. Soc. 1976, 98, 1729. (b) Green, J. C.; Green, M. L. H.; Prout, C. K. J. Chem. Soc. 1976, 98, 1728.
(c) Petersen, J. L.; Lichtenberger, D. L.; Fenske, R. F.; Dahl, L. F. J. Am. Chem. Soc. 1975, 97, 6433.
(d) Bruce, M. R. M.; Kenter, A.; Tyler, D. R. J. Am. Chem. Soc. 1984, 106, 639.
(e) Zhu, L.; Kostic, N. M. J. Organomet. Chem. 1987, 335, 395.
(22) Burk, M. J.; Tumas, W.; Ward, M. D.; Wheeler, D. R. J. Am. Chem. Soc. 1984, 106, 639.

a manifestation of the electrophilicity of the metal center in Cp₂Zr(R)(THF)^{+,2} The qualitative rates of reactions of Cp₂ZrR₂ complexes, and the selectivity observed in reactions of mixed Cp₂Zr(R)(R') complexes, indicate that the general order of protonolysis is Zr-Ph > Zr-CH₃ > Zr-CH₂Ph. Thus, 1 and 5 react with HNMe₃+ rapidly at room temperature to yield ring-opened products 15 and 12, while 2 reacts only slowly at 50 °C to yield 13. The mixed complexes Cp₂Zr(Ph)(CH₂Ph) (10) and Cp₂Zr(Ph)(CH₃) (9) react with HNMe₃⁺ via selective Zr-Ph bond protonolysis to yield ring-opened products derived from $Cp_2Zr(CH_2Ph)(THF)^+$ (4) and $Cp_2Zr(CH_3)(THF)^+$ (3), respectively. While the mechanistic details of these reactions are not known, it is likely that direct protonolysis of Zr-R bonds occurs.²³ The observed selectivity for protonolysis of Zr-Ph bonds parallels that observed in acidolysis reactions of mixed aryl-alkyl organometallics of B,24 Si, Ge, Sn, Pb,25 Hg,26 and Au.27 The latter reactions proceed via an S_E2 mechanism involving direct attack of the carbon by H⁺, and the selectivity for M-aryl protonolysis is ascribed to resonance stabilization of the resulting Wheland intermediate.²⁸ Protonolysis of Zr-Ph bonds is probably favored for the same reason.

Steric effects are also very important in these protonolysis reactions. The relatively slow protonolysis of dibenzyl complex 2 by HNMe₃⁺ compared to the rapid reaction of dimethyl complex 1 is likely due to its crowded structure. In some cases steric effects can lead to a reversal in reactivity. For example, the very crowded ammonium reagent HNBu₃+ reacts rapidly with 1 at room temperature but not with 2, 5, or 10.

Chemistry of Cp₂Zr(Ph)(THF)⁺ (6). Complex 6 reacts with excess PMe₃ to yield Cp₂Zr(Ph)(PMe₃)₂⁺ (16). The mono-PMe₃ species Cp₂Zr(Ph)(PMe₃)⁺, which might be stabilized by a β -agostic interaction involving a phenyl C-H bond similar to those observed in Hlatky and Turner's zwitterionic complex Cp*₂Zr{2-Et,5-B(4-ethylphenyl)₃phenyl and Cp₂Zr(CH₃)(picoline)⁺,^{2a,5b} is not stable in the presence of excess PMe3. In fact, the reaction of 6 with 1 equiv of PMe₃ yields $\frac{1}{2}$ equiv of 16 and $\frac{1}{2}$ equiv of unreacted 6. In contrast, Cp'2Zr(CH2CH2R)-(THF)+ complexes (18) react with PMe₃ to yield the mono-PMe₃ complexes $Cp'_2Zr(CH_2CH_2R)(PMe_3)^+$, which have β -agostic structures. These complexes are stable in the presence of excess PMe₃.2j This difference suggests that, in this system at least, agostic interactions involving alkyl C-H bonds are inherently stronger than those involving aryl C-H bonds.

The C-H activation reactivity of 6 is similar to that of methyl analogue 3. Both complexes react rapidly at room temperature with α -picoline in CD_2Cl_2 via ligand substitution and ortho C-H activation to yield $Cp_2Zr(\eta^2(N, -1))$

C)-picolyl)(THF)⁺ (17).^{5b} In view of the observation that Zr-Ph bonds undergo facile protonolysis by ammonium salts, it is not surprising the Zr-Ph group is an excellent H⁺ acceptor in this ligand C-H activation reaction.

The most striking difference between 6 and analogous alkyl complexes 3 and $Cp'_2Zr(CH_2CH_2R)(THF)^+$ (18)^{2h} is in the reactivity of these complexes with unsaturated hydrocarbons. While 3 and 18 catalyze ethylene polymerization and undergo rapid single insertion of 2-butyne, 6 is unreactive with both substrates. The observation that 6 initiates ring-opening polymerization of THF but 3 and 18 do not suggests that the THF ligand in 6 is more strongly bound than in the latter complexes. As substitution of THF by substrate likely precedes insertion, 2c,e,i this strong THF binding provides a rationale for lower insertion reactivity of 6. Consistent with this hypothesis, CH₃CN does displace the coordinated THF of 6 and undergoes rapid insertion.8

Experimental Section

All manipulations were performed under an inert atmosphere or under vacuum by using a Vacuum Atmospheres drybox or a high-vacuum line. Solvents were purified by initial distillation from an appropriate drying/deoxygenating agent, stored in evaculated bulbs, and vacuum-transferred into reaction vessels.29 NMR spectra were obtained on a Bruker MSL-300, AC-300, or WP-360 instrument and are listed in Table I. Elemental analyses were performed by Analytische Laboratorien or Schwarzkopf were performed by Analytische Laboratorien or Schwarzkopf Microanalytical Laboratory. The following compounds were prepared by literature methods: Ag[BPh]₄. ^{2f} [Cp₂Fe][BPh₄], ^{2h} [Cp₂Zr(Ph)₂, ³⁰ Cp'₂Zr(Ph)₂, ³¹ K[CH₂Ph], ³² Cp₂Zr(CH₃)₂, ³⁰ [Cp₂Zr(CH₃), ³¹ K[CH₂Ph], ³² Cp₂Zr(CH₂Ph)(THF)][BPh₄], ⁸ [Cp₂Zr(CH₂Ph)(CH₃CN)][BPh₄], ⁸ [Cp₂Zr(CH₂Ph)(CH₃CN)][BPh₄], ⁸ Cp₂Zr(Ph)(CH₃), ³⁴ [HN(ⁿBu)₃][BPh₄], ³⁵ and [HN(CH₃)₂(Ph)]-BPh₄], ³⁵ [HN(CH₃)₄][BPh₄], ³⁵ and [HN(CH₃)₂(Ph)]-BPh₄], ³⁶ [HN(CH₃)₄][BPh₄], ³⁶ [HN(CH₃)₄], ³⁶ [H [BPh₄]. 35 [HN(CH₃)₃][BPh₄] was purchased from Aldrich and used after drying on a high-vacuum line. Na[BPh]4, (C5H4Me)2Fe, and NMe3 were purchased from Aldrich and used without further purification.

 $[Cp_2Zr(Me)(THF)][BPh_4]$ (3). A slurry of $Cp_2Zr(CH_3)_2$ (0.510) g, 2.03 mmol) and $[HNBu_3][BPh_4]$ (1.13 g, 2.23 mmol) in THF (20 mL) was prepared at -78 °C and warmed to 23 °C. All the solids dissolved. The solution was stirred for 3 h, during which time an off-white crystalline precipitate formed. The solid was collected by filtration, washed with 2×5 mL of cold (-78 °C) THF, and dried under vacuum overnight. Yield: 1.10 g (86%). The ¹H NMR spectrum of this material is identical with that of samples prepared by oxidation of Cp2Zr(CH3)2 by Ag+ or Cp'2Fe+ reagents.2f

Preparation of 3 via Oxidation of Cp₂Zr(CH₃)₂ with $[Cp_2Fe][BPh_4]$. A slurry of $Cp_2Zr(CH_3)_2$ (5.00 g, 19.9 mmol) and [Cp'₂Fe][BPh₄] (11.2 g, 20.9 mmol) in THF (125 mL) was prepared at -78 °C and warmed to 23 °C. The slurry was stirred for 10 h, after which 75 mL of THF was removed under vacuum and replaced by 50 mL of toluene. The reaction mixture was filtered, and the precipitate was washed with 2×20 mL of THF

^{(23) (}a) Labinger, J. A.; Hart, D. W.; Siebert, W. E., III; Schwartz, J. J. Am. Chem. Soc. 1975, 97, 3851. (b) Schwartz, J. Pure Appl. Chem. 1980, 52, 733. (c) Schwartz, J.; Labinger, J. A. Angew. Chem., Int. Ed. Engl. 1976, 6, 333. (d) Marsella, J. A.; Huffman, J. C.; Caulton, K. G.; Longato, B.; Norton, J. R. J. Am. Chem. Soc. 1982, 104, 6360. (e) Longato, B.; Norton, J. R. J. Am. Chem. Soc. 1982, 104, 6360. gato, B.; Martin, B. D.; Norton, J. R.; Anderson, O. P. Inorg. Chem. 1985, 24, 1389. (f) Edidin, R. T.; Sullivan, J. M.; Norton, J. R. J. Am. Chem. Soc. 1987, 109, 3945.

⁽²⁴⁾ Negishi, E. In Comprehensive Organometallic Chemistry; Wilkinson, G.; Stone, F. G. A.; Abel, E. W., Eds.; Pergamon Press: New York, 1982; Vol. 7, p 326.
(25) (a) Eaborn, C. J. Organomet. Chem. 1975, 100, 43. (b) Eaborn, C. J. Organomet. Chem. 1975, 100, 43.

C. Pure Appl. Chem. 1969, 19, 375. (c) Gilman, H.; Marshall, F. J. Am. Chem. Soc. 1949, 71, 2066.

(26) Jensen, F. R.; Rickborn, B. Electrophilic Substitution of Organomercurials; McGraw-Hill: New York, 1968.

⁽²⁷⁾ Jawad, J. K.; Puddephatt, R. J. J. Chem. Soc., Chem. Commun. 1977, 892.

⁽²⁸⁾ Norman, R. O. C.; Taylor, R. Electrophilic Substitution in Benzenoid Compounds; Elsevier Publishing Company: New York, 1965.

⁽²⁹⁾ Perrin, D. D.; Armarego, W. L. F.; Perrin, D. R. Purification of Laboratory Chemicals, 2nd ed.; Pergamon Press: New York, 1980.
(30) Samuel, E.; Rausch, M. D. J. Am. Chem. Soc. 1973, 95, 6263.

⁽³¹⁾ Cp₂Zr(Ph)₂ was prepared by the reaction of Cp₂ZrCl₂ with 2 equiv of PhLi at -78 °C. (a) Tainturier, G.; Fahim, M.; Trouve-Bellan, G.; Gautheron, B. J. Organomet. Chem. 1989, 376, 321. (b) Erker, G.; Czisch, P.; Benn, R.; Rufinska, A.; Mynott, R. J. Organomet. Chem. 1987, 328, 101. (c) Chen, S.; Liu, Y.; Wang, J. Sci. Sin. (Engl. Ed.) 1982, 25 (4),

^{(32) (}a) Schlosser, M. J. Organomet. Chem. 1967, 8, 9. (b) Schlosser, M.; Hartmann, J. Angew. Chem., Int. Ed. Engl. 1983, 22, 248. (c) Bulls, A. R.; Schaefer, W. P.; Serfas, M.; Bercaw, J. E. Organometallics 1987, 6, 1219.

^{(33) (}a) Fachinetti, G.; Floriani, C. J. Chem. Soc., Chem. Commun. 1972, 654. (b) Fachinetti, G.; Fochi, G.; Floriani, C. J. Chem. Soc., Dalton

Trans. 1977, 1946. (c) For an improved synthesis, see ref 8. (34) (a) E. E. Ali, Doctoral Dissertation, University of Washington, Seattle, WA, 1985. (b) Brindley, P. B.; Scotton, M. J. J. Chem. Soc., Perkin Trans. 2 1981, 428. (c) Erker, G. J. Organomet. Chem. 1977, 202,

⁽³⁵⁾ Crane, F. E., Jr. Anal. Chem. 1956, 28, 1794.

and dried under vacuum. Recrystallization of the precipitate from THF afforded 6.74 g (53.9%) of 3. The ¹H NMR spectrum of 3 was identical with that of samples prepared via oxidation by

Ag⁺ or protonolysis by HN(ⁿBu)₃⁺ reagents.

Preparation of [Cp₂Zr(Ph)(THF)][BPh₄] (6) from Cp₂Zr(Ph)(CH₂Ph). A slurry of Cp₂Zr(CH₂Ph)(Ph) (0.489 g, 1.26 mmol) and [Cp'₂Fe][BPh₄] (2.02 g, 3.78 mmol) in THF (15 mL) was prepared at -78 °C. The blue reaction mixture was warmed to 23 °C and stirred for 4 h, producing an orange slurry. The slurry was stirred overnight and then evaporated to dryness under vacuum. The resulting solid was washed with toluene to remove Cp'₂Fe and recrystallized from THF (-30 °C), yielding 0.32 g (36%) of bright yellow 6. A sample of 6 that analyzed acceptably was prepared via recrystallization from CH2Cl2/toluene at -78 °C. This sample contained 0.33 equiv of toluene (¹H NMR). Anal. Calc for C₄₄H₄₃BOZr-0.33C₇H₈: C, 77.22; H, 6.39; Zr, 12.66.

Found: C, 76.80; H, 6.28; Zr, 12.79.

Preparation of [Cp₂Zr(Ph)(THF)][BPh₄] (6) from Cp₂Zr(Ph)₂. A slurry of Cp₂Zr(Ph)₂ (3.10 g, 8.26 mmol) and [HN(Me)₂(Ph)][BPh₄] (7.29 g, 16.52 mmol) in 60 mL of THF was prepared at -78 °C. The slurry was warmed to 23 °C and stirred for 1.5 h, after which 50 mL of THF was removed and 30 mL of toluene was added. The slurry was stirred for an additional 30 min and filtered, leaving a pale yellow precipitate. The precipitate was washed thoroughly with Et₂O and dried under vacuum overnight. Yield: 4.36 g (62.6%). This material contained excess THF (2 equiv by ¹H NMR).

Cp₂Zr(Ph)(CH₂Ph) (10). A slurry of [Cp₂Zr(CH₂Ph)-(THF)][BPh₄]-0.43C₇H₈ (2.02 g, 2.53 mmol) in THF (35 mL) was prepared at -78 °C. Under N₂ counterflow, 1.45 mL of PhLi solution (2.0 M in ether, 2.9 mmol) was added by syringe over a 2-min period. The mixture was stirred at -78 °C for 20 min, warmed to 0 °C, and stirred for an additional 40 min. The mixture was warmed to 23 °C and evaporated to dryness under vacuum. The resulting solid was extracted with hexane until the hexane extract was colorless. The hexane extracts were evaporated to dryness under vacuum yielding 0.83 g of crude 10, which consisted of 83% 10 and a total of 17% of Cp₂Zr(Ph)₂ and Cp₂Zr(CH₂Ph)₂. Fractional recrystallization from toluene/hexane improved the ratio to 90:10. An additional recrystallization gave 0.34 g (32%) of >99% pure 10. The reaction was reproducible at this scale; however, scale-up attempts resulted in increased amounts of Cp₂Zr(Ph)₂ and Cp₂Zr(CH₂Ph)₂. Anal. Calc for C₂₃H₂₂Zr: C, 70.99; H, 5.70; Zr, 23.41. Found: C, 70.63; H, 5.58; Zr, 23.15. $[Cp_2Zr(CH_2Ph)(OCH_2CH_2CH_2CH_2NMe_3)][BPh_4]$ (13). A slurry of Cp₂Zr(CH₂Ph)₂ (1.00 g, 2.48 mmol) and [HNMe₃][BPh₄] (0.47 g, 1.24 mmol) in THF (15 mL) was heated for 15 h at 50 °C. The THF was removed under vacuum, yielding a yellow foam. The foam was washed with hot toluene and filtered. The resulting white solid was washed with several small portions of toluene and dried under vacuum, yielding 0.61 g (64% based on [HNMe₃]-[BPh₄]) of 13. Anal. Calc for C₄₈H₅₄BNOZr: C, 75.60; H, 7.15; N, 1.84. Found: C, 75.42; H, 6.95; N, 1.79.

 $[Cp_2Zr(CH_2Ph)(OCH_2CH_2CH_2CH_2PMe_2Ph)][BPh_4]$ (14). A solution of [Cp₂Zr(CH₂Ph)(CH₃CN)][BPh₄] (0.25 g, 0.36 mmol) and PMe₂Ph (55 µL, 0.39 mmol) in 10 mL of THF was stirred for 4 days at 55 °C. The THF was removed under vacuum, leaving a foam. The foam was recrystallized twice from THF/Et₂O at -78 °C, yielding 0.14 g (46%) of pale yellow 14. Anal. Calc for C₅₃H₅₆BOPZr: C, 75.60; H, 6.70. Found: C, 75.73; H, 6.91. ³¹P{¹H}

NMR (THF- d_8): δ 25.1.

 $[\mathbf{Cp_2Zr}(\mathbf{CH_3})(\mathbf{OCH_2CH_2CH_2CH_2NMe_3})] [\mathbf{BPh_4}] \ (15). \ \ \mathbf{A} \ \mathrm{slurry}$ of Cp₂Zr(CH₃)₂ (0.18 g, 0.70 mmol) and [HNMe₃][BPh₄] (0.25 g, 0.66 mmol) in THF (20 mL) was stirred for 6 h at 23 °C. The THF was then removed under vacuum, leaving a white foam. The foam was washed with hot toluene and dried for 15 h under

vacuum, yielding 0.34 g (76%) of 15.

 $[Cp_2Zr(Ph)(PMe_3)_2][BPh_4]$ (16). A solution of $[Cp_2Zr-$ (Ph)(THF)][BPh₄] (0.57 g, 0.81 mmol) and PMe₃ (0.16 mL, 1.6 mmol) in THF (25 mL) was prepared at -78 °C and warmed to 23 °C. After 10 min, a white solid precipitated. The slurry was stirred for an additional 30 min and filtered, leaving a white precipitate. The precipitate was recrystallized from THF and dried under vacuum overnight. Yield: 0.55 g (55%). This material contained excess THF (6 equiv by ¹H NMR) and <5% other unidentified Cp-containing impurities. 31P(1H) NMR (THF-d₈, -43 °C): δ -12.4.

Acknowledgment. This work was supported by DOE Grant DE-FG02-88ER 13935. We wish to thank Dr. R. E. LaPointe for helpful discussions and S. F. Echols for performing several early experiments. R.F.J. gratefully acknowledges a Sloan Foundation Research Fellowship (1989-91) and Union Carbide Research Innovation Awards (1989, 90).

Ligand Addition vs Substitution in the Reaction of ¹³CO with (OC)₃Fe⁻ in a Flowing Afterglow Apparatus

Richard N. McDonald* and Edward J. Bianchina

Department of Chemistry, Kansas State University, Manhattan, Kansas 66506

Received November 13, 1990

The gas-phase reactions of $(OC)_3$ Fe⁻ with CO and 13 CO were investigated. Only addition was observed with CO yielding $(OC)_4$ Fe⁻ $(k_{app} = (1.6 \pm 0.2) \times 10^{-10} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1})$, but 13 CO revealed both addition and ligand substitution with an appropriate increase in the rate constant. The average branching fractions for the addition and substitution channels were 0.71 and 0.29, respectively. From these results and the collision frequency for the excited intermediate $[(OC)_3(O^{13}C)\text{Fe}^-]*(1)$ with the helium buffer gas, $k_a[\text{He}]$, lower limits on the lifetime of 1 and the rate constants for its unimolecular decomposition are calculated. The large $k_{\rm app}$ for the reaction of $(OC)_3Fe^-$ with CO yielding the adduct $(OC)_4Fe^-$ with a doublet electronic ground state suggests that $(OC)_3Fe^-$ also has a doublet electronic ground state.

Introduction

Many condensed-phase ligand substitution reactions are stepwise, involving thermal dissociation of a ligand from the initial metal complex followed by association of the new ligand to the intermediate coordinatively unsaturated complex. For example, the 18-electron metal carbonyls Ni(CO)₄, Cr(CO)₆, Mo(CO)₆, and W(CO)₆ undergo ligand substitution with ¹³CO, ¹ amines, ² and phosphines ³ by this

dissociative mechanism. This mechanism is expected since the associative mechanism would require formation of a 20-electron intermediate. However, a number of other 18-electron complexes, i.e. $V(CO)_6^{-,4} Mn(CO)_5^{-,5} Re(CO)_5^{-,5}$

 ^{(1) (}a) Keeley, D. F.; Johnson, R. E. Inorg. Nucl. Chem. 1959, 4, 33.
 (b) Graham, J. R.; Angelici, R. J. Inorg. Chem. 1967, 6, 2082.
 (2) Pardue, J. E.; Dobson, G. R. Inorg. Chim. Acta 1976, 20, 207.
 (3) Angelici, R. J.; Graham, J. R. J. Am. Chem. Soc. 1966, 88, 3658.