Phosphorus Abstraction Reactions Related to Hydrodesulfurization: Formation of Cp'₂Mo₂Co₂S₃(CO)₂(μ **₃-PR) from Cp'₂Mo₂Co₂S₃(CO)₄ and Phosphines**

Owen J. Curnow, Jeff W. Kampf, and M. David Curtis'

Lbpattmnt of *Chemistry, The University of Michigan, Ann Arbor, Michigan 48 109- 1055*

Received March 15, 199 1

Summary: The cluster $Cp'_2Mo_2Co_2S_3(CO)_4$ (1) (Cp' = C_5H_4 Me) abstracts the phosphinidene group R-P at 80 °C from phenylphosphine to form the cubane-like cluster $Cp'_{2}Mo_{2}Co_{2}S_{3}(CO)_{2}(\mu_{3}-PPh)$ (4) probably via the phosphine adduct Cp'₂Mo₂Co₂S₃(CO)₃(PH₂Ph) **(3)**. This is analogous to the desulfurization of thiols and thiophene by 1. Further reaction with the phosphine leads to the phosphine-substituted cubane Cp'₂Mo₂Co₂(CO)(PH₂Ph)S₃- $(\mu_{3}$ -PPh) (5). Reactions of 1 with diphenylphosphine are faster and form the monophosphine adduct as well as the cis and trans diadducts. Further reaction at 110 °C with an excess of the phosphine does not give a clean reaction; however, some benzene is observed to form. Crystal data for 4: space group $Pc2_1n$, $Z = 4$, $a =$ 10.210 (2) A, *b* = 12.767 (3) A, c = 18.097 **(4)** A, *a* = $\beta = \delta = 90.000^{\circ}$, $V = 2358.8$ (7) λ^3 , $R = 5.84$, $R_w =$ 4.93 based on 1995 reflections with $F_o \geq 0.6\sigma(F)$.

Hydrodesulfurization (HDS) and related "hydrotreating" processes, e.g., hydrodenitrogenation (HDN) and hydrodeoxygenation (HDO), are of increasing importance in fossil fuel refining.' The most common industrial hydrotreating catalysts are based on Mo/Co/S species supported on alumina.² We recently reported that discrete Mo/Co/S clusters, e.g., $Cp'_2Mo_2Co_2S_3(CO)_4$ (1) (Cp' = C_5H_4Me) produce the same active site as commercial catalysts when supported on alumina and sulfided in the conventional manner.³ Cluster 1 has also been shown to abstract sulfur from organic and inorganic sulfur compounds, e.g., thiophene, thiophenol, RNCS, and OCS, under relatively mild conditions (one **or** both carbonyl groups on 2 are displaced during the reaction when $X =$ $\overline{R}NC$, eq 1).⁴

We now report that cluster **1** also abstracts the phosphinidene group **R-P,** isoelectronic with sulfur, from **or**ganic phosphines probably via intermediate phosphine adducts. Thus, 1 reacts with excess PhPH₂ in refluxing benzene (1 h) to give the phenylphosphine adduct **35** (eq

2). Adduct 3, in the presence of PhPH₂ (to inhibit dis-

sociation of the phosphine), reacts further (80 \degree C, 2 h), presumably with loss of H_2 and CO, to give a mixture of the phenylphosphinidene cluster $Cp'_2Mo_2S_2(CO)_2S_3(PPh)$, 4 (eq 3), and the phosphine adduct of 4, $Cp_2'Mo_2Co_2$ - $(CO)(PH₂Ph)S₃(PPh)$ (5). The latter is converted to 4 by stirring the reaction mixture under CO.

Complex 3 exhibits two ABCD multiplets^{5} (δ 5.43–4.62) due to the inequivalent, diastereotopic Cp' groups and two singlets for the Cp'-Me groups at δ 1.92 and 1.85. The P-H protons are also diastereotopic and appear at δ 4.99 ($J_{\rm P-H}$) protons are also diastereotopic and appear at δ 4.99 $(J_{P-H} = 314 \text{ Hz})$ and δ 4.98 $(J_{P-H} = 324 \text{ Hz}, J_{H-H} = 6.84 \text{ Hz})$. Cluster 4 contains a plane of symmetry, so the chemically distinct Cp' groups show two A_2B_2 pattern⁶ (δ 5.24-4.84) for the ring protons and two singlets for the methyl protons $(6\ 1.79, 1.60).$

Continued heating of the reaction mixture containing 4 and excess PhPH2, **or** reaction of isolated **4** and PhPH2, in refluxing benzene, leads to the green/brown phosphine-substituted cubane **5.** Substitution of one carbonyl by the phosphine destroys the mirror plane in 4, and the Cp' resonances again exhibit the ABCD pattern charac-

^{(1) (}a) Massoth, **F.** E. *Ado. Catal* **1978, 27, 265.** (b) Gates, **B.** C.; Katzer, **J.** R.; Shuit, G. C. **A.** *Chemistry of Catalytic Processes;* McGraw-Hill: New York, **1979.**

⁽²⁾ Weisses, *0.;* Landa, S. *Sulfide Catalysts: Their Properties and Applications;* Pergamon, Oxford, **1973.**

⁽³⁾ Curtis, **M. D.;** Penner-Hahn, J. E.; Schwank, J.; Baralt, 0.; McCabe, D. J.; Thompson, L.; Waldo, G. *Polyhedron* **1988,22/23,2411.**

⁽⁴⁾ Riaz, **U.;** Curnow, *0.;* Curtis, M. **D.** J. *Am. Chem. SOC.* **1991,113, 1416.**

⁽⁵⁾ Complex **3** was obtained in **65%** yield from the reaction of **1 (0.42** mmol) with PhPHz **(1.36** mmol) in toluene at room temperature for **8** days. The brown product was isolated by chromatography over alumina (3:1 toluene:hexane eluant). ¹H NMR (C₆D₆): δ 7.55 (m, 2 H, PhH), 7.03 (m, 3 H, PhH), 5.43 (m, 2 H), 5.30 (m, 1 H), 5.15 (m, 1 H), 5.11 (m, 2 H) Hz, $J_{PH} = 314$ Hz, 1 H, PH), 4.98 (dd, $J_{HH} = 6.8$ Hz, $J_{PH} = 324$ Hz, 1 H, PH), 1.93 (s, 3 H, CpCH₃), 1.85 (s, 3 H, CpCH₃). ³¹P NMR (C_eD₈): δ -36.8 ppm. IR (toluene): ν (CO) 1990 (s), 1942 (s, br) cm⁻¹. stability of the phenylphosphine adducts with respect to loss of ligand resulted in poor microanalysis results.
 (6) Cluster **4** may also be prepared directly from 1 and PhPH₂. A **6.8** Hz, *JPH*

solution of cluster 1 (0.30 g, 0.44 mmol) and PhPH₂ (0.3 mL, 2.7 mmol) in 50 mL of benzene was refluxed for 5 h. Solvent and excess phosphine in 50 mL of benzene was refluxed for 5 h. Solvent and excess phosphine were removed under vacuum, and the brown solid was dissolved in benzene. This solution was stirred under CO for 2 h (to convert the phosphine adduct o dicarbonyl). Flash chromatography gave **0.15** g **(47%)** of dark green crystals after recrystallization from CH2Clz/hexane. 'H NMR (C **Da):** ⁶ **7.52** (m, **2** H, PhH), **6.95** (m, **3** H, PhH), **5.25** (t, J ⁼**2.3** Hz, **2 A), 5.02** (t, **J** = **2.3** Hz, **2** H), **5.00** (t, J ⁼**2.3** Hz, **2** H), **4.84** (t, J = **2.3** Hz, **2** H), **2AzB2** pattern for CpH, **1.79** *(8,* **3** H, CpCHI), **1.60 (e, 3 H,** CpCH). NMR (C&): 6 **451.5** ppm. **IR** (benzene): v(C0) **1968 (me), 1952 (83** cm-l. Anal. Calcd for C₂₀H₁₉C_{O2}M_{O2}O₂PS₃: C, 33.01; H, 2.63. Found: C, 33.12; **H, 2.55.**

Figure 1. ORTEP plot of $Cp'_2Mo_2Co_2S_3(PPh)(CO)_2$ (4).

teristic of a diastereotopic environment.'

Substitution reactions on 1 by Ph₂PH are faster than with $PhPH₂$. After 8 h at ambient temperature or after 30 min in refluxing benzene, formation of the monoadduct $\text{Cp}'_2\text{Mo}_2\text{Co}_2\text{S}_3(\text{CO})_3(\text{PHPh}_2)$ (6) is complete,⁸ and after 3 h in refluxing benzene, a mixture of the cis and trans diadduct 7 is formed (eq 4).⁹

(7) Complex 5: ¹H NMR (C₆D_e): δ 7.53 (m, 4 H, PhH), 7.00 (m, 6 H, PhH), 6.30 (m, $J_{\rm PH} \sim 315$ Hz, 2 H, PH₂), 5.41 (m, 2 H), 5.16 (m, 2 H), 5.12 (m, 2 H), 5.02 (m, 2 H) 2ABCD pattern for CpH, 1.93 (s, 3 H, CpCH₃), 1.79 (s, 3 H, CpCH₃). IR (toluene): *v*(CO) 1947 (s) cm⁻¹. Anal.
Calcd for C₂₅H₂₈Co₂Mo₂OP₂S₃: C, 37.05; H, 3.23. Found: C, 32.90; H, **2.94.** Instability with respect to **loss** of ligand resulted in poor microanalysis results.

(8) Cluster **1 (0.150** g, **0.22** mmol) was dissolved in **30** mL of toluene. Ph2PH **(0.3** mL, **1.6** mmol) was added and the solution stirred overnight. Chromatography down a **25-cm** column of alumina with **3:l** toluene/ hexane eluted a dark brown band of $\text{Cp}'_2\text{Mo}_2\text{Co}_2\text{S}_3(\text{CO})_3(\text{Ph}_2\text{PH})$ (6) (0.11 (CH
g, 60% yield) followed by a small brown band of $\text{Cp}'_2\text{Mo}_2\text{Co}_2\text{S}_3(\text{CO})_2$ -
(Ph₂PH)₂. A small green band was not 1 H), 5.09 (m, 1 H), 5.06 (m, 1 H), 4.89 (m, 1 H), 4.77 (m, 1 H) 2ABCD
pattern for CpH, 5.89, (d, J_{PH} = 320 Hz, 1 H, PH), 1.92 (s, 3 H, CpCH₃),
1.87 (s, 3 H, CpCH₃). IR (toluene): *v*(CO) 1988 (s), 1941 (s, br) cm⁻¹ Anal. Calcd for C₂₇H₂₅Co₂Mo₂O₃PS₃: C, 38.87; H, 3.02. Found: C, 39.34; H, **3.17.**

(9) A solution of cluster **1 (0.129** g, **0.19** "01) and PhzPH **(0.17** mL, 0.96 mmol) in 30 mL of benzene was refluxed under a slow stream of N_z for 3 h. Chromatography down a 20-cm column on alumina with 4:1
benzene/hexane eluted a dark brown band of a 2:1 mixture of *trans*- and benzene hexane eluted a dark brown band of a **21** mixture of **trans-** and cis-Cp'₂Mo₂Co₂S₃(CO)₂(Ph₂PH)₂ (0.11 g, 58% yield). A small green band
could not be eluted. ¹H NMR (C₈D₈): cis-Cp'₂Mo₂Co₂S₃(CO)₂(Ph₂PH)₂

b 7.75 (m, 8 H, PhH), 7.05 (m, 12 H, PhH), 6.06 (d C, **46.04;** H, **3.92.**

As with complexes **3** and **5,6** exhibits two ABCD **mul**tiplets (δ 5.42–4.77) and two singlets for the Cp–Me groups $(\delta$ 1.92 and 1.87). The P-H proton appears as a doublet at δ 5.89 with J_{P-H} = 320 Hz. Although the cis and trans diadducts *7* cannot be separated by chromatography, their NMR spectra are quite distinct; the **cis** adduct has **C,** symmetry and thus shows two A_2B_2 patterns for the Cp hydrogens (δ 5.57-4.68) and two singlets for the Cp-Me groups (6 2.05 and 1.91). The trans adduct, however, has C_2 symmetry and shows an ABCD pattern for CpH (δ 5.54-4.86) and one singlet for the Cp-Me groups (δ 2.00).

Refluxing a toluene solution of a mixture of *cis-* and *trans-7* with excess Ph₂PH does not result in a clean abstraction of a phosphinidene group to give cluster **4.** Some benzene was observed to form, however, indicating that some C-P bond breaking does occur. It is possible that competing reactions, e.g., sulfur abstraction from **1** or **4** by the excess phosphine, are responsible for the complexity of this reaction.

The cubane-like structure¹⁰ of 4 (Figure 1) is very similar to that of 2^{11} with one μ_3 -S ligand replaced by the μ_3 -PR group. The Co-P bonds in **4** appear to be anomalously short (2.152 **(5)** and 2.158 **(5) A)** when compared to the Co-S distances $(2.22 \pm 0.01 \text{ Å} \text{ in } 2 \text{ and } 4)$, since the covalent radius of phosphorus is expected to be ca. 0.06 **A** larger than that of sulfur.

Formation of phosphinidene clusters from phenylphosphine has been observed before, with the H atoms often ending up as hydride ligands¹² rather than being lost as H_2 ¹³ In some cases, intermediate species containing μ_2 -RPH ligands are observed.¹³ Cleavage of P–O and P–C bonds has also been observed in the synthesis of μ_3 -RP clusters.¹² The isoelectronic/isolobal set of clusters, Fe_{2} - $(\mu_{3} - X)(\mu_{3} - Y)(CO)_{9}$ (X, Y = S, PR), are also known.¹⁴

The similarity between the desulfurization **of** thiols by 1 and the reaction of 1 with PhPH₂ and Ph₂PH suggests the first step in the desulfurization process is a carbonyl replacement. Further work is being done to elucidate the mechanism **of** the desulfurization and phosphorus abstraction reactions exhibited by complex 1.

Acknowledgment. This work **was** supported by a grant (CHE-8619864) from the National Science Foundation.

Supplementary Material Available: Tables listing X-ray data, atomic positional parameters, thermal parameters, bond **distances,** bond angles, and H-atom coordinates (11 pages); a table of F_o and F_c (8 pages). Ordering information is given on any current masthead page.

⁽¹⁰⁾ Crystal data: orthorhombic, $Pc2_1n$ (alternate setting of $Pna2_1$, No. 33), $a = 10.210$ (2) Å, $b = 12.767$ (3) Å, $c = 18.097$ (4) Å, $\alpha = \beta = \delta = 90.000^{\circ}$, $T =$ ambient, $V = 2358.8$ (7) Å³, $Z = 4$, $R = 0.0584$, 0.0493. See supplementary material for complete crystallographic data.
(11) Curtis, M. D.; Riaz, U.; Kampf, J. W. Unpublished results.

⁽¹²⁾ Huttner, G.; Knoll, K. Angew. Chem., Int. Ed. *Engl.* **1987,26,743** and references therein.

⁽¹³⁾ (a) Natarajan, **K.;** Zsolnai, L.; Huttner, G. J. *Orgonomet.* Chem. **1981,220,365.** (b) Schneider, J.; **Zsolnai,** L.; Huttner, C. *Chem. Ber.* **1982, 115, 989.**

⁽¹⁴⁾ Seyferth, **D.;** Withers, H. P., Jr. Organometallics **1982,1, 1294.**