promote the ring opening of coordinated thiophenes.¹³ We have recently reported an unusual example of the ringopening oligomerization of DMT by 1, which appears to be initiated by nucleophilic attack of a free molecule of

(13) (a) Hachgenei, J. W.; Angelici, R. J. *J.* **Organomet. Chem. 1988, 355, 359. (b) Hachgenei, J. W.; Angelici, R. J. Angew. Chem., Int. Ed. Engl. 1987,26,** 909.

DMT upon the bridging DMT ligand.² Studies of the ring opening of the bridging DMT ligand by other nucleophiles are in progress.

Acknowledgment is made to the donors of the Petroleum Research Fund, administered by the American Chemical Society, for support of this research.

Supplementary Material Available: Tables of crystal data, positional parameters, bond distances and angles, and anisotropic thermal parameters for both **of the structural analyses (19 pages); tables of structure factors (36 pages). Ordering information is given on any current masthead page.**

Transformation of Heteroatom-Substituted Alkynes into Substituted Vinylidene Ligands Accompanied by CO Insertion

Richard D. Adams,' Gong Chen, Linfeng Chen, Michael P. Pompeo, and Jianguo Yin

Lbpattment of *Chemistty, University of South Carolina, Columbia, South Carolina 29208*

Received April 25, 199 1

Summary: The reactions of Mn₂(CO)₉NCMe (1) with the alkynes MeC $=$ CX (X = OEt, NMe₂) have yielded the substituted bridging vinylidene complexes $Mn_2(CO)_{\text{a}}[\mu C=C(Me)C=O(X)$ (2a, $X = OEt$; 2b, $X = NMe₂$) in 39% and 10% yields, respectively, by a rearrangement of the alkyne accompanied by a CO insertion. Compound **2b** also adds 1 equiv of MeC= \equiv CNMe₂ to form the complex $Mn_2(CO)$, $[\mu$ -CC(Me)C(NMe₂)C(Me)C= $O(NMe_2)$] (3) in 50% yield, which contains a four-membered carbocyclic ring.

While there are many examples of the metal-assisted transformation of terminal **alkynes** into vinylidene ligands,' there are relatively few that involve the shift of a nonhydrogen heteroatomic grouping (eq **l).2-s** We now wish to report the first examples of this transformation involving the substituents OEt and NMe₂ with $R = Me$ in which the shift is **also** accompanied by a CO insertion (eq **2). REGUNDING EXAMPLES OF A SET OF**

From the reaction of $Mn_2(CO)$ _aNCMe⁶ (1; 300 mg, 0.744

(1) Bruce, M. I. Chem. Rev. 1991,91,197. (b) Bruce, M. I.; **Swincer, A. G. Adv. Organomet. Chem. 1983,22,59.**

- **(2) Fogg, D. E.; MacLaughlin, S. A.; Kwek, K.; Cherkas, A. A.; Taylor, N. J.; Carty, A. J.** *J.* **Organomet. Chem. 1988,352, (217.**
	-
- (3) Miller, D. C.; Angelici, R. J. *Organometallics* 1991, *10,* 79.
(4) Hund, H.-U.; Berke, H. J. *Organomet. Chem.* 1989, 371, 311.
(5) Horvath, I. T.; Palyi, G.; Marko, L.; Andreetti, G. J. *Chem. Soc.* **1979, 1064.**
	- **(8) Koelle, U.** *J.* **Organomet. Chem. 1978,155, 53.**

Figure 1. ORTEP diagram of $Mn_2(CO)_8[\mu$ -C=C(Me)C=O(OEt)] **(2a).** Selected interatomic distances (A) are $Mn(1)-Mn(2) =$
2.9147 (6), $Mn(1)-C(10) = 1.874$ (2), $Mn(2)-C(10) = 2.125$ (2), **Mn(2)-O(10) = 2.068 (2), C(10)-C(2) = 1.339 (3), C(1)-C(2) = 1.440 (3), and C(1)-O(10) = 1.249 (3).**

mmol) with MeC=COEt (0.177 mL, 1.86 mmol) at 25 °C in **150** mL of hexane solvent for **24** h, we have isolated by TLC the new yellow compound $Mn_2(CO)_8[\mu$ -C=C(Me)-

0276-7333/91/2310-2541\$02.50/0 *0* **1991 American Chemical Society**

^{(12) (}a) Angelici, R. J. Acc. Chem. Res. 1988,21,387. (b) Friend, C. M.; Roberta, J. T. Acc. Chem. Res. 1988, 21, 394. (c) Markel, E. J.; Schrader, G. L.; Sauer, N. N.; Angelici, R. J. *J.* **Catal. 1989,116,ll. (d) Prim, R.; De Beer, V. H. H.; Somorjai, G. A. Catal. Rev.-Sci. Eng. 1989, 31, 1.**

 $C=O(OEt)$ (2a) in 39% yield.⁷ Compound 2a was characterized by IR, 'H NMR, and X-ray diffraction analyses.8 An **ORTEP** drawing of the molecular structure of **2a** is shown in Figure 1. The molecule contains two mutually bonded manganese atoms $(Mn-Mn = 2.9147(6))$ **A),** with each containing four carbonyl ligands. The most interesting ligand is the bridging $C=C(Me)C=O(OEt)$ grouping. Carbon C(10) bridges the metal atoms asymmetrically $(Mn(1)-C(10) = 1.874$ (2) Å and $Mn(2)-C(10)$ $= 2.125$ (2) Å). The C(10)-C(2) distance of 1.339 (3) Å is indicative of a double bond **as** found in vinylidene ligands.' Oxygen O(10) is part of an ethyl ester grouping that is coordinated to Mn(1) (Mn(1)-O(10) = 2.068 (2) Å, ν (CO) $= 1581 \text{ cm}^{-1}$). The ¹H NMR spectrum of **2a** shows resonances at $\delta = 4.27$ (q, $J_{H-H} = 7.1$ Hz, OCH₂), 2.25 (s, CMe), and 1.32 (t, J_{H-H} = 7.1 Hz, CH_2CH_3) and is consistent with the observed structure. The composition of the vinylidene ligand shows that it is a combination of one CO grouping and one molecule of MeC₂OEt. The manner in which the components were combined was established by a 13C labeling study. **A** sample of 1 enriched to approximately 45% with 13C0 was converted to **2a*** and then analyzed by 13C and 'H NMR spectroscopy. In addition to the strong resonances of the CO ligands,⁹ the ¹³C{¹H} NMR spectrum of **2a*** showed one strong resonance located at 184.00 ppm. On the basis of shift this could be attributed reasonably either to the metal-bonded vinylidene carbon $C(10)¹$ or to the ester carbon $C(1)$. However, its assignment to the C(1) site was unambiguously established by the observation of three-bond C-H coupling to both the methylene group $C(4)$ (${}^{3}J_{C-H}$ = 2.75 Hz) and the methyl group C(3) $\overline{(^3J_{\rm C-H}}$ = 3.36 Hz) in the ¹H NMR spectrum.¹⁰ Details of the mechanism of the formation of the vinylidene ligand have not yet been established, but a process involving an oxidative-addition-induced cleavage of the OEt group from the alkyne and a CO insertion to form a metallo carboxylate followed by a transfer of the carboxylate grouping to the methyl-substituted carbon of the alkyne fragment is expected.

The reaction of 1 with MeC_2NMe_2 was similar to that with MeC₂OEt. The product $Mn_2(CO)_8[\mu$ -C=C(Me)C= $O(NMe₂)$ (2b) was obtained in 10% yield together with the second product $Mn_2(CO)_7[\mu$ -CC(Me)C(NMe₂)C(Me)- $C=O(NMe₂)$] (3) in 46% yield from the reaction of 1 (45) mg, 0.11 mmol) with $MeC=CNMe₂$ (26 μ L, 0.25 mmol) at 40° C in hexane solvent for 45 min. Both products have been characterized by IR, 'H NMR, mass spectral, and X-ray diffraction analyses.*J' The structure of **2b** is

Figure 2. ORTEP diagram of $Mn_2(CO)_7[\mu$ -CC(Me)C(NMe₂)C-(Me)C=O(NMe2)] **(3).** Selected interatomic distances **(A)** are $Mn(1)-Mn(2) = 2.8104$ (8), $Mn(1)-C = 2.094$ (3), $Mn(2)-C = 1.941$ $(3), \text{Mn}(1)-\text{O} = 2.064 \text{ } (2), \text{Mn}(1)-\text{C}(2) = 2.263 \text{ } (3), \text{C}-\text{C}(7) = 1.590$ (4) , C-C(2) = 1.450 (4), C(1)-C(2) = 1.414 (4), C(1)-N(1) = 1.301 (4) , C(6)-C(7) = 1.518 (4), C(6)-O = 1.257 (4), and C(6)-N(2) = 1.325 (4).

analogous to that of **2a** but contains an 0-coordinated amido grouping instead of the 0-coordinated ester

grouping. This An **ORTEP** drawing of **3** is shown in Figure 2. molecule **also** contains two mutually bonded manganese atoms **(Mn-Mn** = 2.8104 (8) **A).** Mn(1) has three carbonyl ligands while Mn(2) has four. This molecule contains **a CC(Me)C(NMe2)CMeC=O(NMe2)** ligand with the carbon C bridging the metal atoms. **A** four-membered carbocyclic ring (atoms C, $C(7)$, $C(1)$, and $C(2)$) contains a dimethylamino substituent on C(1) and an amido group on C(7) that has its oxygen atom coordinated to $Mn(1)$ (ν (CO) = 1583 cm⁻¹). Compound 3 can be obtained directly from **2b** in 50% yield by reaction with MeC=CNMe₂ at $35 °C$, thus confirming that 2b is an intermediate in its formation. This unusual reaction evidently involves the formation of a four-membered carbocyclic ring by the addition of the ynamine $C-C$ triple bond across the vinylidene $C(10)-C(2)$ double bond in **2b.** It is **known** that **ynamines** will undergo $(2 + 2)$ cycloaddition reactions with electrophilic olefins.¹² These results are summarized in Scheme I. The cycloaddition should result in the formation of a cyclobutenylidene ligand with a double bond between the atoms C(1) and C(2). Although the C(1)–C(2) distance $(1.414(4))$ **A)** is consistent with this formulation, there is **also** a strong donation of electron density from $C(2)$ to $Mn(1)$ (Mn- $(1)-C(2) = 2.263$ (3) Å). This interaction permits the metal atoms to achieve 18-electron configurations but results in the formation of a formal negative charge on $Mn(1)$, a positive charge on $N(1)$, and a donor-acceptor bond be-

⁽⁷⁾ IR u(C0) for 2a in hexane: 2098 (w), 2058 (a), 2018 (w), 2003 (a), 1981 (m), 1961 (s), 1932 (w), 1581 (w) cm⁻¹. Crystal data for 2a: space
group P1, *a* = 10.3802 (8) Å, *b* = 11.852 (2) Å, *c* = 7.217 (1) Å, *α* = 91.29 **(1)°**, β = **91.16** (1)°, γ = **98.40** (1)°, $Z = 2$, 2482 reflections, $R = 0.027$ (5).
Anal. Calcd (found): C, 37.67 (37.50); H, 1.79 (1.17).

⁽⁸⁾ Diffraction measurements at 20 °C were made on a Rigaku AFC6S four-circle diffractometer using Μo Κα radiation. Structure solutions and refinements were made on a VAXstation 3520 computer by using the *TEXBAN* **structure-solving program library (v5.0) of Molecular Structure Corp., The Woodlands, TX.**

⁽⁹⁾ The ¹³C NMR spectrum of $2a^*$ taken in CDCl₃ showed resonances **at 222.75 (1 CO), 221.65 (1 CO), 214.67 (1 CO), 213.16 (2 CO), 213.98 (1** CO), 209.14 (2 CO), and 184.00 (1 C) ppm. The ¹H NMR spectrum of $2a^*$ taken in acetone- d_6 showed resonances at 4.41 $(q, J_{H-H} = 7.1 \text{ Hz})$, **OCH₂**), 2.29 (s, CMe), and 1.34 (t, $J_{H-H} = 7.1$ Hz, CH_2CH_3) ppm. The resonances at 4.41 and 2.29 ppm showed ¹³C satellites with ${}^3J_{C-H} = 2.75$ **and 3.36 Hz, respectively.**

^{(10) (}a) Hansen, P. E. *Prog. Nucl. Magn. Reson. Spectrosc.* 1981, *14,*
175. (b) Emsley, J. W.; Feeney, J.; Sutcliffe, L. H. *High Resolution*
N*uclear Magnetic Resonance Spectroscopy*; Pergamon Press: Oxford, **U.K., 1966; Vol. 2, Table 12.34.**

⁽¹¹⁾ The products were separated by TLC on silica gel. IR u(C0) for 2b in hexane: 2094 (w), 2053 (s), 2013 (vs), 1997 (s), 1989 (m), 1953 (s), 1928 (w), 1554 (w) cm⁻¹. IR ν (CO) for 3 in CH₂Cl₃: 2036 (m), 1953 (s), 1939 (m), 1954 (s), 1939 (w), 1554 (w) cm⁻¹. IR ν (CO) for 3 i (s, NMe), 1.98 (s, CMe), 1.93 (s, CMe). Crystal data for 2b: space group
P1, $a = 10.422$ (1) A, $b = 10.628$ (2) A, $c = 8.934$ (1) A, $\alpha = 113.74$ (1)°, $\beta = 97.55 \text{ (1)}^{\circ}$, $\gamma = 93.27 \text{ (1)}^{\circ}$, $Z = 4$, 1931 reflections, $R = 0.027$. Details on the structure of 2b will be provided in the full report on this work. **Crystal data for 3: space group** $P2_1/c$ **,** $a = 11.976$ **(2) A,** $b = 10.092$ **(2) A,** $c = 18.429$ **(3) A,** $\beta = 107.18$ **(5)°,** $Z = 4$ **, 2155 reflections,** $R = 0.027$ **.** The mass spectrum for 2b shows the parent ion plus ions corresponding
to the loss of each of eight CO ligands. The mass spectrum of 3 showed
a weak parent ion (M^+) with stronger ions $M^+ - x({\rm CO})$ ($x = 1, 4-7$). Anal.
Cal

⁽¹²⁾ Ficini, J. Tetrahedron 1976, 32, 1449.

tween the metal atoms, as shown in Scheme I.

Acknowledgment. These studies were supported by the **US.** Department of Energy under Grant No. DEFG84ER13296.

Supplementary Material Available: Tables **of crystal** data, positional parameters, bond distances and angles, and **anisotropic** thermal parameters for the structural analyses **of 2a** and **3** (16 pages); tables of **structure** factors **(32 pages).** Ordering information **is** given on any current masthead page.

Organolanthanide-Catalyzed Dehydrogenative Coupling of Silanes. Mechanistic Implications

Craig M. Forsyth, Steven P. Nolan, and Tobin J. Marks' *Department* of *Chemistty, North western University, Evanston, Illinois 60208-3 1 13 Received June 4, 199 1*

Summary: Organolanthanide complexes of the type Cp'_{2} LnR (Cp' = η^{5} -Me₅C₅; Ln = La, Nd, Sm, Y, Lu; R = H, CH(SiMe₃)₂), Me₂SiCp⁷⁷₂LnR (Cp'' = η^5 -Me₄C₅; Ln = **Nd; R = CH(SIMe₃)₂), Cp'₂Sm, and Cp'₂Sm(THF)₂ catalyze** the rapid dehydrogenative oligomerization of PhSiH₃. Kinetic and mechanistic arguments exclude the importance of metal-centered redox processes in the catalytic cycle and support instead "four-center'' "heterolytic" **bond-scission/bond-forming** sequences.

Polyorganosilanes are of considerable current interest **as** ceramic precursors, third-order **NLO** materials, deep-W photoresists, conductive polymers, and photoconductors.' **A** major advance in polyorganosilane synthesis was Harrod's discovery of the catalytic dehydrogenative oligom**erization/polymerization** of organosilanes effected by organo-group 4 complexes (e.g., eq 1).^{2,3} Key unresolved **catalyst Artical Science Controls Controls Controls Controls (and Controls Controls Controls Artical Science Article Controls Controls Article Controls (a.g., eq.)

RSiH₃ Controls Controls Controls Controls Controls Co**

$$
HSiH_3 \xrightarrow{\text{catalityst}} H + \begin{pmatrix} H \\ S_i \\ I \end{pmatrix}_P H + (n-1)H_2 \qquad (1)
$$

mechanistic issues in such catalytic cycles concern the importance of oxidative addition/reductive elimination sequences, $2-4$ the intermediacy of silylene complexes, 25 the importance of free radical processes, $2f$ or the dominance

897-902.

of four-center heterolytic M-Si/M-H transposition processes (Scheme I). The latter scenario is supported by Tilley's recent characterization of several group four-centered stoichiometric model reactions⁶ and thermochemical results,⁷ which indicate (for closely analogous $M = U$) that the steps in Scheme **I** possess no significant thermodynamic impediments. If Scheme I were indeed valid, metal centers incapable of oxidative addition/reductive elimination sequences, which possess only one possible metal-Si/H σ functionality, and for which other four-center processes are typically facile, might be expected to be catalytically competent. We report here, in an application of this test, that electrophilic organolanthanides of the type $Cp'_{2}LnR/Me_{2}SiCp''_{2}LnR$ ($Cp'' = \eta^{5}Me_{5}C_{5}$; $Cp'' = \eta^{5}$ - $Me₄C₅$; Ln = lanthanide; R = hydrocarbon, hydride)^{8,9} are highly active for eq 1, some initial catalytic phenomenology, and initial kinetic/mechanistic observations.10

⁽¹⁾ (a) Miller, **R.** D. *Angew. Chem., Int. Ed. Engl. Adu. Mater.* **1989,** *28,* **1733-1740.** (b) Miller, **R.** D.; Michl, J. *Chem. Rev.* **1989, 89, 1359-1410.** (c) West, **R.;** Maxka, J. *ACS Symp. Ser.* **1988,360, &20.** (d) Miller, **R.** D.; Rabolt, J. F.; Sooriyakumaran, R.; Fleming, W.; Fickes, G. N.; Farmer, B. L.; Kuzmany, H. *ACS Symp. Ser*. 1988, 360, 43–60. (e)
Matyjaszewski, M.; Chen, Y. L.; Kim, H. K. *ACS Symp. Ser*. 1988, 360,
78–88. (f) Worsfold, D. J. *ACS Symp. Ser.* 1988, 360, 101–111. (g)
Baumert, J.-C

Miller, R. D.; Rabaolt, J.; Sooriyakumaran, R.; Swalen, J. D.; Twieg, R.
J. Appl. Phys. Lett. 1988, 53, 1147-1149.
(2) (a) Gauvin, F.; Harrod, J. F. Polym. Prepr. 1991, 32, 439-440. (b)
Mu, Y.; Aitken, C.; Coté, B.; Harrod

^{8, 2615-2818.} (b) Chang, L. S.; Corey, J. **Y.** *Organometallics* **1989,8, 1885-1893.**

⁽⁴⁾ (a) Corey, **J.** Y.; Zhu, **X.** H.; Bedard, T. C.; Lange, L. D. *Organo- metallics* **1991,10,924-930.** (b) Brown-Wensley, K. A. *Organometallics* **1987,6, 1590-1591.** (c) Corey, **J. Y.;** Chang, L. S.; Corey, E. R. *Organo- metallics* **1987,** *6,* **1595-1596.** (d) Ojima, **I.;** Inaba, S. D.; Kogure, T.; Nagai, Y. J. *Organomet. Chem.* **1973,55,** (27428. **(5)** Harrod, J. F.; Ziegler, T.; Tschinke, V. *Organometallics* **1990, 9,**

^{(6) (}a) Walzer, J. F.; Woo, H. G.; Tilley, T. D. Polym. Prepr. 1991, 32, 441–442. (b) Tilley, T. D.; Woo, H.-G. Polym. Prepr. 1990, 31, 228–229.
(c) Tilley, T. D. Comments Inorg. Chem. 1990, 10, 37–51. (d) Woo, H. G.; Till

⁽⁷⁾ Nolan, **S. P.;** Porchia, M.; Marks, T. J. *Organometallics* **1991,10, 1450-1457.**

⁽⁸⁾ (a) Mauermann, H.; Marks, T. J. *Organometallics* **1985,4,20&202.** (b) Jeske, G.; Lauke, H.; Mauermann, H.; Swepston, P. N.; Schumann,
H.; Marks, T. J. J. *Am. Chem. Soc.* 1985, 107, 8091–8103. (c) Jeske, G.;
Schock, L. E.; Mauermann, H.; Swepston, P. N.; Schumann, H.; Marks, T. J. J. *Am. Chem. SOC.* **1986,107,8103-8110. (d)** Jeske, G.; Lauke, H.; Mauermann, H.; Schumann, H.; Marks, T. J. J. *Am. Chem. SOC.* **1986, 107,8111-8118.**

⁽⁹⁾ Watson, P. L.; Parahell, G. W. *Acc. Chem. Res.* **1986, 28, 51-55.** (10) (a) Communicated in part: Marks, T. J. First International
Conference on f-Elements, Leuven, Sept 4-7, 1990. (b) While this work Conference on f-Elements, Leuven, Sept 4-7, 1990. *(b) While this work* was nearing completion, Cp'₂LuMe-catalyzed dehydrogenative silane polymerization was also reported by P. L. Watson: Watson, P. L., First International Conference on f-Elements, Leuven, Sept **4-7, 1990. See also:** Watson, P. L.; Tebbe, F. N. **US.** Patent **4,965,386,** Oct **23, 1990;** *Chem. Abstr.* 1991, 114, 123331p.