Comparison of the Closo Trigonal-Bipyramidal Structures of $\mu_3 - \eta^2 - \bot$ -Acetylene and -Acetylide Clusters: Synthesis of $(\eta^5 - C_5 H_5)$ NiFe₂(CO)₆ $(\mu_3 - \eta^2 - C \equiv CPr^i)$ and X-ray Structures of $(\eta - C_5 H_5)$ NiFe₂(CO)₅(L) $(\mu_3 - \eta^2 - C \equiv CR)$ (R = Prⁱ, L = CO; R = Bu^t, L = PPh₃)

Arthur J. Carty* and Nicholas J. Taylor

Gueiph-Waterloo Centre for Graduate Work in Chemistry, Waterloo Campus, Department of Chemistry, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1

Enrico Sappa*

Dipartimento di Chimica Inorganica, Chimica Fisica e Chimica dei Materiali, Università di Torino, Via Pietro Giuria 7, 10125 Torino, Italy

Antonio Tiripicchio* and Marise Tiripicchio Camellini

Istituto di Chimica Generale ed Inorganica, Università di Parma, Centro di Studio per la Strutturistica Diffrattometrica del CNR, viale delle Scienze, 43100 Parma, Italy

Received October 9, 1990

A comparison between the structures of closo trigonal-bipyramidal acetylene and acetylide clusters with M_3C_2 frameworks is made. The synthesis of $(\eta^5-C_5H_5)NiFe_2(CO)_6(\mu_3-\eta^2-C==CPr^i)$ (1) from $[(\eta^5-C_5H_5)Ni(CO)]_2$, $Ph_2PC==CPr^i$, and $Fe_2(CO)_9$ is described. X-ray structural analyses of $(\eta^5-C_5H_5)NiFe_2(CO)_5(L)(\mu_3-\eta^2-C==CR)$ (L = CO, R = Prⁱ, 1; L = PPh₃, R = Bu^t, 2) are described. Crystal data: 1, $C_{16}H_{12}Fe_2NiO_6$, $M_r = 470.67$, triclinic space group $P\overline{1}$, a = 14.769 (7) Å, b = 14.824 (6), c = 8.708 (4), $\alpha = 91.77$ (2)°, $\beta = 96.45$ (2)°, $\gamma = 109.27$ (2)°, V = 1784 (1) Å³, Z = 4; 2, $C_{35}H_{29}Fe_2NiO_5P\cdot 0.5C_7H_{16}$, $M_r = 781.10$, space group $P2_1/c$, a = 10.058 (3) Å, b = 13.225 (6) Å, c = 26.906 (8) Å, $\beta = 96.08$ (2)°, V = 3559 (2) Å³, Z = 4. The structures of 1 and 2 were solved and refined on the basis of 5143 and 3289 observed intensities measured on Siemens AED and Syntex P2₁ diffractometers. Final R and R_w values were 0.048 and 0.054 for 1 and 0.056 and 0.066 for 2. There are significant structural differences between the closo trigonal-bipyramidal M_3C_2 skeletons of the acetylide and acetylene clusters. In particular the $M-C_\alpha$ distances are much shorter in the acetylene clusters approximate more closely to an equatorial component of a trigonal bipyramid than the "bare" C_α in the $\mu_3 \cdot \eta^2$ -acetylides. The acetylides show a closer structural resemblance to the M_4 cluster carbides.

Introduction

The iron group carbonyls $M_3(CO)_{12}$ react with alkynes to give a diverse array of organometallic compounds whose structures are a function of the metal, the nature of the alkyne, and the reaction conditions.¹ Among the first products observed in the reactions of $Fe_3(CO)_{12}$ with internal alkynes are the monoalkyne complexes $Fe_3(CO)_9$ - $(\mu_3 \cdot \eta^2 - \bot - RC \equiv CR)$, which have been the subject of intense study because of the unusual bonding of the alkyne in a perpendicular fashion on the $Fe_3 edge,^{2,3}$ and the violet bis(alkyne) compounds $Fe_3(CO)_8(\mu_3 \cdot \eta^2 - \|-RC \equiv CR)_2.^4$

(4) Dodge, R. P.; Schomaker, V. J. Organomet. Chem. 1965, 3, 274.

With ruthenium and osmium, on the other hand, internal alkynes afford tetranuclear $M_4(CO)_{10}(\mu_4 - \eta^2 - RC \equiv CR)$ clusters via metal fragment condensation,⁵ trinuclear complexes from oxidative addition,⁶ and molecules of the

⁽¹⁾ Reviews on metal-acetylene structural systematics are, for example: (a) Sappa, E.; Tiripicchio, A.; Braunstein, P. Chem. Rev. 1983, 83, 203. (b) Oseila, D.; Raithby, P. R. In Stereochemistry of Organometallic and Inorganic Compounds; Bernal, I., Ed.; Elsevier: Amsterdam, 1988; Vol. 3. (c) Raithby, P. R.; Rosales, M. J. Adv. Inorg. Chem. Radiochem. 1985, 29, 169.

⁽²⁾ Synthesis and X-ray structural studies: (a) Hübel, W. In Organic Synthesis via Metal Carbonyls; Wender, I., Pino, P., Eds.; Interscience: New York, 1968; Vol. I, p 273. (b) Blount, J. F.; Dahl, L. F.; Hoogzand, C.; Hubel, W. J. Am. Chem. Soc. 1966, 88, 292. (c) Aime, S.; Milone, L.; Sappa, E.; Tiripicchio, A.; Tiripicchio Camellini, M. J. Chem. Soc., Dalton Trans. 1979, 1155. (d) Busetti, V.; Granozzi, G.; Aime, S.; Gobetto, R.; Osella, D. Organometallics 1984, 3, 1510. (e) Carty, A. J.; Taylor, N. J.; Sappa, E. Organometallics 1988, 7, 405.
(3) Theoretical studies: (a) Granozzi, G.; Tondello, E.; Cesarin, M.; Aime, S. Ocalla, D. Organometallics 1988, 7, 405.

⁽³⁾ Theoretical studies: (a) Granozzi, G.; Tondello, E.; Cesarin, M.; Aime, S.; Osella, D. Organometallics 1983, 2, 430. (b) Halet, J. F.; Saillard, J.-Y.; Lissillour, R.; McGlinchey, M. J.; Jaouen, G. Inorg. Chem. 1985, 24, 218. (c) Schilling, B. E. R.; Hoffmann, R. J. Am. Chem. Soc. 1979, 101, 3456.

⁽⁵⁾ Johnson, B. F. G.; Lewis, J.; Reichert, B. E.; Schorpp, K. T.; Sheldrick, G. M.; Hursthouse, M. J. Chem. Soc., Dalton Trans. 1977, 1417.

^{(6) (}a) Evans, E.; Hursthouse, M.; Randall, E. W.; Rosenberg, E.; Milone, L.; Valle, M. J. Chem. Soc., Chem. Commun. 1975, 545. (b) Gervasio, G.; Osella, D.; Valle, M. Inorg. Chem. 1976, 15, 1221.

type $M_3(CO)_{10}(\mu_3 - \eta^2 - || - RC \equiv CR)$, in which the alkyne triple bond lies parallel to one edge of the M_3 triangle.⁷

Terminal alkynes (HC=CR) undergo oxidative addition with $M_3(CO)_{12}$ (M = Ru, Os), affording the now classical hydrido acetylides $(\mu-H)M_3(CO)_9(\mu_3-\eta^2-C \equiv CR).^8$ Strangely enough, such acetylides are not obtained in the direct reactions of terminal alkynes with Fe₃(CO)₁₂ and the few trinuclear iron compounds of this type that have been characterized were synthesized indirectly from alkoxyalkyne⁹ and ketenylidene¹⁰ clusters or via oxidative cleavage of C-H and P-C bonds in precoordinated terminal alkynes or phosphinoalkynes.^{11,12}

In the Wade-Mingos PSEPT formalism¹³ homonuclear molecules $Fe_3(CO)_9(\eta_3-\eta^2-\perp -RC \equiv CR)$ and heteronuclear molecules $(\eta^5 - C_5H_5)$ NiFe₂(CO)₆ $(\mu_3 - \eta^2 - C \equiv CR)$ have sixelectron-pair five-vertex closo trigonal-bipyramidal structures when the alkyne (two CR units) and the acetylide (C and CR) are considered as contributing two skeletal atoms and six or five electrons to the polyhedron (A and B, Chart I). With the alkynes as four-electron ligands the EAN electron count for $Fe_3(CO)_9(\mu_3-\eta^2-\perp$ -RC=CR) molecules is only 46 electrons, implying, at least formally, electronic unsaturation. In practice these \perp acetylene clusters are prone to electrochemical two-electron reduction,¹⁴ to addition of CO¹⁵ or further alkyne,⁴ and to exchange of metal fragments.¹⁴ All of these reactions result in reorientation of the alkyne on the M_3 face, generating nido octahedral structures with $\mu_3 - \eta^2 - \|$ -alkyne coordination. With phosphines, however, simple substitution of CO gives $M_3(CO)_8(\mu_3 - \eta^2 - \perp - RC \equiv CR)(L)$ complexes.¹¹

Clearly there should be significant structural and electronic similarities between the Fe₃(CO)₉(μ_3 - η^2 - \perp -RC==CR) clusters and the corresponding isoelectronic acetylides. In this paper we describe the molecular structures of two new heteronuclear clusters of the latter class, namely $(\eta^5$ - C_5H_5)NiFe₂(CO)₅(L)(μ_3 - η^2 -C=CR) (L = CO, R = Prⁱ; L = PPh_3 , R = Bu^t), and examine in detail the structural consequences of replacing a CR (alkyne) fragment by a C (acetylide) unit. We focus particularly on the suggestion¹⁶ that these acetylides may be described as "alkylidynecarbides" and draw comparisons with the related class of tetranuclear cluster carbides¹⁷ (C and D, Chart I).

Experimental Section

The complex $(\eta^5 - C_5 H_5)$ NiFe₂(CO)₆ $(\mu_3 - \eta^2 - C = CPr^i)$ (1) was obtained in a two-step reaction. The nickel dimer $[(\eta^5-C_5H_5)Ni(CO)]_2$ (0.2 g) in *n*-heptane (100 mL) was reacted with the phosphinoalkyne Ph2PC=CPrⁱ¹⁸ (~3-fold excess) under reflux until the initially dark red solution turned dark brown and IR spectroscopy indicated complete consumption of starting material. A heptane

- (9) Suades, J.; Dahan, F.; Mathieu, R. Organometallics 1988, 7, 47.
 (10) Hriljac, J. A.; Shriver, D. F. J. Am. Chem. Soc. 1987, 109, 6010.
- Sappa, E. J. Organomet. Chem. 1987, 323, 83.
- (11) Sappa, E. J. Organomet. Chem. 1987, 323, 83.
 (12) Bobbie, B.; Taylor, N. J.; Carty, A. J. Unpublished results.
 (13) (a) Wade, K. Adv. Inorg. Chem. Radiochem. 1976, 18, 1. (b) Wade, K. Inorg. Nucl. Chem. Lett. 1972, 8, 559. (c) Wade, K. Electron Deficient Compounds; Nelson: London 1971. (d) Mingos, D. M. P. Nature (London), Phys. Sci. 1972, 236, 99. (e) Mingos, D. M. P. Acc. Chem. Res. 1984, 17, 311.
 (14) Sap for surveyed to the product of th
- (14) See, for example: Osella, D.; Gobetto, R.; Montangero, P.; Zanello, A. K.; Cinquantini, A. Organometallics, 1986, 5, 1247.
 (15) Nuel, D.; Dahan, F.; Mathieu, R. Organometallics 1985, 4, 1436.
- (16) Nucciarone, D.; Taylor, N. J.; Carty, A. J. Organometallics 1986, 5, 1179.

Carty et al.

Table I. Experimental Data for the X-ray Diffraction Studies of $(\eta^5 \cdot C_5 H_5)$ NiFe₂(CO)₆ $(\mu_3 \cdot \eta^2 \cdot C \equiv CPr^i)$ (1) and $(\eta^{5}-C_{5}H_{5})NiFe_{2}(CO)_{5}(PPh_{3})(\mu_{3}-\eta^{2}-C=CBu^{t})$ (2)

	1	2
mol formula	C ₁₆ H ₁₂ Fe ₂ NiO ₆	$C_{35}H_{29}Fe_2NiO_5P\cdot^{1}/_2C_7H_{16}$
mol wt	470.67	781.10
cryst syst	triclinic	monoclinic
space group	PĪ	$P2_{1}/c$
a, Å	14.769 (7)	10.058 (3)
b, Å	14.824 (6)	13.225 (6)
c, Å	8.708 (4)	26.906 (8)
α , deg	91.77 (2)	
β , deg	96.45 (2)	96.08 (2)
γ , deg	109.27 (2)	
V, Å ³	1784 (1)	3559 (2)
Ζ	4	4
$D_{\rm calcd}$, g cm ⁻³	1.753	1.458
F(000)	944	1612
cryst dimens, mm	$0.16 \times 0.18 \times 0.24$	$0.24 \times 0.28 \times 0.31$
μ (Mo K α), cm ⁻¹	26.83	14.13
diffractometer	Siemens AED	Syntex P2 ₁
scan type	$\theta/2\theta$	$\theta/2\theta$
2θ range, deg	6-54	3.2-45
rflns measd	$\pm h, \pm k, l$	h,k,±l
total no. of unique data	7672	4676
no. of unique obsd	5143 $(I > 2\sigma(I))$	3289 $(I > 3\sigma(I))$
data		
R	0.048	0.056
R _w	0.054	0.066

suspension (50 mL) of $Fe_2(CO)_9$ (0.3 g) or $Fe_3(CO)_{12}$ (0.4 g) was then added to the hot solution under nitrogen and the mixture refluxed for a further 20 min. The dark brown suspension obtained was filtered under nitrogen and the insoluble fraction discarded. The filtrate was evaporated under reduced pressure to a few milliliters and chromatographed on preparative TLC plates (Merck, Kieselgel) with use of a diethyl ether-light petroleum ether mixture (1:9) for development. Small amounts of $[(\eta^5\text{-}C_5H_5)\text{Ni}(\text{CO})]_2$ and Fe3(CO)12 were detected together with the following compounds in order of development: complex 1 the following compounds in order of development. Complex 1 (10%); $(\eta^5-C_5H_5)_2Ni_2Fe_2(CO)_6(\mu_4-\eta^2-HC=CPr^i)$ (10%); $(\eta^5-C_5H_5)_2Ni_2Fe_2(CO)_5(\mu_4-\eta^2-C=CPr^i)(\mu-PPh_2)$ (5%); $(\eta^5-C_5H_5)-NiFe_3(CO)_7(\mu_4-\eta^2-HC_2Pr^i)(\mu-PPh_2)$ (25%); trace amounts of two other unidentified clusters.¹⁹

Analytical and Spectroscopic Data for 1. Anal. Calcd for C₁₆H₁₂O₆NiFe₂: C, 40.83; H, 2.57. Found: C, 41.0; H, 2.8. IR $(\nu(CO), C_7H_{16})$: 2067 vs, 2021 vs, 1994 vs, 1987 w, sh, 1973 m cm⁻¹. ¹H NMR (CDCl₃, 293 K): δ 4.90 s (5 H, C₅H₅), 3.73 m (1 H, CHMe₂), 1.45 d, 1.31 d (6 H, CH(CH₃)₂).

The phosphine-substituted complex $(\eta^5 - C_5 H_5) NiFe_2(CO)_5$ - $(PPh_3)(\mu_3 - \eta^2 - C = CBu^t)$ was obtained as previously described¹¹ and recrystallized from *n*-heptane.

IR spectra were measured on a Perkin-Elmer 580 B spectrometer and NMR spectra on a JEOL JNM GX 270 FT instrument. Microanalyses were carried out by Pascher Microanalytical Laboratories, Remagen, Germany.

X-ray Data Collection, Structure Determination, and Refinement for 1 and 2. Dark brown crystals of 1 and 2 were grown from n-heptane; those of the latter also contained heptane molecules of solvation. The crystallographic data for both compounds are summarized in Table I. Unit cell parameters were determined from the θ values of 25 (1) and 15 (2) carefully centered reflections chosen from different regions of reciprocal space. Data were collected at room temperature on a Siemens AED diffractometer (1) using niobium-filtered Mo K α radiation and on a Syntex P21 diffractometer (2) using graphite-monochromated Mo $K\alpha$ radiation ($\lambda = 0.71073$ Å). The reflections were collected with a variable scan speed of 3-12° min⁻¹ and a scan width from (θ -0.6)° to $(\theta + 0.6 + 0.346 \tan \theta)$ ° for 1 and with a variable scan speed of 2.93–29.3° min⁻¹ and a scan width of 0.75° below $K\alpha_1$ to 0.75° above $K\alpha_2$ for 2. One standard reflection was monitored every 50 measurements for 1, and two standard reflections were

⁽⁷⁾ Shapley, J. R.; Tachikawa, M.; Pierpont, C. G. J. Am. Chem. Soc.

⁽¹⁾ Shapey, J. J.
1975, 97, 7172.
(8) (a) Sappa, E.; Gambino, O.; Milone, L.; Cetini, G. J. Organomet. Chem. 1972, 39, 169. (b) Catti, M.; Gervasio, G.; Mason, S. A. J. Am. Chem. Soc. 1975, 97, 7172.
(2) Condex J. Dohon, F. Methieu, R. Organometallics 1988, 7, 47.

⁽¹⁷⁾ Bradley, J. S. Adv. Organomet. Chem. 1983, 22, 1.
(18) Carty, A. J.; Hota, N. K.; Patel, H. A.; O'Connor, T. J.; Ng, T. W. Can. J. Chem. 1971, 49, 2706.

⁽¹⁹⁾ Sappa, E.; Belletti, D.; Tiripicchio, A.; Tiripicchio-Camellini, M. J. Organomet. Chem. 1989, 359, 419 and references therein.

Table II. Fractional Atomic Coordinates (×104) with Esd's in Paranthases for the Non-Hydrogen Atoms of 1

111 1 41040	Hebeb Ioi viie i	ton my ur oger	
	x/a	y/b	z/c
Ni(11)	-3130 (1)	1748 (1)	7372 (1)
Fe(11)	-3180 (1)	2947 (1)	9423 (1)
Fe(21)	-1707 (1)	2371 (1)	9206 (1)
O(11)	-4828(3)	3416 (4)	7997 (6)
O (21)	-2256 (4)	4649 (3)	11512 (5)
O(31)	-4157 (3)	1629 (3)	11599 (5)
O(41)	-2353 (3)	1055 (3)	11577 (5)
O(51)	-188 (3)	3893 (4)	11127 (6)
O(61)	-434 (3)	1458 (3)	8025 (6)
C(11)	-4192 (4)	3231 (4)	8565 (7)
C(21)	-2629 (4)	3979 (4)	10719 (6)
C(31)	-3772 (4)	2152 (4)	10773 (6)
C(41)	-2110 (4)	1584 (4)	10680 (6)
C(51)	-777 (4)	3300 (4)	10384 (6)
C(61)	-928 (4)	1791 (4)	8510 (6)
C(71)	-2401(3)	3112 (3)	7906 (5)
C(81)	-1902 (3)	2814 (3)	7035 (5)
C(91)	-1342(4)	3008 (4)	5719 (6)
C(101)	-385 (4)	3822 (6)	6207 (9)
C(111)	-1931 (6)	3250 (6)	4366 (7)
C(121)	-3480 (5)	286 (4)	6794 (8)
C(131)	-4125(4)	443 (4)	7706 (8)
C(141)	-4617 (4)	1000 (4)	6962 (8)
C(151)	-4253 (5)	1195 (4)	5533 (7)
C(161)	-3555 (5)	759 (4)	5446 (7)
Ni(12)	2649 (1)	3258 (1)	3697 (1)
Fe(12)	3564 (1)	2711 (1)	1827 (1)
Fe(22)	1695 (1)	2016 (1)	1829 (1)
O(12)	5512 (3)	3375 (4)	3511 (7)
O(22)	3792 (3)	1261 (3)	-245 (5)
O(32)	3810 (3)	4264 (3)	-238 (6)
O(42)	1535 (3)	3210 (3)	-705 (5)
O(52)	1166 (4)	230 (3)	-114 (5)
O(62)	-160 (3)	1809 (4)	2867 (6)
C(12)	4755 (4)	3129 (4)	2836 (7)
C(22)	3712 (3)	1839 (4)	536 (6)
C(32)	3718 (4)	3654 (4)	544 (7)
C(42)	1624 (4)	2745 (4)	292 (6)
C(52)	1358 (4)	916 (4)	666 (6)
C(62)	552 (3)	1881 (4)	2406 (6)
C(72)	2878 (3)	2049 (3)	3257 (5)
C(82)	2171 (3)	1845 (3)	4062 (5)
C(92)	1738 (4)	1345 (4)	5379 (6)
C(102)	1319 (6)	276 (5)	4987 (9)
C(112)	2514 (6)	1581 (8)	6781 (7)
C(122)	2704 (6)	4625 (4)	3249 (9)
C(132)	3561 (5)	4680 (4)	4136 (9)
C(142)	3321 (6)	4292 (5)	5533 (8)
C(152)	2319 (6)	4018 (5)	5475 (8)
C(162)	1938 (6)	4218 (4)	4064 (9)

monitored every 100 measurements for 2; no significant decay was noticed over the time of data collection. Lorentz and polarization corrections were applied to the data and the intensitites reduced to structure factors in the normal way. No absorption corrections were deemed necessary.

The structures were solved by Patterson and Fourier methods and refined first by full-matrix least squares with isotropic thermal parameters and then by blocked (1) and full (2) matrix least squares with anisotropic thermal parameters for all non-hydrogen atoms. All hydrogen atoms of 1 were placed at their geometrically calculated positions (C-H = 1.00 Å) and refined "riding" on the corresponding carbon atoms. A disordered heptane molecule was found in 2, and the heptane carbon atoms were refined with isotropic thermal parameters and an occupancy factor of 0.5. The hydrogen atoms of 2 were not included in the refinement. The final cycles of refinement were carried out on the basis of 476 (1) and 417 (2) variables; after the last cycles, no parameters shifted by more than 1.23 (1) and 0.85 (2) esd. The largest remaining peaks in the final difference maps were equivalent to about 0.9 (1) and 0.7 (2) $e/Å^3$. The function minimized in the least-squares refinements was $\sum w |F_o - F_c|^2$. In the final cycles of refinement a weighting scheme, $w = K[\sigma^2(F_o) + gF_o^2]^{-1}$, was used for 1; at convergence the K value was 1.000 and the g value 0.0048. For 2 the weighting scheme was $w^{-1} = 1.98 - 0.0185|F_0| + 0.00013|F_0|^2$.

Figure 1. View of the molecular structure of the complex $(\eta^5$ - C_5H_5)NiFe₂(CO)₆(μ_3 - η^2 - \perp -C=CPrⁱ) (1) together with the atomic numbering scheme.

Figure 2. View of the molecular structure of the complex $(\eta^5$ - C_5H_5)NiFe₂(CO)₅(PPh₃)(μ_3 - η^2 - \perp -C=CBu^t) (2) together with the atomic numbering scheme.

The analytical scattering factors, corrected for the real and imaginary parts of anomalous dispersions, were taken from ref 20. All calculations for 1 were carried out on the Cray X-MP/12 computer of the "Centro di Calcolo Elettronico Interuniversitario dell'Italia Nord-Orientale" (CINECA, Casalecchio Bologna) using the SHELX-76 system of crystallographic computer programs²¹ and all of those for 2 on IBM 4341 computers at the University of Waterloo, Department of Computing Services using computer programs described elsewhere.²² The final atomic coordinates for the non-hydrogen atoms are given in Tables II (1) and III (2). The atomic coordinates of the hydrogen atoms are given in Table SI (1; supplementary material) and the thermal parameters in Tables SII and SIII (1 and 2, respectively; supplementary material).

Results and Discussion

Comparison of the Structures of 1 and 2. The molecular structures of the compounds 1 and 2 are depicted in Figures 1 and 2, respectively, together with the atomic labeling schemes. In the crystals of 1 two crystallographically independent, but practically identical, molecules are present. Important bond distances and angles

⁽²⁰⁾ International Tables for X-ray Crystallography; Kynoch Press:

⁽²¹⁾ International Tables 7 A dy Crystallography, Rynord Fress.
(21) Sheldrick, G. M. SHELX-76 Program for Crystal Structure Determination; University of Cambridge: Cambridge, England, 1976.
(22) Carty, A. J.; Mott, G. N.; Taylor, N. J.; Yule, J. E. J. Am. Chem. Soc. 1978, 100, 3051.

Table III. Fractional Atomic Coordinates $(\times 10^4)$ with Esd's in Parentheses for 2

atom	x	У	z
Ni	4183 (1)	1905 (1)	2570 (1)
Fe(1)	3393 (1)	1587(1)	1653(1)
Fe(2)	2008 (1)	2568 (1)	2288(1)
P	2066 (2)	1025 (2)	1008 (1)
O(1)	5440 (7)	89 (6)	1554 (3)
O(2)	4694 (8)	3204 (6)	1140 (3)
O(3)	-879 (6)	2398 (7)	2033 (3)
O (4)	2459 (8)	4277 (6)	1635 (3)
O(5)	1851 (8)	3883 (6)	3156 (3)
$\tilde{C}(1)$	4623 (9)	683 (7)	1594 (3)
C(2)	4161 (9)	2562 (7)	1334 (4)
$\mathbf{C}(3)$	265 (9)	2467 (8)	2123 (3)
C(4)	2318 (10)	3570 (8)	1874 (4)
C(5)	1918 (9)	3357 (8)	2823 (4)
C(6)	6118 (8)	2363 (9)	2453 (4)
$\dot{C}(7)$	6227 (9)	1409 (9)	2705 (4)
C(8)	5694 (10)	1568 (10)	3168 (4)
C(9)	5282 (10)	2616 (10)	3187 (4)
C(10)	5532 (9)	3094 (9)	2762 (4)
C(11)	2663 (8)	1156 (6)	2211(3)
C(12)	2416 (8)	1234 (6)	2664 (3)
C(13)	1929 (10)	661 (7)	3101 (3)
C(14)	430 (11)	399 (10)	2946 (4)
C(15)	2772 (13)	-315 (8)	3176 (4)
C(16)	2055 (13)	1302 (9)	3581 (4)
C(17)	1809 (8)	-333 (7)	1027 (3)
C(18)	1890 (10)	-947 (8)	605 (4)
C(19)	1721 (11)	-2000 (8)	640 (4)
C(20)	1447 (10)	-2449 (9)	1093 (4)
C(21)	1365 (10)	-1830 (8)	1516 (4)
C(22)	1554 (9)	-784 (8)	1488 (4)
C(23)	2618 (9)	1226 (7)	386 (3)
C(24)	3982 (10)	1177 (8)	338 (3)
C(25)	4429 (11)	1286 (9)	-139 (4)
C(26)	3505 (13)	1454 (9)	-551 (4)
C(27)	2128 (12)	1498 (8)	-513 (4)
C(28)	1695 (10)	1384 (8)	-29(3)
C(29)	376 (9)	1554 (8)	927 (3)
C(30)	264 (10)	2605 (8)	846 (3)
C(31)	-1006 (11)	3053 (10)	770 (4)
C(32)	-2158 (12)	2439 (11)	787 (4)
C(33)	-2034(11)	1405 (11)	872 (4)
C(34)	-766 (9)	944 (9)	943 (4)
C(35)-	121(4)	-19 (3)	030 (1) 500 (1)
C(30)*	2/8 (4)	13 (3)	523 (1) 407 (1)
C(37)*	300 (3) 404 (4)	00 (J) 76 (9)	497 (1)
C(30)=	404 (4)	(0(3) _09(9)	472 (1) 596 (1)
C(40)	400 (0) 530 (4)	-68 (2)	520 (1) 597 (1)
C(41) ^a	615 (3)	78 (2)	462 (1)

^a Disordered heptane of solvation, occupancy 0.5.

for 1 and 2 are given in Tables IV and V, respectively. The core of both molecules 1 and 2 consists of an asymmetric triangle of two Fe and one Ni atom with an acetylide σ -bound to the Fe(1) atom and π -bonded to the Fe(2) and Ni atoms in such a way that the acetylenic triple bond lies almost perpendicular to the Ni-Fe(2) edge. This is the classical μ_3 - η^2 - \perp -bonding mode first documented for Fe₃(CO)₉(PhC=CPh) by Dahl, Hübel, and co-workers.^{2b} It is interesting that in these heterometallic clusters the metal atoms adopt an unsymmetrical arrangement with the alkynyl group σ -bound to one iron atom, rather than the alternative, symmetrical arrangement with the RC = Cgroup σ -bonded to the unique Ni atom. The latter arrangement might also be expected on electronic grounds, since all three metal atoms would achieve the presumably favored 18-electron configuration, whereas in the unsymmetrical arrangement Fe(1) is a 17-electron center and the Ni atom has 19 electrons. The position of the nickel atom in both structures was unequivocally confirmed by different refinements carried out by placing the nickel atom

Carty et al.

Table IV. Selected Bond Distances (Å) and Angles (deg)

	for 1	, U U ,
	molecule A	molecule B
Fe(1)-Fe(2)	2.608 (2)	2.608 (2)
Ni-Fe(1)	2.504 (1)	2.504 (1)
Ni-Fe(2)	2.386(1)	2.368 (1)
Fe(1) - C(1)	1.776 (7)	1.775 (5)
Fe(1) = C(2) Fe(1) = C(2)	1.773 (5)	1.770 (6)
Fe(1) = C(3) $F_0(1) = C(7)$	1.782 (0)	1.789 (6)
Fe(2) - C(4)	1 781 (6)	1.600 (4)
Fe(2) - C(5)	1.783 (5)	1.783 (5)
Fe(2) - C(6)	1.791 (6)	1.766 (5)
Fe(2)-C(7)	2.024 (5)	2.012 (5)
Fe(2)-C(8)	2.041 (5)	2.045 (4)
Ni-C(7)	1.964 (4)	1.963 (5)
$N_1 - C(8)$	2.031 (4)	2.025 (5)
NI-C(12) Ni-C(12)	2.087 (6)	2.053 (6)
Ni = C(13) Ni = C(14)	2.001 (0)	2.069 (5)
Ni-C(15)	2.100 (6)	2.081 (8)
Ni-C(16)	2.088 (6)	2.066 (9)
C(7)-C(8)	1.278 (7)	1.281 (7)
C(8)-C(9)	1.469 (7)	1.476 (7)
C(9) - C(10)	1.531 (8)	1.511 (9)
C(9)-C(11)	1.508 (9)	1.523 (9)
C(12) - C(13)	1.377 (10)	1.383 (11)
C(13) = C(14) C(14) = C(15)	1.398 (10)	1.394 (10)
C(14) - C(15) C(15) - C(16)	1.411(10) 1 392(11)	1.354 (12) 1.375 (11)
C(12) - C(16)	1.399 (9)	1.380(11)
C(1) - O(1)	1.130 (9)	1.139 (7)
C(2)-O(2)	1.130 (7)	1.123 (7)
C(3)-O(3)	1.130 (7)	1.130 (8)
C(4) - O(4)	1.126 (7)	1.147 (7)
C(5) - O(5)	1.133 (6)	1.141 (7)
C(6) - O(6)	1.118 (8)	1.141 (7)
Ni-Fe(1)-Fe(2)	55.60 (6)	55.16 (6)
Ni-Fe(2)-Fe(1)	60.00 (6)	60.20 (6)
Fe(1)-Ni-Fe(2)	64.40 (6)	64.65 (6)
Fe(2) - Fe(1) - C(2) Fo(2) - Fo(1) - C(2)	100.5(2)	99.5 (2) 102 7 (9)
$N_{i} = F_{e}(1) = C(1)$	99.9 (2)	103.7(2) 101.4(2)
Ni-Fe(1)-C(3)	99.6(2)	98.8(2)
C(1)-Fe(1)-C(2)	99.0 (3)	98.1 (3)
C(1)-Fe(1)-C(3)	98.1 (3)	97.1 (3)
C(2)-Fe(1)-C(3)	98.0 (3)	98.1 (3)
Fe(1)-Fe(2)-C(4)	87.9 (2)	85.9 (2)
Fe(1)-Fe(2)-C(5)	100.3(2)	103.1(2)
$N_1 = Fe(2) = C(4)$	97.3 (2)	97.2 (2)
$\Gamma(4) = \Gamma(2) = C(6)$	102.1(2)	98.2 (2)
C(4) - Fe(2) - C(5)	96.8 (3)	97.2 (3)
C(5) - Fe(2) - C(6)	96.2 (3)	97.8 (3)
Fe(1) - C(7) - C(8)	151.6 (4)	152.6 (4)
C(7)-C(8)-C(9)	146.1 (5)	147.2 (5)
Fe(1)-C(1)-O(1)	178.8 (6)	178.0 (5)
Fe(1)-C(2)-O(2)	177.7 (6)	177.9 (5)
Fe(1) = U(3) = U(3)	178.2 (5)	178.2 (6)
Fe(2) = O(4) = O(4) Fe(2) = O(5) = O(5)	1706 (D) 1706 (5)	1774 (5)
Fe(2) = C(6) = O(6)	176.8 (5)	176.0 (5)

in the other two possible positions of the metal triangle. In both cases the effect of switching positions for Fe and Ni was to increase significantly the R factors and to adversely affect the thermal parameters of the atoms.

In attempting to rationalize these facts, we can make the following remarks. (i) In both structures the Fe(1)-C_a (Fe(1)-C(7) = 1.814 (5) Å in 1; Fe(1)-C(11) = 1.831 (8) Å in 2) bonds are rather short. Indeed, these distances approach the iron-carbonyl bond lengths to the same atom (Fe(1)-CO_{av} = 1.777 (6) Å in 1; Fe(1)-CO_{av} = 1.755 (9) Å in 2) and are much shorter than any of the remaining metal-carbon distances to the unsaturated hydrocarbyl. Churchill and Chang^{23a} have previously tabulated Fe-C_{an}⁸,

able ti beleetea	DAGG DOWE	un (II) und Hingi	CB (UCB) IOI 2
	(A) Bond	Lengths	
Ni-Fe(1)	2.546 (2)	Ni-Fe(2)	2.404 (2)
Ni-C(6)	2 094 (9)	Ni-C(7)	2,152 (10)
Ni = C(8)	2138(11)	$N_{i-C(9)}$	2114(11)
$\mathbf{N} = \mathbf{C}(10)$	2.100 (11)	$N_{i-C(11)}$	1 095 (9)
NI = O(10)	2.009 (11)	$E_{1}(1)$ $E_{2}(0)$	1.300 (0)
$N_{1}-C(12)$	2.026 (8)	Fe(1)-Fe(2)	2.655 (2)
Fe(1)-P	2.205 (2)	Fe(1) - C(1)	1.740 (9)
Fe(1)-C(2)	1.771 (10)	Fe(1) - C(11)	1.831 (8)
Fe(2) - C(3)	1.768 (9)	Fe(2) - C(4)	1.780 (10)
Fe(2) - C(5)	1.788 (10)	Fe(2)-C(11)	1.998 (9)
$F_{e}(2) - C(12)$	2 054 (8)	P-C(17)	1 816 (9)
$\mathbf{D}_{-}\mathbf{C}(22)$	1 826 (0)	$P_{(20)}$	1 920 (0)
$P^{-}(23)$	1.630 (9)	$\Gamma = O(29)$	1.000 (5)
C(1) = O(1)	1.15 (1)	C(2) = O(2)	1.10(1)
C(3) = O(3)	1.15 (1)	C(4) - O(4)	1.15 (1)
C(5)–O(5)	1.14 (1)	C(6) - C(7)	1.43 (2)
C(7) - C(8)	1.42 (1)	C(8)-C(9)	1.45 (2)
C(9) - C(10)	1.44 (2)	C(10) - C(6)	1.38 (1)
C(11) - C(12)	1.28 (1)	C(12) - C(13)	1.52 (1)
C(13) - C(14)	1.56 (1)	C(13) - C(15)	1.55(2)
C(12) - C(16)	1.50(1) 1.54(1)	0(10) 0(10)	1.00 (2)
C(13) = C(10)	1.04 (1)		
	(B) Bone	d Angles	
Fe(1)-Ni-Fe(2)	64.78 (4)	Fe(1)-Ni-C(6)	95.8 (3)
$F_{e}(1) - N_{i} - C(7)$	107 9 (3)	$E_{e(1)}-N_{i-C(8)}$	144 9 (3)
$\mathbf{F}_{0}(1)$ N; $\mathbf{C}(0)$	1566(0)	$F_{0}(1)$ N: $C(10)$	1166(0)
Fe(1) = IVI = O(9)	100.0 (0)	Fe(1) = INI = O(10)	110.0 (3)
Fe(1) - Ni - U(11)	45.6 (2)	Fe(1) - Ni - C(12)	82.0 (2)
Fe(2)-Ni-C(6)	132.5 (3)	Fe(2)-Ni-C(7)	170.2 (3)
Fe(2)-Ni-C(8)	149.8 (3)	Fe(2)-Ni-C(9)	117.9 (3)
Fe(2)-Ni-C(10)	109.8 (3)	Fe(2)-Ni-C(11)	53.1 (2)
Fe(2) - Ni - C(12)	54.4 (2)		
Ni-Fe(1)-Fe(2)	55.02 (3)	Ni-Fe(1)-P	156.93 (6)
$N_{i-F_{e}(1)-C(1)}$	92 9 (3)	$N_{i-F_{e}(1)-C(2)}$	104.0 (3)
$N_{i} = F_{o}(1) = C(11)$	50 9 (9)	$F_{0}(0) - F_{0}(1) - D$	110.97 (6)
$E_{1}(0) = E_{1}(1) - C(11)$	145.0 (2)	Fe(2) = Fe(1) = F	10.07 (0)
Fe(2) - Fe(1) - O(1)	145.2 (3)	Fe(2) - Fe(1) - C(2)	104.0 (3)
Fe(2) - Fe(1) - C(11)	48.8 (2)	P-Fe(1)-C(1)	94.2 (3)
P-Fe(1)-C(2)	97.1 (3)	P-Fe(1)-C(11)	106.2(3)
C(1)-Fe(1)-C(2)	96.1 (4)	C(1)-Fe(1)-C(11)	102.2 (4)
C(2)-Fe(1)-C(11)	149.0 (4)	Ni-Fe(2)-Fe(1)	60.20 (3)
Ni-Fe(2)-C(3)	153.8 (3)	Ni-Fe(2)-C(4)	104.8 (3)
Ni - Fe(2) - C(5)	94.6 (3)	Ni-Fe(2)-C(11)	52.6 (2)
$N_{i-Fe}(2) - C(12)$	53 4 (2)	$F_{e}(1) - F_{e}(2) - C(3)$	1121 (3)
$F_{0}(1) - F_{0}(2) - C(A)$	70 0 (3)	$F_{0}(1) - F_{0}(2) - C(5)$	151 A (3)
Fe(1) = Fe(2) = O(4) Fo(1) = Fo(2) = O(11)	A2 G (0)	Fe(1) - Fe(2) - C(0) $F_0(1) - F_0(0) - C(10)$	101.4 (0)
$\Gamma(1) = \Gamma(2) = O(11)$	43.0(2)	$\Gamma e(1) = \Gamma e(2) = O(12)$	(0.0(2))
C(3) - Fe(2) - C(4)	97.7 (4)	C(3) - Fe(2) - C(3)	90.5 (4)
C(3) - Fe(2) - C(11)	103.4(4)	C(3) - Fe(2) - C(12)	101.5 (4)
C(4) - Fe(2) - C(5)	95.5 (4)	C(4)-Fe(2)-C(11)	123.4 (4)
C(4) - Fe(2) - C(12)	155.4 (4)	C(5)-Fe(2)-C(11)	132.4 (4)
C(5) - Fe(2) - C(12)	97.4 (4)	C(11)-Fe(2)-C(12)) 36.6 (3)
Fe(1) - P - C(17)	112.8 (3)	Fe(1) - P - C(23)	116.9 (3)
$F_{e}(1) - P - C(29)$	116.3 (3)	C(17) - P - C(23)	103.0 (4)
C(17) = P = C(20)	104.4(4)	C(23) = P = C(20)	101.8 (4)
U(17) = 1 = U(20) $E_{a}(1) = U(1) = O(1)$	104.4(4) 170.7(4)	C(23) = I = C(23) $E_{2}(1) = C(0) = O(0)$	101.0(4)
re(1) - C(1) - O(1)	179.7 (4)	Fe(1) = O(2) = O(2)	177.7 (4)
Fe(2) = C(3) = O(3)	177.6 (4)	Fe(2) - C(4) - O(4)	173.6 (4)
Fe(2) - C(5) - O(5)	178.1 (4)		
Ni-C(11)-Fe(1)	83.6 (2)	Ni-C(11)-Fe(2)	74.3 (2)
Ni-C(11)-C(12)	73.3 (4)	Fe(1)-C(11)-Fe(2)) 87.7 (2)
Fe(1)-C(11)-C(12)	153.6 (4)	Fe(2)-C(11)-C(12) 74.1 (4)
Ni-C(12)-Fe(2)	72.2 (2)	Ni-C(12)-C(11)	69.8 (4)
$N_{i-C(12)-C(13)}$	132 3 (4)	$F_{e}(2) = C(12) = C(11)$	69.3(4)
$F_{a}(9) = C(19) = C(19)$	1381(4)	C(11) = C(12) = O(11)	1441(5)
P(10) = O(12) = O(13) P(10) = P(10) = O(14)	106.1 (4)	C(12) = C(12) = C(13)) 107 / (2)
U(12) = U(13) = U(14)	100.0 (0)	0(12)-0(13)-0(13	107.4 (0)

 $\rm Fe-C_{sp^2},$ and $\rm Fe-Cp_{sp}$ bond lengths in a variety of organoiron compounds. It would appear from this tabulation that a normal single-bond length for an Fe– C_{sp^3} linkage (i.e. in the absence of multiple-bond character) should be \sim 2.09 Å. The observed $Fe-C_{sp}$ bond length in $(\eta^5-C_5H_5)$ - $Fe(CO)_2(C=CPh)$, where a component of π -bonding may be already present, is 1.920 (6) Å.^{23b} We can conclude that there must be substantial multiple-bond character in the Fe–C_{α} interaction in 1 and 2. This result contrasts sharply with the situation observed in Fe₃(CO)₉(μ_3 - η^2 - \perp -RC=CR)

compounds, where the Fe- C_{α} (Fe- C_{α} being considered as the equatorial carbon atom in the trigonal bipyramid) bond lengths are much longer, averaging 2.07 Å.2e We will return to this point in a general context later in the discussion. (ii) When we take into account the slight contraction in the covalent radius of the metal from Fe to Ni, the metal-acetylide η^2 interactions are not significantly different in 2 ($\Delta(M-C_{\alpha}) = 0.013$ Å; $\Delta(M-C_{\beta}) = 0.028$ Å) and the acetylide is only slightly more strongly bound to Ni in 1 $(\Delta(M-C_{\alpha}) = 0.055 \text{ Å}; \Delta(M-C_{\beta}) = 0.015 \text{ Å})$. Thus, it is unlikely that the metal-acetylide π -bonding dictates the adoption of the unsymmetrical structure. (iii) Calculations on closo heterometallic acetylene complexes $M_2M'(\mu_3$ - $\eta^2 \perp -RC \equiv CR)L_n$ suggests that unsymmetrical isomers of this type are more stable by 1-4 kcal mol⁻¹, although there does not appear to be a single explanation for this in molecular orbital terms.^{3b}

The principal difference between 1 and 2 is the substitution of an equatorial CO by a PPh_3 ligand at the iron atom σ -bonded to the acetylide. The phosphine is approximately trans to the Ni-Fe(1) bond (Ni-Fe(1)-P = 156.9 (1)°) possibly to minimize steric contacts with the η^5 -C₅H₅ ring on nickel. Carbonyl substitution in acetylide clusters most frequently occurs at the σ -bound metal atom,²⁴ and for heterometallic systems with $(\eta^5 - C_5 H_5)$ Ni fragments the disposition of the phosphine in an equatorial site trans to an $(\eta^5-C_5H_5)$ Ni-M bond is common.²⁵ More interesting is the effect on the dimensions of the cluster core. Recent results on an extensive series of substituted triruthenium carbonyls suggest only small changes in intracluster distances following phosphine substitution.²⁶ For 1 and 2, however, the effect is quite distinct. The Fe(1)-Fe(2) bond length in 2 (2.655 (2) Å) is significantly elongated in comparison to that in 1 (2.608 (2) Å) or to the Fe-Fe bond length in $CpNiFe_2(CO)_6(\mu_3 - \eta^2 - C = CBu^t)$ (2.610) (3) Å) (Table VI). Thus, it seems that phosphine substitution at the metal atom σ -bound to the acetylide effects a lengthening of the cis homonuclear metal-metal bond. The situation is less clear for the trans heteronuclear Fe-(1)-Ni bond, which for 2 (2.546 (2) Å) is intermediate in length between the values for 1 (2.504 (1) Å) and the tert-butylacetylide analogue (2.564 (3) Å). The effect of phosphine substitution on the third distant heterometallic bond Fe(2)-Ni is to cause a slight but significant lengthening (Fe(2)-Ni = 2.378 (1) (1), 2.404 (2) Å (2)).

Structural Comparison of Trinuclear μ_3 - η^2 -Acetylide and $\mu_3 - \eta^2$ -Acetylene Clusters with Closo Trigonal-Bipyramidal M₃C₂ Skeletons. Despite the characterization of $Fe_3(CO)_9(\mu_3 - \eta^2 - \perp -PhC = CPh)$ in 1966^{2a} relatively few molecules with this type of structure have been subjected to X-ray analysis. Other examples are as follows: homonuclear Fe₃(CO)₉(μ_3 - η^2 - \perp -EtC=CEt)^{2e} and heteronuclear FeRu₂(CO)₉(μ_3 - η^2 - \perp -PhC=CPh),^{2d} (η^5 -C₅H₅)₂M₂Fe(CO)₆(μ_3 - η^2 - \perp -RC=CR) (M = Mo, W; R = *p*-tolyl),²⁷ and (η^5 -C₅H₅)₂W₂Fe(CO)₅(O)(μ_3 - η^2 - \perp -RC=CR) (R = *p*-tolyl).²⁸ Structurally characterized acetylides in-

^{(23) (}a) Churchill, M. R.; Chang, S. W. Y. Inorg. Chem. 1975, 14, 1680. (b) Goddard, P.; Howard, J.; Woodward, P. J. Chem. Soc., Dalton Trans. 1974, 2025.

^{(24) (}a) Jangala, C.; Rosenberg, E.; Skinner, D.; Aime, S.; Milone, L.;
Sappa, E. Inorg. Chem. 1980, 19, 1571. (b) Carty, A. J.; MacLaughlin,
S. A.; Taylor, N. J.; Sappa, E. Inorg. Chem. 1981, 20, 4437.
(25) (a) Predieri, G.; Tiripicchio, A.; Vignali, C.; Sappa, E.; Braunstein,
P. J. Chem. Soc., Dalton Trans. 1986, 1135. (b) Sappa, E.; Braunstein,
M. L.; Predieri, G.; Tiripicchio, A.; Tiripicchio Camellini, M. J.
Organomet. Chem. 1986, 307, 97.
(26) (a) Bruce, M. I.; Liddell, M. J.; Hughes, C. A.; Skeleton, B. W.;
White, A. H. J. Organomet. Chem. 1988, 347, 157, 181. (b) Bruce, M. J.;
Liddell, M. j.; Shawkataly, O. B.; Hughes, C. A.; Skeleton, B. W.; White,
A. H. J. Organomet. Chem. 1988, 347, 207.

A. H. J. Organomet. Chem. 1988, 347, 207.
 (27) Busetto, L.; Jeffery, J. C.; Mills, R. M.; Stone, F. G. A.; Went, M. J.; Woodward, P. J. Chem. Soc., Dalton Trans. 1983, 101.

⁽²⁸⁾ Green, M.; Marsden, K.; Salter, I. D.; Stone, F. G. A.; Woodward, P. J. Chem. Soc., Chem. Commun. 1983, 446.

Table VI. Structural Parameters for μ_2 - η^2 - \perp -Acetylene and μ_3 - η^2 -Acetylide Clusters of Iron^a

	structural params								
			h		2-3	1-3			
	3-5	4-5	3-4"	2-5	2-4"	1-4°	1-2	1-2-5	ref
$(Cp)Fe_3(CO)_7(C_2Ph)$	2.632 (1)	2.639 (1)	2.524 (1)	1.829 (6)	2.040 (4) 2.006 (5)	2.031 (5) 2.031 (5)	1.299 (9)	152.9 (5)	29
[Fe₃(CO) ₉ (CCOC(O)Me)] ⁻	2.626 (1)	2.646 (1)	2.494 (1)	1.809 (6)	2.033 (5) 2.044 (5)	2.047 (5) 2.011 (5)	1.314 (8)	150.6 (4)	10
$(Cp)WFe_2(CO)_8(C_2R)^{j}$	2.897 (2) ^g	2.874 (3) ^g	2.503 (3)	1.999 (15)	2.025 (11) 2.011 (11)	2.091 (13) 2.086 (12)	1.30 (2)	163	28
$(Cp)NiFe_2(CO)_6(C_2Bu^t)$	2.610 (3)	2.564 (3) ^g	2.378 (3)	1.813 (10)	2.010 (10) 1.929 (10)	2.060 (10) 2.034 (10)	1.284 (14)	155.8 (9)	32
$(Cp)NiFe_2(CO)_6(C_2Pr^i)^h$	2.608 (2)	2.504 (1)8	2.386 (1)8	1.818 (5)	2.024 (5) 1.964 (4)	2.034 (5) 2.031 (4)	1.278 (5)	151.6 (4)	this work
	2.608 (2)	2.504 (1)	2.368 (1) ^g	1.800 (4)	2.012 (5) 1.963 (5)	2.045 (4) 2.025 (5)	1.281 (7)	152.6 (4)	this work this work
$(Cp)NiFe_2(CO)_{\delta}(PPh_3)(C_2Bu^t)$	2.655 (2)	2.546 (2)	2.404 (2)8	1.831 (8)	1.998 (9) 1.985 (8)	2.054 (8) 2.026 (8)	1.273 (11)	153.6 (4)	this work
$(\mathrm{Cp})_2\mathrm{Mo}_2\mathrm{Fe}(\mathrm{CO})_6(\mathrm{C}_2\mathrm{R}_2)^f$	2.764 (1)	2.761 (1) ^g	2.732 (1)8	2.297 (3)	2.299 (3) 2.016 (2)	2.070 (3) 2.049 (3)	1.399 (4)	131.1 (2)	33
$(Cp)_2W_2Fe(CO)_6(C_2R_2)^{\prime}$	2.747 (1)	2.745 (1)	2.731 (1) ^g	2.264 (7)	2.289 (5) 2.011 (5)	2.040 (6) 2.052 (5)	1.399 (9)	130.7 (4)	27
$(\mathrm{Cp})_2(\mathrm{O})\mathrm{W}_2\mathrm{Fe}(\mathrm{CO})_{\delta}(\mathrm{C}_2\mathrm{R}_2)^f$	2.848 (1)	2.677 (1) ^g	2.747 (2)	2.259 (8)	2.480 (10) 2.027 (9)	2.046 (10) 2.017 (9)	1.441 (11)	124.2 (6)	27
$Fe_3(CO)_9(C_2Ph_2)$	2.501 (9)	2.480 (10)	2.579 (11)	2.048 (16)	2.043 (15) 2.098 (15)	1.945 (15) 1.947 (16)	1.409 (22)	126.9 (10)	2b
$Fe_3(CO)_9(C_2Et_2)$	2.4749 (5)	2.4734 (5)	2.5666 (5)	2.063 (3)	2.070 (3)	1.947 (3)	1.391 (4)	126.3 (1)	2e
$Fe_2Ru(CO)_9(C_2Ph_2)$	2.564 (2)8	2.582 (3)	2.588 (3)	2.198 (17)	2.088(12) 2.052(13)	1.941 (16) 1.961 (12)	1.413 (20)	126.6	2d

^aBond distances are in Å and angles in deg. Structural key:

^bBridged M-M. ^cM_r-C_a. ^dM_r-C_b. ^fR = C₆H₄-Me-4 (*p*-tolyl). ^dHeterometallic edge. ^hTwo independent molecules.

Table	VII	. Su	mmary	of	Pert	inen	t Int	raske	leta	l Bond	
Lengths	for	Iron	Acetyle	ene	(A)	and	Acet	ylide	(B)	Cluster	sa

	type A	type B	
Mσ—Cα, Å	2.05-2.30	1.80-1.83	
$M\pi$ —C α (mean), Å	2.06 - 2.25	1.97 - 2.02	
$M\pi - C\beta$ (mean), Å	1.95 - 2.05	2.03 - 2.88	
C ≕ C, Å	1.3 9– 1.44	1.28 - 1.31	
$M\sigma - C\alpha - C\beta$, deg	90-130	150-165	

^a For A and B structural types see Chart I.

clude the following: homonuclear $(\eta^5-C_5H_5)Fe_3(CO)_7(\mu_3-\eta^2-C=CPh),^{29}$ the anion $[Fe_3(CO)_9(\mu_3-\eta^2-C=COC(O)-Me)],^{10}$ and heteronuclear $(\eta^5-C_5H_5)WFe_2(CO)_8(\mu_3-\eta^2-C=CR)$ (R = p-tolyl), as well as the new molecules 1 and 2. To facilitate comparisons, we have listed important structural parameters for these clusters in Table VI together with the skeletal key shown. Table VII provides a short summary of the range for iron complexes only of metal-carbon and carbon-carbon distances as well as the angles at C_{α} and C_{β} of the hydrocarbyls which indicate the distortion of the $M_{\sigma}-C_{\alpha}=C_{\beta}-C$ fragments from linearity. Several remarkable points arise from these comparisons. (i) Even through Table VII makes no allowance for differences in the π -bound metals, for iron clusters the Fe- C_{α} distances all lie within the narrow range of 1.80-1.83 Å for

the acetylides and in a quite separate, much higher range of 2.05–2.30 Å for the μ_3 - η^2 - \perp -acetylene complexes. (ii) There are major differences in the stereochemistry at the C_{α} atom in the two series, with the intrapolyhedral Fe- C_{α} - C_{β} angle (150–165°) being much larger in the acetylide clusters than in the acetylenes (126–130°). (iii) Although the -C=C- bond length is not always a sensitive probe of the perturbation of an acetylene or acetylide upon coordination, there are again two distinct ranges in Table VII, with the triple bonds being more elongated in the μ_3 - η^2 - \perp -acetylenes. (iv) In general, metal π -interactions are stronger to C_{α} in the acetylides and to C_{β} in the acetylenes.

The net consequence of these distinctive features is that the C_{α} -R fragment in the μ_3 - η^2 - \perp -acetylene clusters approximates much more closely to an equatorial skeletal component of a trigonal bipyramid than the "bare" C_{α} in the acetylides. Indeed, the Fe₃ acetylides show a closer resemblance to the Fe₄ cluster carbides such as [Fe-(CO)₁₂C]²⁻ and [Fe₄(CO)₁₃C],^{14,30} if a wingtip metal atom of the latter class is replaced by C_{β} -R of the acetylide as illustrated in B and D (Chart I). In the tetrairon carbides

⁽²⁹⁾ Yasufuku, K.; Aoki, K.; Yamazaki, H. Bull. Chem. Soc. Jpn. 1975, 48, 1616.

^{(30) (}a) Boehme, R. F.; Coppens, P. Acta Crystallogr. 1981, B 37, 1914.
(b) Davis, J. H.; Beno, M. A.; Williams, J. M.; Zimmie, J.; Tachikawa, M.; Muetterties, E. L. Proc. Natl. Acad. Sci. U.S.A. 1981, 78, 668. (c) Holt, E. M.; Whitmire, K. H.; Shriver, D. F. J. Organomet. Chem. 1981, 213, 125. (d) Bradley, J. S.; Ansell, G. B.; Leonowicz, M. E.; Hill, E. W. J. Am. Chem. Soc. 1981, 103, 4968. (e) Beno, M. A.; Williams, J. M.; Tachikawa, M.; Muetterties, E. L. J. Am. Chem. Soc. 1980, 102, 4542; 1981, 103, 1485 and references therein.

 $[Fe_4(CO)_{12}(\mu_4-C)]^{2-}, [HFe_4(CO)_{12}(\mu_4-C)], [Fe_4(CO)_{12}(\mu_4-C)], [HFe_4(CO)_{12}(\mu_4-C)], and [HFe_4(C)_{12}(\mu_4-C)], and [HFe_4(D)_{12}(\mu_4-C)], and [HFe_4(D)_{12}(\mu_4-C)], and [HFe_4(D)_{12}(\mu_4-C)], and [HFe_4(D)_{12}(\mu_4-C)], and [HFe_4(D)_{12}(\mu_4-C)], and [HFe_4(D)_{12}(\mu_4-C)], and [HFe_4(\mu_4-C)], and [HFe_4(\mu_4-C)], and [HFe_4(\mu_4-C)], and [HFe_4(\mu_4-C)], and [HFe_4(\mu$ the μ_4 carbon atom is semiencapsulated and almost collinear with the wingtip atoms (Fe-(μ_4 -C)-Fe angles lie in the range 170-177°). These angles are somewhat larger than the corresponding Fe– C_{α} – C_{β} angles (150–165°) in the acetylides, but the latter lie closer to the Fe_4 carbides than the μ_3 - η^2 - \perp -acetylenes. The analogy can be taken a step further by recognizing that the formal attachment of a non-cluster-bound substitutent R^+ (R = COOMe) on the μ_4 -carbide atom of $[Fe_4(CO)_{12}(\mu_4-C)]^{2-}$ gives $[Fe_4(CO)_{12}-\mu_4-C)^{2-}$ $(\mu_4$ -COCOOMe)]⁻, an anion in which the wingtip- $(\mu_4$ -C)-wingtip angle is 148° .³¹ In the Fe₃-acetylide M_4 -

(31) Bradley, J. S.; Ansell, G. B.; Hill, E. W. J. Am. Chem. Soc. 1979, 101, 7417.

(32) Marinetti, A.; Sappa, E.; Tiripicchio, A.; Tiripicchio-Camellini, M.
J. Organomet. Chem. 1980, 197, 335.
(33) Garcia, M. E.; Jeffery, J. C.; Sherwood, P.; Stone, F. G. A. J.

Chem. Soc., Dalton Trans. 1987, 1209.

carbide analogy this anion corresponds to the Fe₃(μ_3 - η^2 -RC=CR) structures. It will be interesting to see whether these structural analogies translate into patterns of chemical reactivity for the $M_3(\mu_3 - \eta^2 - acetylides)$ similar to those of the butterfly carbides.

Acknowledgment. We are grateful to the Natural Sciences and Engineering Research Council of Canada for financial support of this work through operating and equipment grants (to A.J.C.) and an International Scientific Exchange Award (to E.S.).

Supplementary Material Available: Positional coordinates and isotropic thermal parameters for the hydrogen atoms of 1 (Table SI) and anisotropic thermal parameters for the non-hydrogen atoms of 1 and 2 (Tables SII and SIII, respectively) (3 pages); observed and calculated structure factors from the final cycle of least-squares refinement for 1 and 2 (Tables SIV and SV, respectively) (47 pages). Ordering information is given on any current masthead page.

Formation of Diaziridines by Reaction of $(CO)_5W=C(OMe)Ph$ with Electron-Deficient Azo Compounds

Claudia Tata Maxey and Lisa McElwee-White*

Department of Chemistry, Stanford University, Stanford, California 94305

Received September 26, 1990

The reaction between $(CO)_5W=C(OMe)Ph$ (7) and 4-methyl-1,2,4-triazoline-3,5-dione in acetonitrile results in the formation of two isomeric diaziridines 8a and 8b in a 2:1 ratio. The related azo compound diethyl azodicarboxylate also reacts with 7 to produce a diaziridine product. This reactivity of electron-poor azo compounds is analogous to the cyclopropanation of olefins and contrasts with the previously reported metathesis reaction of tungsten carbenes with *cis*-azobenzene.

Introduction

We previously reported the isolation of zwitterionic intermediate 4 in the azo metathesis reaction between (C- $O_{5}W = C(OCH_{3})CH_{3}$ (1) and *cis*-azobenzene (2).¹ The proposed mechanism involves initial nucleophilic attack of cis-azobenzene on the carbene complex to give 3, which then rearranges to give the observed zwitterionic species 4 (Scheme I). Cleavage of zwitterion 4 yields imino ether 5 and products derived from the low-valent nitrene complex 6.

The current work addresses the question of how the reaction manifold is altered when less nucleophilic azo compounds are reacted with Fischer carbenes. Olefins react with carbene complexes to produce mixtures of metathesis and cyclopropanation products,² depending on the reaction conditions and the nature of the olefin substrate. For example, the chromium carbene (CO)₅Cr=C- (OCH_3) Ph undergoes metathesis with ethyl vinyl ether under mild conditions, but under a high pressure of CO, the metathesis pathway is shut down and only cyclopropanation occurs (eq 1).³ When the electron-poor

methyl crotonate is used, the reaction pathway is cyclopropanation and no metathesis products are observed (eq 2).⁴ The reaction between 1 and *cis*-azobenzene gives only

the azo metathesis product. We now have observed the equivalent of the cyclopropanation pathway for azo compounds. Reactions of $(CO)_5W=C(OMe)Ph$ (7) with the more electron-deficient azo substrates 4-methyl-1,2,4-tri-

^{(1) (}a) Sleiman, H. F.; McElwee-White, L. J. Am. Chem. Soc. 1988, 110, 8700-8701. (b) Sleiman, H. F.; Mercer, S.; McElwee-White, L. J. Am. Chem. Soc. 1989, 111, 8007-8009.

⁽²⁾ Casey, C. P.; Hornung, N. L.; Kosar, W. P. J. Am. Chem. Soc. 1987, 109, 4908-4916.

⁽³⁾ Fischer, E. O.; Dötz, K. H. Chem. Ber. 1972, 105, 3966-3973. (4) Fischer, E. O.; Dötz, K. H. Chem. Ber. 1972, 105, 1356-1367.