Ultrasonic Activation of Chalcogen-Chalcogen Bonds: Synthesis of Bls(organyltellurenyl) Selenides and Sulfides, (RTe),(Se,S)

Christoph Kollemann and Fritz Sladky'

Institut für Anorganische und Analytische Chemie, Universität Innsbruck, *A-6020 Innsbruck, Innrain 52a, Austria*

Received July 27, 7990

Summary: **Ultrasonic activation of diorganyl ditellurides, R,Te,, in the presence** of **selenium or sulfur leads to bis(organyltellureny1) selenides or sulfides, (RTe),(Se,S) (R** = **Ph, (Me,SI),C).**

The lability of the tellurium-tellurium bond in diorganyl ditellurides leads to exchange equilibria with group **15** and 16 alkyls and *aryls'* **as** shown in eq 1. Also reported have

$$
RTeTR + R'_2E^{16}E^{15}R'_2 = 2RTeE^{15}R'_2
$$

 $RTeTeR + R'E^{16}E^{16}R' \rightleftharpoons 2RTeE^{16}R'$ (1)

$$
E^{15} = P
$$
, As, Sb, Bi; $E^{16} = S$, Se, Te

been insertion reactions of carbenes, 2 cadmium, 3 or mer $curv⁴$ into the tellurium-tellurium bond. Several such compounds have been proposed **as** singlesource precursors to compound semiconductors such as CdTe and HgTe.³

Despite the increasing interest in the use of sonochemical methods in synthesis⁵ only a few applications to chalcogen reactivity have been reported. One example is the ultrasound-induced electrochemical reduction of Se or Te powder with formation of the Se_2^2 , Se^2 , Te_2^2 , and Te^2 anions, which are used **as** starting materials for the preparation of diorganyl selenides and tellurides.6

We report here the use of ultrasound for the insertion of sulfur or selenium into the tellurium-tellurium bond of diorganyl ditellurides and thus a convenient and selective synthesis of bis(organyltellureny1) sulfides and selenides. A general route to such compounds without ultrasonic activation has been designed previously' but is rather intricate and starts out from the corresponding organyllithiums (eq 2). **12 decimain 1021 decimain 1022 decimain 1022 decimain 102256

1022 decimain 1022 decimain 102256

1022 decimain 1022 decimain 102256

102** Extra thesis of bis(organyltellurenyl) sulfides

Ruides. A general route to such compounds with

rasonic activation has been designed previously⁷ by

ther intricate and starts out from the correspond

anyllithiums (eq 2

$$
RILi \xrightarrow{Te} RTeLi \xrightarrow{Se} RTeSeli \xrightarrow{O_2/H_2O} (RTe)_2Se
$$
\n
$$
RILi \xrightarrow{Te} RTeLi \xrightarrow{S} RTeSli \xrightarrow{O_2/H_2O} (RTe)_2Se
$$
\n
$$
(2)
$$

Sonication **(35 kHz,** 160 W) of a suspension of selenium (0.040 g, 0.51 mmol) in a solution of diphenyl ditelluride **Table I.** *'UTe* **NMR Data for Bis(organyltellureny1)** Selenides and Sulfides^a (300 K)

to external Me₂Te. ${}^bE =$ Se, S. **^aBruker** WP *80* FT instrument, THF **as** solvent, in ppm relative

Sonication **(35 kHz,** 160 W) of a suspension of selenium (0.040 g, 0.51 mmol) in a solution of diphenyl ditelluride **(la;** 0.20 g, 0.49 mmol) or of selenium (0.024 g, 0.30 mmol) in a solution of **bis(tris(trimethylsily1)methyl)** ditelluride **(1 b;** 0.20 g, 0.28 mmol) in dry tetrahydrofuran (THF) **af**fords bis(phenyltellureny1) selenide **(2a)** or bis((tris(tri**methylsily1)methyl)tellurenyl)** selenide **(2b),8** respectively (eq **3).**

RTeSeTeR RTeSTeR utt"d **a,b (3) Wb RTeTeR lr,b** iz-: **uhramund a, R** = **Ph; b, R** = **(Me3Si)&**

The yields are quantitative with respect to the diorganyl ditellurides. No reaction is observed with tellurium, although the respective diorganyl tritelluride is known, at least in the case of the **tris(trimethylsily1)methyl** A sample of this compound, however, proved to be stable even to prolonged sonication.

Sonolysis of sulfur (0.20 g, 0.37 mmol) with la (0.20 **g,** 0.49 mmol) in dry THF only yields about 20% of 3a within 30 h, whereas **lb** (0.20 g, 0.28 mmol) again quantitatively reacts with **sulfur** (0.012 g, **0.37** mmol) to form **3b** *(eq* **3).1°** With this group also minor amounta of polysulfides such as $RTe(S)_{2,3}TeR$ are detected by NMR spectroscopy.¹¹ Interestingly, sonication of a homogeneous reaction system in carbon disulfide does not enhance the reaction rate or the yield of **38,** nor does a change of the solvent to toluene to enhance the intensity of cavitation.

 (11) $((\text{Me}_3\text{Si})_3\text{CTe})_2\text{(S)}_{2,3}$: $\delta(^{125}\text{Te}) = 1101$ and 1075 ppm.

0276-7333/91/2310-2101\$02.50/0 *0* 1991 American Chemical Society

^{(1) (}a) DuMont, **W.-W.;** Kubiniok, S.; Severengiz, T. *Z. Anorg. Allg. Chem.* **1986,531,21.** (b) Dehnert, **P.;** Grobe, J.; Hildebrandt, W.; le **Van,** D. Z. Naturforsch. 1979, 34B, 1646. (c) Breunig, H. J.; Gülec, S. Z.
Naturforsch. 1986, 41B, 1387. (d) DuMont, W.W.; Severengiz, T.;
Breunig, H. J.; Müller, D. Z. Naturforsch. 1986, 40B, 848. (e) Granger,
P.; Chapelle, S.:

^{175.}

⁽⁴⁾ Kischkewitz, J.; Naumann, D. Z. Anorg. Allg. Chem. 1987, 152, 167.
(5) (a) Suslick, K. S. Science 1990, 247, 1439. (b) Einhorn, C.; Einhorn, J.; Luche, J.-L. Synthesis 1989, 787. (c) Ley, S. V.; Low, C. M. R. Ul-

trasound tn Synthesis; Springer: Berlin, **1989.**

⁽⁶⁾ Gautheron, **B.;** Tainturier, **G.;** Degrand, C. J. *Am. Chem. SOC.* **1986, 107, 5579.**

⁽⁷⁾ Khllemann, C.; Obendorf, D.; Sladky, F. *Phosphorus* Sulfur *Relot. Elem.* **1988,** *38,* **69.**

^{(8) 2}a: purple crystals, mp 56-57 °C, from hexane/benzene (1:1),
which slowly decompose in solution with extrusion of selenium. Anal.
Calcd for C₁₂H₁₀Te₂Se: C, 29.51; H, 2.06. Found: C, 29.1; H, 2.0. MS:
 m/e 494 (5

^{(10) 3.:} not ieolated, fractional crystallization failed. 3b: orange crystals, dec pt **157** OC, from ether/ethanol **(1:l).** Anal. Calcd for C₂₀H₄Si₂Te₂S: C, 32.01; H, 7.25. Found: C, 31.8; H, 7.1. MS: m/e 754 (10, M), 722 (3, M – S), 393 (10, M – TeTsi), 361 (30, TeTsi), 231 (20, Tsi), 216 (100, Tsi – Me) (Tsi = (Me₃Si)₃C).

No reaction could be observed between the analogous diorganyl diselenides and sulfur, selenium, or tellurium. when mechanical stirring was applied instead of ultrasound. Also, no reactions occurred in all investigated systems $2a = 1a + PhTeSeSeTePh$ (4)

The solution behavior of **2a, 3a** and **2b, 3b** is entirely different. **2a, 3a** establish equilibria as given in eq **4,** whereas **2b, 3b** are kinetically stable, most likely for steric reasons. By addition of **la** to the mixture both equilibria

$$
2a = 1a + PhTeSeSeTePh
$$
 (4)

$$
3a \rightleftharpoons 1a + PhTeSSTePh
$$

are shifted almost entirely to the left. The 12STe NMR data for the species involved are given in Table I.

Low-Valent Titanium Porphyrin Complexes: Synthesis and Structural Characterization of the First Titanium(I I) Porphyrin Complex, (q*-Dlphenylacetyiene)titanIum Octaethyiporphyrin

L. **Keith Woo,**' J. Alan Hays, Robert A. Jacobson,* and Catherine** L. **Day**

Ames Laboratcny and the Department of Chemistfy, Iowa State University, Ames, Iowa 5001 1

Received March 26. 199 1

Summary: **The anaerobic reduction of the dlchlorotitanium(IV) porphyrins (OEP)TiCI, and (TTP)TiCI, (OEP** = **octaethylporphyrlnato, TTP** = *meso* **-tetra-p -tolylporphyrinato) with LiAIH, in the presence of diphenyl**acetylene in toluene produces the π -alkyne Ti(II) adducts $(OEP)Ti(\eta^2-PhC=CPh)$ (1) and $(TTP)Ti(\eta^2-PhC=CPh)$ (2). **The structure of 1 has been determined by single-crystal X-ray diffraction analysis. Complex 1 crystallizes in the centrosymmetric space group** $C2/c$ **with** $a = 49.369(7)$ \hat{A} , $b = 13.734$ (9) \hat{A} , $c = 36.042$ (5) \hat{A} , $\beta = 136.62$ (1)^o, $V = 16784$ (9) \AA^3 , $Z = 16$, $R = 0.061$, and $R_w = 0.063$. The **asymmetric unit of 1 contains** two **molecules. Alkyne C-C distances and Ti-alkyne distances are 1.30 (1) (C27-C28), 2.016 (5) (TIl-C27), 2.015 (5) (Ti,-C 1.30 (1) C**–**C** distances and Ti–alkyne distances are 1.30 (1)
 (C₂₇–C₂₈), 2.016 (5) (Ti₁–C₂₇), 2.015 (5) (Ti₁–C₂₈), 1.30 (1)
 (C₆₁–C₆₂), 2.007 (7) (Ti₂–C₆₁), and 2.028 (7) Å (Ti₂–C₆₂).

Despite the great interest in metalloporphyrins, the chemistry of early-transition-metal porphyrin complexes remains in an undeveloped state. A primary reason for this stems from the fact that syntheses of these complexes thermodynamically lead to the formation of high-valent oxo complexes.² The $M=O$ groups in these metalloporphyrins are typically d^0-d^2 and are often extremely difficult to cleave.³ We have recently examined the We have recently examined the metal-centered redox chemistry of titanium oxo and titanium halide porphyrin complexes. 4 As an extension of our work on titanium porphyrins, we have begun to investigate the chemistry of low-valent Ti porphyrin complexes. To date, Ti(II1) is the lowest valent state known to exist in a titanium porphyrin complex? We report here the synthesis and structural characterization of the first Ti(I1) porphyrin complexes.

As illustrated in eq **1,** lithium aluminum hydride reduction of toluene solutions of dichlorotitanium(1V) porphyrins in the presence of diphenylacetylene produces η^2 -alkyne complexes of Ti(II). In a typical reaction, 131

(POR)TiCl₂ + PhC=CPh $\frac{\text{LiAlH}_4}{\text{POR}}$

(POR)Ti(η^2 -PhC=CPh) (1)

1. POR = OEP

$$
POR/T1(\eta^2-PnC=CPn) (1)
$$

1, POR = OEP
2, POR = TTP

mg of (OEP)TiCl₂⁶ (0.201 mmol), 141 mg of LiAlH₄ (3.67 mmol), and **41** mg of PhC*Ph **(0.23** mmol) were stirred in toluene (40 mL) under N_2 at 22 °C. Over 12 h, the brown solution turned into the ruby red color of the alkyne adduct **1.** Filtering the reaction mixture, concentrating the filtrate to ca. 2 mL , and cooling to -20 °C for 3 days produced **78** mg of purple microcrystals **(51%** yield) after washing with cold pentanes7 The TTP6 analogue **2** can be prepared in a similar manner.⁷

The alkyne adducts **1** and **2** are diamagnetic complexes that exhibit sharp ¹H NMR signals. For example, in C_6D_6 the diphenylacetylene protons of **1** appear as two multiplets at **6.29 (6** H, *m,* p protons) and **4.37** ppm **(4** H, o protons). The significant upfield shifta of these resonances are consistent with a structure in which the $C=$ triple bond of the alkyne binds to titanium, holding the phenyl substituents above the porphyrin ring current. The porphyrin meso protons resonate as a singlet at **10.33 (4** H) about the axis along the Ti-triple-bond centroid is rapid on the NMR time scale.

Crystals of the **OEP** complex **1** suitable for singlecrystal X-ray diffraction were **grown** by cooling a toluene solution to **-20** "C. Complex **1** crystallizes in the Centrosymmetric space group **C2/c** with two molecules in the asymmetric unit and 16 molecules per unit cell.⁸ The large number of non-hydrogen atoms **(110)** in the asymmetric unit significantly increased the difficulty and complexity of the

⁽¹⁾ Presidential Young Invwtigator, 1990-1996. (2) (a) Fuhrop, J.-H.; Smith, K. M. In *Porphyrins* **and** *Metalloporphyrins;* **Smith, K. M., Ed.; Ebevier:** Amsterdam, **1975; pp 796-799. (b) BOchler, J. W. In** *The Porphyriru;* **Dolphin, D., Ed.; Academic Pm: New York, 1978; Vol. 1, Chapter 10.**

⁽³⁾ Nugent, W. A,; Mnyer, J. M. *Metal-Ligand Multiple Bonds;* **Wdey New York, 1988.**

⁽⁴⁾ Woo, L. K.; Hays, J. A.; Goll, J. G. *Inorg. Chem.* 1990, 29, 3916.
(5) (a) Boreham, C. J.; Buisson, G.; Duee, E.; Jordanov, J.; Latour, J.-M.; Marchon, J.-C. *Inorg. Chim. Acta* 1983, 70, 77. (b) Marchon, J.-C.; Latou

⁽⁶⁾ Abbreviations: OEP is the octaethylporphyrinato dianion and

TTP is the meso-tetra-p-tolylporphyrinato dianion.

(7) Analytical data for (TTP)Ti(PhC=CPh): ¹H NMR (C_eD_e, 300 MHz) 9.06 (s, 8 H, β -H), 7.97 (d, 7.52 Hz, 8 H, -C_eH₄Me), 7.28 (m, 8 H, -C_eH₄Me), 6.45 (m, 6 **CJ~,~H&;** *UV-* **(toluene) 426 (%ret), W, ⁵⁸²nm; IR (mull) 1688** cm-1 (5.23); N, 6.26 (6.04). Analytical data for (OEP)Ti(PhC=CPh): ¹H NMR
(C₆D₆, 300 MHz) 10.33 (s, 4 H, meso H), 6.29 (m, 6 H, m, p H), 4.37 (m, 4 H, o H), 3.92 (q, 7.8 Hz, 16 H, CH₂CH₃), 1.84 ppm (t, 7.5 Hz, 24 H, ($\nu_{\text{C}\rightarrow\text{C}}$). **Anal. Calcd (found) for C₅₀H₅₄N₄Ti: C, 79.14 (78.59); H, 7.17** *(6.77)***; N, 7.38 (7.09).** *(u-).* **Anal. Calcd (found)** for **CaHMNITI: C, 83.21 (82.66); H, 5.18**